
Scheduling 3 / Threads

1

last time

shortest job first/shortest remaining time first
response time optimizing
SJF — without preemption
SRTF — with preemption

multi-level feedback scheduling
priority ∼ quantum length
process uses whole quantum? move down in priority
process uses less than quantum? move up in priority (next time it runs)
maybe extra work to avoid starvation

proportional share scheduling
2x share — 2x CPU time
lottery scheduling — weighted random
set weights to approximate priority or whatever wanted

2

lottery scheduler assignment

track “ticks” process runs
= number of times scheduled
simplification: don’t care if process uses less than timeslice

new system call: getprocesesinfo
copy info from process table into user space

new system call: settickets
set number of tickets for current process
should be inherited by fork

scheduler: choose pseudorandom weighted by tickets
caution! no floating point

3

lottery scheduler and interactivity

suppose two processes A, B, each have same # of tickets
process A is CPU-bound
process B does lots of I/O

lottery scheduler: run equally when both can run
result: B runs less than A

50% when both runnable
0% of the time when only A runnable (waiting on I/O)

is this fair? depends who you ask

one idea: B should get more tickets for waiting

4

lottery scheduler and interactivity

suppose two processes A, B, each have same # of tickets
process A is CPU-bound
process B does lots of I/O

lottery scheduler: run equally when both can run
result: B runs less than A

50% when both runnable
0% of the time when only A runnable (waiting on I/O)

is this fair? depends who you ask

one idea: B should get more tickets for waiting 4

recall: proportional share randomness

lottery scheduler: variance was a problem
consistent over the long-term
inconsistent over the short-term

want something more like weighted round-robin
run one, then the other
but run some things more often (depending on weight/# tickets)

5

deterministic proportional share scheduler

Linux’s scheduler is a deterministic proportional share scheduler

…with a different solution to interactivity problem

6

Linux’s Completely Fair Scheduler (CFS)

Linux’s default scheduler is a proportional share scheduler…

…without randomization (consistent)

…with O(log N) scheduling decision
(handles many threads/processes)

…which favors interactive programs

…which adjusts timeslices dynamically
shorter timeslices if many things to run

7

Linux’s Completely Fair Scheduler (CFS)

Linux’s default scheduler is a proportional share scheduler…

…without randomization (consistent)

…with O(log N) scheduling decision
(handles many threads/processes)

…which favors interactive programs

…which adjusts timeslices dynamically
shorter timeslices if many things to run

8

CFS: tracking runtime

each thread has a virtual runtime (∼ how long it’s run)

incremented when run based how long it runs

more/less important thread? multiply adjustments by factor

adjustments for threads that are new or were sleeping
too big an advantage to start at runtime 0

scheduling decision: run thread with lowest virtual runtime
data structure: balanced tree

9

CFS: tracking runtime

each thread has a virtual runtime (∼ how long it’s run)

incremented when run based how long it runs

more/less important thread? multiply adjustments by factor

adjustments for threads that are new or were sleeping
too big an advantage to start at runtime 0

scheduling decision: run thread with lowest virtual runtime
data structure: balanced tree

9

virtual time, always ready, 1 ms quantum

A

A: 0.50 ms
B: 1.25 ms
C: 1.40 ms

B

A: 1.50 ms
B: 1.25 ms
C: 1.40 ms

C

A: 1.50 ms
B: 2.25 ms
C: 1.40 ms

A

A: 1.50 ms
B: 2.25 ms
C: 2.40 ms

0 ms 1 ms 2 ms 3 ms

at each time:
update current thread’s time
run thread with lowest total time

same effect as round robin
if everyone uses whole quantum

10

virtual time, always ready, 1 ms quantum

A

A: 0.50 ms
B: 1.25 ms
C: 1.40 ms

B

A: 1.50 ms
B: 1.25 ms
C: 1.40 ms

C

A: 1.50 ms
B: 2.25 ms
C: 1.40 ms

A

A: 1.50 ms
B: 2.25 ms
C: 2.40 ms

0 ms 1 ms 2 ms 3 ms

at each time:
update current thread’s time
run thread with lowest total time

same effect as round robin
if everyone uses whole quantum

10

virtual time, always ready, 1 ms quantum

A

A: 0.50 ms
B: 1.25 ms
C: 1.40 ms

B

A: 1.50 ms
B: 1.25 ms
C: 1.40 ms

C

A: 1.50 ms
B: 2.25 ms
C: 1.40 ms

A

A: 1.50 ms
B: 2.25 ms
C: 2.40 ms

0 ms 1 ms 2 ms 3 ms

at each time:
update current thread’s time
run thread with lowest total time

same effect as round robin
if everyone uses whole quantum

10

what about threads waiting for I/O, …?

