
Changelog

Changes made in this version not seen in first lecture:
27 September: sum example (to global): fix error where i was used in
place of sum

0

Threads 2 / Synchronization 0

1

last time

Linux’s completely fair scheduler
proportional share scheduler
lowest “virtual time”
increment virtual time based on weight, usage

real time scheduling
physically determined deadlines
earliest deadline first
provide gaurentees, maybe

multi-threaded processes
shared memory, files, etc. between threads
own registers
stack allocated for each thread

pthread API — create, join, detach
2

quiz question (1)

The XV6 scheduler scans the proc table (after first getting a lock)
looking for a ready to run process. This is both slow and non
scalable to thousands of processes. An alternative that is faster is
to:

if N processes, K runnable, average of N/K reads to find next process

Randomly select a task to run and run it.
not all tasks are runnable

Maintain a hash table or ready to run processes keyed on their
priority.

need to scan high, unused priorities
arbitrarily more work depending on # of priorities

3

quiz question (1)

The XV6 scheduler scans the proc table (after first getting a lock)
looking for a ready to run process. This is both slow and non
scalable to thousands of processes. An alternative that is faster is
to:

if N processes, K runnable, average of N/K reads to find next process

Randomly select a task to run and run it.
not all tasks are runnable

Maintain a hash table or ready to run processes keyed on their
priority.

need to scan high, unused priorities
arbitrarily more work depending on # of priorities

3

quiz question (2)

The XV6 scheduler scans the proc table (after first getting a lock)
looking for a ready to run process. This is both slow and non
scalable to thousands of processes. An alternative that is faster is
to:

if N processes, K runnable, average of N/K reads to find next process

Maintain a stack of proc table pointers and pop process to run
them and push them when they become ready to run.

1 read to find process, better than N/K
but causes very bad starvation

Maintain a linked list of ready to run processes and always run the
first process on the list, and place newly ready processes at the end.

1 read to find process, better than N/K

4

what’s wrong with this?

/* omitted: headers, using statements */
void *create_string(void *ignored_argument) {
string result;
result = ComputeString();
return &result;

}
int main() {
pthread_t the_thread;
pthread_create(&the_thread, NULL, get_string, NULL);
string *string_ptr;
pthread_join(the_thread, &string_ptr);
cout << "string␣is␣" << *string_ptr;

}

5

program memory

0xFFFF FFFF FFFF FFFF

0xFFFF 8000 0000 0000

0x7F…

0x0000 0000 0040 0000

Used by OS

main thread stack

second thread stack

third thread stack

Heap / other dynamic
Code / Data

dynamically allocated stacks
string result allocated here
string_ptr pointed to here

…stacks deallocated when
threads exit/are joined

6

program memory

0xFFFF FFFF FFFF FFFF

0xFFFF 8000 0000 0000

0x7F…

0x0000 0000 0040 0000

Used by OS

main thread stack

second thread stack

third thread stack

Heap / other dynamic
Code / Data

dynamically allocated stacks
string result allocated here
string_ptr pointed to here

…stacks deallocated when
threads exit/are joined

6

thread resources

to create a thread, allocate:

new stack (how big???)

thread control block

pthreads: by default need to join thread to deallocate everything

thread kept around to allow collecting return value

7

pthread_detach

void *show_progress(void * ...) { ... }
void spawn_show_progress_thread() {

pthread_t show_progress_thread;
pthread_create(&show_progress_thread, NULL, show_progress, NULL);
pthread_detach(show_progress_thread);

}
int main() {

spawn_show_progress_thread();
do_other_stuff();
...

