
Changelog

Changes made in this version not seen in first lecture:
13 September: replace ‘multi-level queue’ with ‘multi-level feedback
queue’ throughout

0

1

last time

the xv6 scheduler
loop through process table
dedicated thread for scheduler
swtch to scheduler to give up CPU
scheduler switches back to you

scheduling metrics
throughput, response time, fairness

first-come first-served (FCFS), round robin (RR)
simple non-preemptive, preemptive scheduler

priority scheduling

shortest job first
2

scheduler HW timing note

3

on extensions and late policies

there is a late policy
-10% 72 hours; -20% week

I generally don’t do extensions for the whole class
(exceptions: problems with submission system/weather/etc.)
if someone made sure they completed the assignment on time…

I might do late penalty adjustments

4

execv and const

int execv(const char *path, char *const *argv);

argv is a pointer to constant pointer to char

probably should be a pointer to constant pointer to constant char

…this causes some awkwardness:
const char *array[] = { /* ... */ };
execv(path, array); // ERROR

solution: cast
const char *array[] = { /* ... */ };
execv(path, (char **) array); // or (char * const *)

5

shell HW Q&A time

6

minimizing response time

recall: first-come, first-served best order:
had shortest CPU bursts first

→ scheduling algorithm: ‘shortest job first’ (SJF)

= same as priority where CPU burst length determines priority

…but without preemption for now
priority = job length doesn’t quite work with preemption
(preview: need priority = remaining time)

7

a practical problem

so we want to run the shortest CPU burst first

how do I tell which thread that is?

we’ll deal with this problem later

…kinda

8

alternating I/O and CPU: SJF

program A CPU I/O …

program B C
P
U

I/O …

program C …

shortest CPU burst not run immediately
still have “convoy effect”

9

alternating I/O and CPU: SJF

program A CPU I/O …

program B C
P
U

I/O …

program C …

shortest CPU burst not run immediately
still have “convoy effect”

9

alternating I/O and CPU: SJF

program A CPU I/O …

program B C
P
U

I/O …

program C …

shortest CPU burst not run immediately
still have “convoy effect”

9

adding preemption (1)

what if a long job is running, then a short job interrupts it?
short job will wait for too long

solution is preemption — reschedule when new job arrives
new job is shorter — run now!

10

adding preemption (2)

what if a long job is almost done running, then a medium job
interrupts it?

recall: priority = job length
long job waits for medium job
…for longer than it would take to finish
worse than letting long job finish

solution: priority = remaining time

called shortest remaining time first (SRTF)
prioritize by what’s left, not the total

11

adding preemption (2)

what if a long job is almost done running, then a medium job
interrupts it?

recall: priority = job length
long job waits for medium job
…for longer than it would take to finish
worse than letting long job finish

solution: priority = remaining time

called shortest remaining time first (SRTF)
prioritize by what’s left, not the total

11

alternating I/O and CPU: SRTF

program A CPU I/O …

program B C
P
U

I/O …

program C …

B preempts A because it has less time left
(that is, B is shorter than the time A has left)

C does not preempt A
because finishing A is faster than running C

12

alternating I/O and CPU: SRTF

program A CPU I/O …

program B C
P
U

I/O …

program C …

B preempts A because it has less time left
(that is, B is shorter than the time A has left)

C does not preempt A
because finishing A is faster than running C

12

alternating I/O and CPU: SRTF

program A CPU I/O …

program B C
P
U

I/O …

program C …

B preempts A because it has less time left
(that is, B is shorter than the time A has left)

C does not preempt A
because finishing A is faster than running C

12

alternating I/O and CPU: SRTF

program A CPU I/O …

program B C
P
U

I/O …

program C …

B preempts A because it has less time left
(that is, B is shorter than the time A has left)

C does not preempt A
because finishing A is faster than running C

12

SRTF, SJF are optimal (for response time)

SJF minimizes response time/waiting time
…if you disallow preemption/leaving CPU deliberately idle

SRTF minimizes response time/waiting time
…if you ignore context switch costs

13

knowing job lengths

seems hard

sometimes you can ask
common in batch job scheduling systems

and maybe you’ll get accurate answers, even

14

approximating SJF with priorities
priority 3
0–1 ms timeslice
priority 2
1–10 ms timeslice
priority 1
10–20 ms timeslice
priority 0
20+ ms timeslice

process A process B

process C

process D process E process F

goal: place processes at priority level based on CPU burst time

priority level = allowed time quantum
use more than 1ms at priority 3? — you shouldn’t be there

15

the SJF/SRTF problem

so, bucket implies CPU burst length
well, how does one figure that out?