should be advantage for processes not using the CPU as much
haven’t used CPU for a while — deserve priority now
…but don’t want to let them hog the CPU

Linux solution: newly ready task time = max of
its prior virtual time
a little less than minimum virtual time (of already ready tasks)

not runnable briefly? still get your share of CPU
(catch up from prior virtual time)

not runnable for a while? get bounded advantage

11

what about threads waiting for I/O, …?

should be advantage for processes not using the CPU as much
haven’t used CPU for a while — deserve priority now
…but don’t want to let them hog the CPU

Linux solution: newly ready task time = max of
its prior virtual time
a little less than minimum virtual time (of already ready tasks)

not runnable briefly? still get your share of CPU
(catch up from prior virtual time)

not runnable for a while? get bounded advantage

11

A doesn’t use whole time…

A

A: 0.25 ms
B: 1.25 ms
C: 1.00 ms

B

A(not ready): 0.75 ms
B: 1.25 ms
C: 1.00 ms

A

A(ready): 0.75 ms
B: 2.25 ms
C: 1.00 ms

A scheduled early
since it still has

time it’s entitled to

C

A: 1.75 ms
B: 2.25 ms
C: 1.00 ms

A

A: 1.75 ms
B: 2.25 ms
C: 2.00 ms

0 ms 1 ms 2 ms 3 ms

12

A doesn’t use whole time…

A

A: 0.25 ms
B: 1.25 ms
C: 1.00 ms

B

A(not ready): 0.75 ms
B: 1.25 ms
C: 1.00 ms

A

A(ready): 0.75 ms
B: 2.25 ms
C: 1.00 ms

A scheduled early
since it still has

time it’s entitled to

C

A: 1.75 ms
B: 2.25 ms
C: 1.00 ms

A

A: 1.75 ms
B: 2.25 ms
C: 2.00 ms

0 ms 1 ms 2 ms 3 ms

12

A doesn’t use whole time…

A

A: 0.25 ms
B: 1.25 ms
C: 1.00 ms

B

A(not ready): 0.75 ms
B: 1.25 ms
C: 1.00 ms

A

A(ready): 0.75 ms
B: 2.25 ms
C: 1.00 ms

A scheduled early
since it still has

time it’s entitled to

C

A: 1.75 ms
B: 2.25 ms
C: 1.00 ms

A

A: 1.75 ms
B: 2.25 ms
C: 2.00 ms

0 ms 1 ms 2 ms 3 ms

12

A doesn’t use whole time…

A

A: 0.25 ms
B: 1.25 ms
C: 1.00 ms

B

A(not ready): 0.75 ms
B: 1.25 ms
C: 1.00 ms

A

A(ready): 0.75 ms
B: 2.25 ms
C: 1.00 ms

A scheduled early
since it still has

time it’s entitled to

C

A: 1.75 ms
B: 2.25 ms
C: 1.00 ms

A

A: 1.75 ms
B: 2.25 ms
C: 2.00 ms

0 ms 1 ms 2 ms 3 ms

12

A’s long sleep…

B

A(sleeping): 1.50 ms
B: 50.00 ms
C: 50.95 ms

C

A(sleeping): 1.50 ms
B: 51.00 ms
C: 50.95 ms

A

A(now ready): 50.00 ms
B: 51.00 ms
C: 51.70 ms

A’s virtual time
adjusted to avoid

giving too much advantage

B

A(sleeping): 50.75 ms
B: 51.00 ms
C: 51.70 ms

C

A(sleeping): 50.75 ms
B: 52.00 ms
C: 51.70 ms

0 ms 1 ms 2 ms 3 ms

13

A’s long sleep…

B

A(sleeping): 1.50 ms
B: 50.00 ms
C: 50.95 ms

C

A(sleeping): 1.50 ms
B: 51.00 ms
C: 50.95 ms

A

A(now ready): 50.00 ms
B: 51.00 ms
C: 51.70 ms

A’s virtual time
adjusted to avoid

giving too much advantage

B

A(sleeping): 50.75 ms
B: 51.00 ms
C: 51.70 ms

C

A(sleeping): 50.75 ms
B: 52.00 ms
C: 51.70 ms

0 ms 1 ms 2 ms 3 ms

13

A’s long sleep…

B

A(sleeping): 1.50 ms
B: 50.00 ms
C: 50.95 ms

C

A(sleeping): 1.50 ms
B: 51.00 ms
C: 50.95 ms

A

A(now ready): 50.00 ms
B: 51.00 ms
C: 51.70 ms

A’s virtual time
adjusted to avoid

giving too much advantage

B

A(sleeping): 50.75 ms
B: 51.00 ms
C: 51.70 ms

C

A(sleeping): 50.75 ms
B: 52.00 ms
C: 51.70 ms

0 ms 1 ms 2 ms 3 ms

13

A’s long sleep…

B

A(sleeping): 1.50 ms
B: 50.00 ms
C: 50.95 ms

C

A(sleeping): 1.50 ms
B: 51.00 ms
C: 50.95 ms

A

A(now ready): 50.00 ms
B: 51.00 ms
C: 51.70 ms

A’s virtual time
adjusted to avoid

giving too much advantage

B

A(sleeping): 50.75 ms
B: 51.00 ms
C: 51.70 ms

C

A(sleeping): 50.75 ms
B: 52.00 ms
C: 51.70 ms

0 ms 1 ms 2 ms 3 ms

13

handling proportional sharing

solution: multiply used time by weight

e.g. 1 ms of CPU time costs process 2 ms of virtual time

higher weight =⇒ process less favored to run

14

CFS quantum lengths goals

first priority: constrain minimum quantum length (default: 0.75ms)
avoid too-frequent context switching

second priority: run every process “soon” (default: 6ms)
avoid starvation