e.g. not any of these fields
uint sz; // Size of process memory (bytes)
pde_t* pgdir; // Page table
char *kstack; // Bottom of kernel stack for this process
enum procstate state; // Process state
int pid; // Process ID
struct proc *parent; // Parent process
struct trapframe *tf; // Trap frame for current syscall
struct context *context; // swtch() here to run process
void *chan; // If non-zero, sleeping on chan
int killed; // If non-zero, have been killed
struct file *ofile[NOFILE]; // Open files
struct inode *cwd; // Current directory
char name[16]; // Process name (debugging)

16

the SJF/SRTF problem

so, bucket implies CPU burst length
well, how does one figure that out?
e.g. not any of these fields

uint sz; // Size of process memory (bytes)
pde_t* pgdir; // Page table
char *kstack; // Bottom of kernel stack for this process
enum procstate state; // Process state
int pid; // Process ID
struct proc *parent; // Parent process
struct trapframe *tf; // Trap frame for current syscall
struct context *context; // swtch() here to run process
void *chan; // If non-zero, sleeping on chan
int killed; // If non-zero, have been killed
struct file *ofile[NOFILE]; // Open files
struct inode *cwd; // Current directory
char name[16]; // Process name (debugging) 16

predicting the future

worst case: need to run the program to figure it out

but heuristics can figure it out
(read: often works, but no gaurentee)

key observation: CPU bursts now are like CPU bursts later
intuition: interactive program with lots of I/O tends to stay interactive
intuition: CPU-heavy program is going to keep using CPU

17

taking advantage of history

priority 3 / 1 ms
priority 2 / 10 ms
priority 1 / 20 ms
priority 0 / 100 ms

idea: priority = CPU burst length

round robin at
each priority

with different
quantum

process A process B
process C
process D process E process F

run highest
priority process

used whole timeslice?
add to lower priority queue now

process A

finished early?
put on higher priority next time

process A

18

taking advantage of history

priority 3 / 1 ms
priority 2 / 10 ms
priority 1 / 20 ms
priority 0 / 100 ms

idea: priority = CPU burst length

round robin at
each priority

with different
quantum

process A process B
process C
process D process E process F

run highest
priority process

used whole timeslice?
add to lower priority queue now

process A

finished early?
put on higher priority next time

process A

18

taking advantage of history

priority 3 / 1 ms
priority 2 / 10 ms
priority 1 / 20 ms
priority 0 / 100 ms

idea: priority = CPU burst length

round robin at
each priority

with different
quantum

process A process B
process C
process D process E process F

run highest
priority process

used whole timeslice?
add to lower priority queue now

process A

finished early?
put on higher priority next time

process A

18

taking advantage of history

priority 3 / 1 ms
priority 2 / 10 ms
priority 1 / 20 ms
priority 0 / 100 ms

idea: priority = CPU burst length

round robin at
each priority

with different
quantum

process A process B
process C
process D process E process F

run highest
priority process

used whole timeslice?
add to lower priority queue now

process A

finished early?
put on higher priority next time

process A

18

multi-level feedback queue idea

higher priority = shorter time quantum (before interrupted)

adjust priority and timeslice based on last timeslice

intuition: process always uses same CPU burst length?
ends up at “right” priority

rises up to queue with quantum just shorter than it’s burst
then goes down to next queue, then back up, then down, then up, etc.

19

cheating multi-level feedback queuing

algorithm: don’t use entire time quantum? priority increases

getting all the CPU:

while (true) {
useCpuForALittleLessThanMinimumTimeQuantum();
yieldCpu();

}

20

multi-level feedback queuing and fairness

suppose we are running several programs:
A. one very long computation that doesn’t need any I/O
B1 through B1000. 1000 programs processing data on disk
C. one interactive program

how much time will A get?

almost none — starvation
intuition: the B programs have higher priority than A
because it has smaller CPU bursts

21

multi-level feedback queuing and fairness

suppose we are running several programs:
A. one very long computation that doesn’t need any I/O
B1 through B1000. 1000 programs processing data on disk
C. one interactive program

how much time will A get?

almost none — starvation
intuition: the B programs have higher priority than A
because it has smaller CPU bursts

21

providing fairness

an additional heuristic: avoid starvation

track processes that haven’t run much recently

…and run them earlier than they “should” be

conflicts with SJF/SRTF goal

…but typically done by multi-level feedback queue implementations

22

fair scheduling

what is the fairest scheduling we can do?