quantum ≈ max(fixed window / num processes, minimum quantum)

15

CFS quantum lengths goals

first priority: constrain minimum quantum length (default: 0.75ms)
avoid too-frequent context switching

second priority: run every process “soon” (default: 6ms)
avoid starvation

quantum ≈ max(fixed window / num processes, minimum quantum)

15

CFS: avoiding excessive context switching

conflicting goals:

schedule newly ready tasks immediately
(assuming less virtual time than current task)

avoid excessive context switches

CFS rule:
if virtual time of new task < current virtual time by threshold

default threshold: 1 ms

(otherwise, wait until quantum is done)

16

other CFS parts

dealing with multiple CPUs

handling groups of related tasks

special ‘idle’ or ‘batch’ task settings

…

17

CFS versus others

very similar to stride scheduling
presented as a deterministic version of lottery scheduling
Waldspurger and Weihl, “Stride Scheduling: Deterministic
Proportional-Share Resource Management” (1995, same authors as
lottery scheduling)

very similar to weighted fair queuing
used to schedule network traffic
Demers, Keshav, and Shenker, “Analysis and Simulation of a Fair
Queuing Algorithm” (1989)

18

a note on multiprocessors

what about multicore?

extra considerations:

want two processors to schedule without waiting for each other

want to keep process on same processor (better for cache)

what process to preempt when three+ choices?

19

real-time

so far: “best effort” scheduling
best possible (by some metrics) given some work

alternate model: need gaurnetees

deadlines imposed by real-world
process audio with 1ms delay
computer-controlled cutting machines (stop motor at right time)
car brake+engine control computer
…

20

real time example: CPU + deadlines

CPU needed

ready deadline

CPU needed

ready deadline

CPU needed

ready deadline

21

example with RR

ready deadline

ready deadline

ready deadline

missed deadline!

22

earliest deadline first
ready deadline

ready deadline

ready deadline

23

impossible deadlines
ready deadline

ready deadline

ready deadline

no way to meet all deadlines!

24

admission control

given worst-case runtimes, start times, deadlines, scheduling
algorithm,…

figure out whether it’s possible to gaurentee meeting deadlines
details on how — not this course (probably)

if not, then
change something so they can?
don’t ship that device?
tell someone at least?

25

earliest deadline first and…

earliest deadline first does not (even when deadlines met)
minimize response time
maximize throughput
maximize fairness

exercise: give an example

26

which scheduler should I choose?

I care about…
CPU throughput: first-come first-serve

average response time: SRTF approximation

I/O throughput: SRTF approximation

fairness — long-term CPU usage: something like Linux CFS

fairness — wait time: something like RR

deadlines — earliest deadline first

favoring certain users: strict priority

27

threads versus processes

for now — each process has one thread

Anderson-Dahlin talks about thread scheduling

thread = part that gets run on CPU
saved register values (including own stack pointer)
save program counter

rest of process
address space
open files
current working directory
…

28

xv6 processes versus threads

xv6: one thread per process
so part of the process control block
is really a thread control block
// Per-process state
struct proc {
uint sz; // Size of process memory (bytes)
pde_t* pgdir; // Page table
char *kstack; // Bottom of kernel stack for this process
enum procstate state; // Process state
int pid; // Process ID
struct proc *parent; // Parent process
struct trapframe *tf; // Trap frame for current syscall
struct context *context; // swtch() here to run process
void *chan; // If non-zero, sleeping on chan
int killed; // If non-zero, have been killed
struct file *ofile[NOFILE]; // Open files
struct inode *cwd; // Current directory
char name[16]; // Process name (debugging)

}; 29

xv6 processes versus threads

xv6: one thread per process
so part of the process control block
is really a thread control block
// Per-process state
struct proc {
uint sz; // Size of process memory (bytes)
pde_t* pgdir; // Page table
char *kstack; // Bottom of kernel stack for this process
enum procstate state; // Process state
int pid; // Process ID
struct proc *parent; // Parent process
struct trapframe *tf; // Trap frame for current syscall
struct context *context; // swtch() here to run process
void *chan; // If non-zero, sleeping on chan
int killed; // If non-zero, have been killed
struct file *ofile[NOFILE]; // Open files
struct inode *cwd; // Current directory
char name[16]; // Process name (debugging)

}; 29

single and multithread processes

thread thread thread thread

files pid …

code data …

stack

registers

PC

…

single-threaded process

files pid …

code data …

stack stack stack

registers registers registers

PC PC PC

… … …

multi-threaded process

30

thread versus process state

thread state — kept in thread control block
registers (including program counter)
other information?

process state — kept in process control block
address space (memory layout)
open files
process id
…

31

Linux idea: task_struct

Linux model: single “task” structure = thread

pointers to address space, open file list, etc.

pointers can be shared — if same process

fork()-like system call “clone”: choose what to share
e.g. clone(CLONE_FILES, ...) — new process sharing open files
e.g. clone(CLONE_VM, ...) — new process sharing address
spaces

advantage: no special logic for threads (mostly)

32

Linux idea: task_struct

Linux model: single “task” structure = thread

pointers to address space, open file list, etc.

pointers can be shared — if same process

fork()-like system call “clone”: choose what to share
e.g. clone(CLONE_FILES, ...) — new process sharing open files
e.g. clone(CLONE_VM, ...) — new process sharing address
spaces

advantage: no special logic for threads (mostly)
32

aside: alternate threading models

we’ll talk about kernel threads

OS scheduler deals directly with threads

alternate idea: library code handles threading

kernel doesn’t know about threads w/in process

hierarchy of schedulers: one for processes, one within each process

not currently common model — awkward with multicore

33

why threads?

concurrency: different things happening at once
one thread per user of web server?
one thread per page in web browser?
one thread to play audio, one to read keyboard, …?
…

parallelism: do same thing with more resources
multiple processors to speed-up simulation (life assignment)

34

pthread_create
void *ComputePi(void *argument) { ... }
void *PrintClassList(void *argument) { ... }
int main() {

pthread_t pi_thread, list_thread;
pthread_create(&pi_thread, NULL, ComputePi, NULL);
pthread_create(&list_thread, NULL, PrintClassList, NULL);
... /* more code */

}

run ComputePi and PrintClassList at the same time

also run “more code”

thread identifier — used to perform operations on thread laterfunction to run — thread starts here, terminate if function returnsthread attributes (extra settings) and function argument

35

pthread_create
void *ComputePi(void *argument) { ... }
void *PrintClassList(void *argument) { ... }
int main() {

pthread_t pi_thread, list_thread;
pthread_create(&pi_thread, NULL, ComputePi, NULL);
pthread_create(&list_thread, NULL, PrintClassList, NULL);
... /* more code */

}

run ComputePi and PrintClassList at the same time

also run “more code”

thread identifier — used to perform operations on thread later

function to run — thread starts here, terminate if function returnsthread attributes (extra settings) and function argument

35

pthread_create
void *ComputePi(void *argument) { ... }
void *PrintClassList(void *argument) { ... }
int main() {

pthread_t pi_thread, list_thread;
pthread_create(&pi_thread, NULL, ComputePi, NULL);
pthread_create(&list_thread, NULL, PrintClassList, NULL);
... /* more code */

}

run ComputePi and PrintClassList at the same time

also run “more code”

thread identifier — used to perform operations on thread later

function to run — thread starts here, terminate if function returns

thread attributes (extra settings) and function argument

35

pthread_create
void *ComputePi(void *argument) { ... }
void *PrintClassList(void *argument) { ... }
int main() {

pthread_t pi_thread, list_thread;
pthread_create(&pi_thread, NULL, ComputePi, NULL);
pthread_create(&list_thread, NULL, PrintClassList, NULL);
... /* more code */

}

run ComputePi and PrintClassList at the same time

also run “more code”

thread identifier — used to perform operations on thread laterfunction to run — thread starts here, terminate if function returns

thread attributes (extra settings) and function argument

35

a threading race
#include <pthread.h>
#include <stdio.h>
void *print_message(void *ignored_argument) {

printf("In␣the␣thread\n");
return NULL;

}
int main() {

printf("About␣to␣start␣thread\n");
pthread_t the_thread;
pthread_create(&the_thread, NULL, print_message, NULL);
printf("Done␣starting␣thread\n");
return 0;

}

My machine: outputs In the thread about 4% of the time.
What happened?