intuition: every thread has an equal chance to be chosen

23

random scheduling algorithm

“fair” scheduling algorithm: choose uniformly at random

good for “fairness”

bad for response time

bad for predictability

24

aside: measuring fairness

one way: max-min fairness

choose schedule that maximizes the minimum resources (CPU time)
given to any thread

most fair least fair

25

proportional share

maybe every thread isn’t equal

if thread A is twice as important as thread B, then…

one idea: thread A should run twice as much as thread B

proportional share

26

proportional share

maybe every thread isn’t equal

if thread A is twice as important as thread B, then…

one idea: thread A should run twice as much as thread B

proportional share

26

lottery scheduling

A
100 tickets

B
200 tickets

C
100 tickets

every thread has a certain number of lottery tickets:

scheduling = lottery among ready threads:

0 100 200 300 400
choose random number in this range to find winner

27

simulating priority with lottery

A (high priority)
1M tickets

B (medium priority)
1K tickets

C (low priority)
1 tickets

very close to strict priority

…or to SJF if priorities are set right

28

lottery scheduling assignment

assignment: add lottery scheduling to xv6

extra system call: settickets

also counting of how long processes run (for testing)

simplification: okay if scheduling decisions are linear time
there is a faster way

not implementing preemption before time slice ends
might be better to run new lottery when process becomes ready?

29

lottery scheduling assignment

assignment: add lottery scheduling to xv6

extra system call: settickets

also counting of how long processes run (for testing)

simplification: okay if scheduling decisions are linear time
there is a faster way

not implementing preemption before time slice ends
might be better to run new lottery when process becomes ready?

29

is lottery scheduling actually good?

seriously proposed by academics in 1994 (Waldspurger and Weihl,
OSDI’94)

including ways of making it efficient
making preemption decisions (other than time slice ending)
if processes don’t use full time slice
handling non-CPU-like resources
…

elegant mecahnism that can implement a variety of policies

but there are some problems…

30

exercise

process A: 1 ticket, always runnable

process B: 9 tickets, always runnable

over 10 time quantum
what is the probability A runs for at least 3 quanta?

i.e. 3 times as much as “it’s supposed to”
chosen 3 times out of 10 instead of 1 out of 10

31

exercise

process A: 1 ticket, always runnable

process B: 9 tickets, always runnable

over 10 time quantum
what is the probability A runs for at least 3 quanta?

i.e. 3 times as much as “it’s supposed to”
chosen 3 times out of 10 instead of 1 out of 10

approx. 7%

31

backup slides

32

exercise

pid_t p = fork();
int pipe_fds[2];
pipe(pipe_fds);
if (p == 0) { /* child */
close(pipe_fds[0]);
char c = 'A';
write(pipe_fds[1], &c, 1);
exit();

} else { /* parent */
close(pipe_fds[1]);
char c;
int count = read(pipe_fds[0], &c, 1);
printf("read␣%d␣bytes\n", count);

}

The child is trying to send the character A to the parent.
But the above code outputs read 0 bytes instead of read 1
bytes.
What happened?

33

exercise solution

pipe() is after fork — two pipes, one in child, one in parent

34

exercise

int pipe_fds[2]; pipe(pipe_fds);
pid_t p = fork();
if (p == 0) {
close(pipe_fds[0]);
for (int i = 0; i < 10; ++i) {

char c = '0' + i;
write(pipe_fds[1], &c, 1);

}
exit();

}
close(pipe_fds[1]);
char buffer[10];
ssize_t count = read(pipe_fds[0], buffer, 10);
for (int i = 0; i < count; ++i) {
printf("%c", buffer[i]);

}

Which are possible outputs (if pipe, read, write, fork don’t fail)?
A. 0123456789 B. 0 C. (nothing)
D. A and B E. A and C F. A, B, and C 35

exercise

int pipe_fds[2]; pipe(pipe_fds);
pid_t p = fork();
if (p == 0) {
close(pipe_fds[0]);
for (int i = 0; i < 10; ++i) {

char c = '0' + i;
write(pipe_fds[1], &c, 1);

}
exit();

}
close(pipe_fds[1]);
char buffer[10];
ssize_t count = read(pipe_fds[0], buffer, 10);
for (int i = 0; i < count; ++i) {
printf("%c", buffer[i]);

}

Which are possible outputs (if pipe, read, write, fork don’t fail)?
A. 0123456789 B. 0 C. (nothing)
D. A and B E. A and C F. A, B, and C 35

partial reads

read returning 0 always means end-of-file
by default, read always waits if no input available yet
but can set read to return error instead of waiting

read can return less than requested if not available
e.g. child hasn’t gotten far enough

36

	shell Q&A time
	SJF, SRTF
	SJF
	SRTF
	getting time estimates?

	multilevel feedback queue intuition
	MFQ problems: cheating, starvation
	fairness goals: proportional share
	lottery scheduling