36

a race

returning from main exits the entire process (all threads)

race: main’s return 0 or print_message’s printf first?
time

main: printf/pthread_create/printf/return

print_message: printf/return

return from main
ends all threads
in the process

37

fixing the race (version 1)
#include <pthread.h>
#include <stdio.h>
void *print_message(void *ignored_argument) {

printf("In␣the␣thread\n");
return NULL;

}
int main() {

printf("About␣to␣start␣thread\n");
pthread_t the_thread;
pthread_create(&the_thread, NULL, print_message, NULL);
printf("Done␣starting␣thread\n");
pthread_join(the_thread, NULL); /* WAIT FOR THREAD */
return 0;

}

38

fixing the race (version 2; not recommended)
#include <pthread.h>
#include <stdio.h>
void *print_message(void *ignored_argument) {

printf("In␣the␣thread\n");
return NULL;

}
int main() {

printf("About␣to␣start␣thread\n");
pthread_t the_thread;
pthread_create(&the_thread, NULL, print_message, NULL);
printf("Done␣starting␣thread\n");
pthread_exit(NULL);

}

39

pthread_join, pthread_exit

pthread_join: wait for thread, returns its return value
like waitpid, but for a thread
return value is pointer to anything

pthread_exit: exit current thread, returning a value
like exit or returning from main, but for a single thread
same effect as returning from function passed to pthread_create

40

passing thread IDs (1)

DataType items[1000];
void *thread_function(void *argument) {

int thread_id = (int) argument;
int start = 500 * thread_id;
int end = start + 500;
for (int i = start; i < end; ++i) {

DoSomethingWith(items[i]);
}
...

}
void run_threads() {

vector<pthread_t> threads(2);
for (int i = 0; i < 2; ++i) {

pthread_create(&threads[i], NULL,
thread_function, (void*) i);

}
}

41

passing thread IDs (1)

DataType items[1000];
void *thread_function(void *argument) {

int thread_id = (int) argument;
int start = 500 * thread_id;
int end = start + 500;
for (int i = start; i < end; ++i) {

DoSomethingWith(items[i]);
}
...

}
void run_threads() {

vector<pthread_t> threads(2);
for (int i = 0; i < 2; ++i) {

pthread_create(&threads[i], NULL,
thread_function, (void*) i);

}
}

41

passing thread IDs (2)

DataType items[1000];
int num_threads;
void *thread_function(void *argument) {

int thread_id = (int) argument;
int start = thread_id * (1000 / num_threads);
int end = start + (1000 / num_threads);
if (thread_id == num_threads − 1) end = 1000;
for (int i = start; i < end; ++i) {

DoSomethingWith(items[i]);
}
...

}
void run_threads() {

vector<pthread_t> threads(num_threads);
for (int i = 0; i < num_threads; ++i) {

pthread_create(&threads[i], NULL,
thread_function, (void*) i);

}
...

}
42

passing thread IDs (2)

DataType items[1000];
int num_threads;
void *thread_function(void *argument) {

int thread_id = (int) argument;
int start = thread_id * (1000 / num_threads);
int end = start + (1000 / num_threads);
if (thread_id == num_threads − 1) end = 1000;
for (int i = start; i < end; ++i) {

DoSomethingWith(items[i]);
}
...

}
void run_threads() {

vector<pthread_t> threads(num_threads);
for (int i = 0; i < num_threads; ++i) {

pthread_create(&threads[i], NULL,
thread_function, (void*) i);

}
...

}
42

passing data structures

class ThreadInfo {
public:

...
};

void *thread_function(void *argument) {
ThreadInfo *info = (ThreadInfo *) argument;
...
delete info;

}

void run_threads(int N) {
vector<pthread_t> threads(num_threads);
for (int i = 0; i < num_threads; ++i) {

pthread_create(&threads[i], NULL,
thread_function, (void *) new ThreadInfo(...));

}
...

} 43

passing data structures

class ThreadInfo {
public:

...
};

void *thread_function(void *argument) {
ThreadInfo *info = (ThreadInfo *) argument;
...
delete info;

}

void run_threads(int N) {
vector<pthread_t> threads(num_threads);
for (int i = 0; i < num_threads; ++i) {

pthread_create(&threads[i], NULL,
thread_function, (void *) new ThreadInfo(...));

}
...

} 43

what’s wrong with this?

/* omitted: headers, using statements */
void *create_string(void *ignored_argument) {
string result;
result = ComputeString();
return &result;

}
int main() {
pthread_t the_thread;
pthread_create(&the_thread, NULL, get_string, NULL);
string *string_ptr;
pthread_join(the_thread, &string_ptr);
cout << "string␣is␣" << *string_ptr;

}

44

program memory

0xFFFF FFFF FFFF FFFF

0xFFFF 8000 0000 0000

0x7F…

0x0000 0000 0040 0000

Used by OS

main thread stack

second thread stack

third thread stack

Heap / other dynamic
Code / Data

dynamically allocated stacks
string result allocated here
string_ptr pointed to here

…stacks deallocated when
threads exit/are joined

45

program memory

0xFFFF FFFF FFFF FFFF

0xFFFF 8000 0000 0000

0x7F…

0x0000 0000 0040 0000

Used by OS

main thread stack

second thread stack

third thread stack

Heap / other dynamic
Code / Data

dynamically allocated stacks
string result allocated here
string_ptr pointed to here

…stacks deallocated when
threads exit/are joined

45

thread resources

to create a thread, allocate:

new stack (how big???)

thread control block

pthreads: by default need to join thread to deallocate everything

thread kept around to allow collecting return value

46

pthread_detach

void *show_progress(void * ...) { ... }
void spawn_show_progress_thread() {

pthread_t show_progress_thread;
pthread_create(&show_progress_thread, NULL, show_progress, NULL);
pthread_detach(show_progress_thread);

}
int main() {

spawn_show_progress_thread();
do_other_stuff();
...

}

detach = don’t care about return value, etc.system will deallocate when thread terminates
47

starting threads detached

void *show_progress(void * ...) { ... }
void spawn_show_progress_thread() {

pthread_t show_progress_thread;
pthread_attr_t attrs;
pthread_attr_init(&attrs);
pthread_attr_setdetachstate(&attrs, PTHREAD_CREATE_DETACHED);
pthread_create(&show_progress_thread, attrs, show_progress, NULL);
pthread_attr_destroy(&attrs);

}

48

setting stack sizes

void *show_progress(void * ...) { ... }
void spawn_show_progress_thread() {

pthread_t show_progress_thread;
pthread_attr_t attrs;
pthread_attr_init(&attrs);
pthread_attr_setstacksize(&attrs, 32 * 1024 /* bytes */);
pthread_create(&show_progress_thread, NULL, show_progress, NULL);

}

49

a note on error checking

from pthread_create manpage:

special constants for return value

same pattern for many other pthreads functions

will often omit error checking in slides for brevity
50

error checking pthread_create

int error = pthread_create(...);
if (error != 0) {

/* print some error message */
}

51

the correctness problem

schedulers introduce non-determinism
scheduler might run threads in any order
scheduler can switch threads at any time

worse with threads on multiple cores
cores not precisely synchronized (stalling for caches, etc., etc.)
different cores happen in different order each time

makes reliable testing very difficult

solution: correctness by design

52

example application: ATM server

commands: withdraw, deposit

one correctness goal: don’t lose money

53

ATM server
(pseudocode)
ServerLoop() {

while (true) {
ReceiveRequest(&operation, &accountNumber, &amount);
if (operation == DEPOSIT) {

Deposit(accountNumber, amount);
} else ...

}
}
Deposit(accountNumber, amount) {

account = GetAccount(accountId);
account−>balance += amount;
StoreAccount(account);

}

54

a threaded server?

Deposit(accountNumber, amount) {
account = GetAccount(accountId);
account−>balance += amount;
StoreAccount(account);

}

maybe Get/StoreAccount can be slow?
read/write disk sometimes? contact another server sometimes?

maybe lots of requests to process?
maybe real logic has more checks than Deposit()
…

all reasons to handle multiple requests at once
→ many threads all running the server loop

55

multiple threads

main() {
for (int i = 0; i < NumberOfThreads; ++i) {

pthread_create(&server_loop_threads[i], NULL,
ServerLoop, NULL);

}
...

}

ServerLoop() {
while (true) {

ReceiveRequest(&operation, &accountNumber, &amount);
if (operation == DEPOSIT) {

Deposit(accountNumber, amount);
} else ...

}
}

56

a side note

why am I spending time justifying this?

multiple threads for something like this make things much trickier

we’ll be learning why…

57

the lost write

account−>balance += amount; (in two threads, same account)

mov account−>balance, %rax
add amount, %rax

Thread A Thread B

mov account−>balance, %rax
add amount, %rax

mov %rax, account−>balance

mov %rax, account−>balance

context switch

context switch

context switch

lost write to balance
“winner” of the race

lost track of thread A’s money

58

the lost write

account−>balance += amount; (in two threads, same account)

mov account−>balance, %rax
add amount, %rax

Thread A Thread B

mov account−>balance, %rax
add amount, %rax

mov %rax, account−>balance

mov %rax, account−>balance

context switch

context switch

context switch
lost write to balance

“winner” of the race

lost track of thread A’s money

58

the lost write

account−>balance += amount; (in two threads, same account)

mov account−>balance, %rax
add amount, %rax

Thread A Thread B

mov account−>balance, %rax
add amount, %rax

mov %rax, account−>balance

mov %rax, account−>balance

context switch

context switch

context switch
lost write to balance

“winner” of the race
lost track of thread A’s money

58

backup slides

59

lottery scheduling

A
100 tickets

B
200 tickets

C
100 tickets

every thread has a certain number of lottery tickets:

scheduling = lottery among ready threads:

0 100 200 300 400
choose random number in this range to find winner

60

simulating priority with lottery

A (high priority)
1M tickets

B (medium priority)
1K tickets

C (low priority)
1 tickets

very close to strict priority

…or to SJF if priorities are set right

61

lottery scheduling assignment

assignment: add lottery scheduling to xv6

extra system call: settickets

also counting of how long processes run (for testing)

simplification: okay if scheduling decisions are linear time
there is a faster way

not implementing preemption before time slice ends
might be better to run new lottery when process becomes ready?

62

lottery scheduling assignment

assignment: add lottery scheduling to xv6

extra system call: settickets

also counting of how long processes run (for testing)

simplification: okay if scheduling decisions are linear time
there is a faster way

not implementing preemption before time slice ends
might be better to run new lottery when process becomes ready?

62

is lottery scheduling actually good?

seriously proposed by academics in 1994 (Waldspurger and Weihl,
OSDI’94)

including ways of making it efficient
making preemption decisions (other than time slice ending)
if processes don’t use full time slice
handling non-CPU-like resources
…

elegant mecahnism that can implement a variety of policies

but there are some problems…

63

exercise

process A: 1 ticket, always runnable

process B: 9 tickets, always runnable

over 10 time quantum
what is the probability A runs for at least 3 quanta?

i.e. 3 times as much as “it’s supposed to”
chosen 3 times out of 10 instead of 1 out of 10

64

exercise

process A: 1 ticket, always runnable

process B: 9 tickets, always runnable

over 10 time quantum
what is the probability A runs for at least 3 quanta?

i.e. 3 times as much as “it’s supposed to”
chosen 3 times out of 10 instead of 1 out of 10

approx. 7%

64

periodic tasks and deadlines
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

1 ms CPU
every 4 ms

2 ms CPU
every 5 ms

2 ms CPU
every 7 ms

65

admission control

filter gaurentees: don’t make promises you can’t keep

theorem (Liu and Layland, 1973):
given periodic tasks (released after each deadline), deadlines Di and
computation times Ci, earliest deadline first will meet all deadlines if:
n∑

i=1
(Ci/Di) ≤ 1

one idea: use this to accept/reject tasks

66

xv6 interrupt disabling: detail (3)

pushcli(void)
{
int eflags;
eflags = readeflags();
cli();
if (mycpu()−>ncli == 0)
mycpu()−>intena = eflags & FL_IF;

mycpu()−>ncli += 1;
}

popcli(void)
{
if(readeflags()&FL_IF)
panic("popcli␣-␣interruptible");

if(−−mycpu()−>ncli < 0)
panic("popcli");

if(mycpu()−>ncli == 0 && mycpu()−>intena)
sti();

}

mycpu() — per-core informationintena — were interrupts enabled before first pushcli()?ncli — # calls to pushcli - # calls to popcli
intended usage: each pushcli has matching popclipushcli — always disable interrupts

popcli — renable interrupts if last popcli
(and interrupts were enabled before)
(each pushcli had a matching popcli call)

67

xv6 interrupt disabling: detail (3)

pushcli(void)
{
int eflags;
eflags = readeflags();
cli();
if (mycpu()−>ncli == 0)
mycpu()−>intena = eflags & FL_IF;

mycpu()−>ncli += 1;
}

popcli(void)
{
if(readeflags()&FL_IF)
panic("popcli␣-␣interruptible");

if(−−mycpu()−>ncli < 0)
panic("popcli");

if(mycpu()−>ncli == 0 && mycpu()−>intena)
sti();

}

mycpu() — per-core information

intena — were interrupts enabled before first pushcli()?ncli — # calls to pushcli - # calls to popcli
intended usage: each pushcli has matching popclipushcli — always disable interrupts

popcli — renable interrupts if last popcli
(and interrupts were enabled before)
(each pushcli had a matching popcli call)

67

xv6 interrupt disabling: detail (3)

pushcli(void)
{
int eflags;
eflags = readeflags();
cli();
if (mycpu()−>ncli == 0)
mycpu()−>intena = eflags & FL_IF;

mycpu()−>ncli += 1;
}

popcli(void)
{
if(readeflags()&FL_IF)
panic("popcli␣-␣interruptible");

if(−−mycpu()−>ncli < 0)
panic("popcli");

if(mycpu()−>ncli == 0 && mycpu()−>intena)
sti();

}

mycpu() — per-core information

intena — were interrupts enabled before first pushcli()?

ncli — # calls to pushcli - # calls to popcli
intended usage: each pushcli has matching popclipushcli — always disable interrupts

popcli — renable interrupts if last popcli
(and interrupts were enabled before)
(each pushcli had a matching popcli call)

67

xv6 interrupt disabling: detail (3)

pushcli(void)
{
int eflags;
eflags = readeflags();
cli();
if (mycpu()−>ncli == 0)
mycpu()−>intena = eflags & FL_IF;

mycpu()−>ncli += 1;
}

popcli(void)
{
if(readeflags()&FL_IF)
panic("popcli␣-␣interruptible");

if(−−mycpu()−>ncli < 0)
panic("popcli");

if(mycpu()−>ncli == 0 && mycpu()−>intena)
sti();

}

mycpu() — per-core informationintena — were interrupts enabled before first pushcli()?

ncli — # calls to pushcli - # calls to popcli
intended usage: each pushcli has matching popcli

pushcli — always disable interrupts
popcli — renable interrupts if last popcli
(and interrupts were enabled before)
(each pushcli had a matching popcli call)

67

xv6 interrupt disabling: detail (3)

pushcli(void)
{
int eflags;
eflags = readeflags();
cli();
if (mycpu()−>ncli == 0)
mycpu()−>intena = eflags & FL_IF;

mycpu()−>ncli += 1;
}

popcli(void)
{
if(readeflags()&FL_IF)
panic("popcli␣-␣interruptible");

if(−−mycpu()−>ncli < 0)
panic("popcli");

if(mycpu()−>ncli == 0 && mycpu()−>intena)
sti();

}

mycpu() — per-core informationintena — were interrupts enabled before first pushcli()?ncli — # calls to pushcli - # calls to popcli
intended usage: each pushcli has matching popcli

pushcli — always disable interrupts

popcli — renable interrupts if last popcli
(and interrupts were enabled before)
(each pushcli had a matching popcli call)

67

xv6 interrupt disabling: detail (3)

pushcli(void)
{
int eflags;
eflags = readeflags();
cli();
if (mycpu()−>ncli == 0)
mycpu()−>intena = eflags & FL_IF;

mycpu()−>ncli += 1;
}

popcli(void)
{
if(readeflags()&FL_IF)
panic("popcli␣-␣interruptible");

if(−−mycpu()−>ncli < 0)
panic("popcli");

if(mycpu()−>ncli == 0 && mycpu()−>intena)
sti();

}

mycpu() — per-core informationintena — were interrupts enabled before first pushcli()?ncli — # calls to pushcli - # calls to popcli
intended usage: each pushcli has matching popclipushcli — always disable interrupts

popcli — renable interrupts if last popcli
(and interrupts were enabled before)
(each pushcli had a matching popcli call)

67

Java synchronized primitive

Object MilkLock = new Object();

/* lock implicity acquired/released on
entering/leaving this block */

synchronized (MilkLock) {
if (no milk) {

buy milk
}

}

68

C++11 mutexes

#include <mutex>

std::mutex MilkLock;
{

std::lock_guard nameDoesNotMatter(MilkLock);
/* nameDoesNotMatter's constructor acquires lock */
if (no milk) {

buy milk
}
/* nameDoesNotMatter's destructor called automatically

and releases lock
*/

}

69

	last time
	lottery assignment
	proportional share part 2
	motivating Linux's scheduler
	Linux's completely fair scheduler

	a note on mutliple processors
	(if time) real-time scheduling
	which scheduler should I use?
	recall: threads versus processes
	basic pthreads API
	pthread create and join
	pthread create: passing data
	on thread resources, detached threads
	on error checking

	introduction: correctness
	the lost write
	motivation: ATM server

	lottery scheduler (for review)
	real-time scheduling extras
	push/popcli detail
	bonus: locks in other languages