}

detach = don’t care about return value, etc.system will deallocate when thread terminates
8

starting threads detached

void *show_progress(void * ...) { ... }
void spawn_show_progress_thread() {

pthread_t show_progress_thread;
pthread_attr_t attrs;
pthread_attr_init(&attrs);
pthread_attr_setdetachstate(&attrs, PTHREAD_CREATE_DETACHED);
pthread_create(&show_progress_thread, attrs, show_progress, NULL);
pthread_attr_destroy(&attrs);

}

9

setting stack sizes

void *show_progress(void * ...) { ... }
void spawn_show_progress_thread() {

pthread_t show_progress_thread;
pthread_attr_t attrs;
pthread_attr_init(&attrs);
pthread_attr_setstacksize(&attrs, 32 * 1024 /* bytes */);
pthread_create(&show_progress_thread, NULL, show_progress, NULL);

}

10

threads: sum example (to global)
int array[1024];
int results[2];
void *sum_thread(void *argument) {

int id = (int) argument;
int sum = 0;
for (int i = id * 512; i < (id + 1) * 512; ++i) {

sum += array[i];
}
results[id] = sum;
return NULL;

}
int sum_all() {

pthread_t thread[2];
for (int i = 0; i < 2; ++i) {

pthread_create(&threads[i], NULL, sum_thread, (void *) i);
}
for (int i = 0; i < 2; ++i)

pthread_join(threads[i], NULL);
return results[0] + results[1];

}

array, results: global variables — shared

11

threads: sum example (to global)
int array[1024];
int results[2];
void *sum_thread(void *argument) {

int id = (int) argument;
int sum = 0;
for (int i = id * 512; i < (id + 1) * 512; ++i) {

sum += array[i];
}
results[id] = sum;
return NULL;

}
int sum_all() {

pthread_t thread[2];
for (int i = 0; i < 2; ++i) {

pthread_create(&threads[i], NULL, sum_thread, (void *) i);
}
for (int i = 0; i < 2; ++i)

pthread_join(threads[i], NULL);
return results[0] + results[1];

}

array, results: global variables — shared

11

threads: sum example (to main stack)
int array[1024];
struct ThreadInfo {

int start, end, result;
};
void *sum_thread(void *argument) {

ThreadInfo *my_info = (ThreadInfo *) argument;
int sum = 0;
for (int i = my_info->start; i < my_info->end; ++i) {

sum += array[i];
}
my_info->result = sum;
return NULL;

}
int sum_all() {

pthread_t thread[2]; ThreadInfo info[2];
for (int i = 0; i < 2; ++i) {

info[i].start = i*512; info[i].end = (i+1)*512;
pthread_create(&threads[i], NULL, sum_thread, &info[i]);

}
for (int i = 0; i < 2; ++i)

pthread_join(threads[i], NULL);
return info[0].result + info[1].result;

}

array: global variable — shared

my_info: pointer to sum_all’s stack
only okay because sum_all waits!

12

threads: sum example (to main stack)
int array[1024];
struct ThreadInfo {

int start, end, result;
};
void *sum_thread(void *argument) {

ThreadInfo *my_info = (ThreadInfo *) argument;
int sum = 0;
for (int i = my_info->start; i < my_info->end; ++i) {

sum += array[i];
}
my_info->result = sum;
return NULL;

}
int sum_all() {

pthread_t thread[2]; ThreadInfo info[2];
for (int i = 0; i < 2; ++i) {

info[i].start = i*512; info[i].end = (i+1)*512;
pthread_create(&threads[i], NULL, sum_thread, &info[i]);

}
for (int i = 0; i < 2; ++i)

pthread_join(threads[i], NULL);
return info[0].result + info[1].result;

}

array: global variable — shared

my_info: pointer to sum_all’s stack
only okay because sum_all waits!

12

threads: sum example (to main stack)
int array[1024];
struct ThreadInfo {

int start, end, result;
};
void *sum_thread(void *argument) {

ThreadInfo *my_info = (ThreadInfo *) argument;
int sum = 0;
for (int i = my_info->start; i < my_info->end; ++i) {

sum += array[i];
}
my_info->result = sum;
return NULL;

}
int sum_all() {

pthread_t thread[2]; ThreadInfo info[2];
for (int i = 0; i < 2; ++i) {

info[i].start = i*512; info[i].end = (i+1)*512;
pthread_create(&threads[i], NULL, sum_thread, &info[i]);

}
for (int i = 0; i < 2; ++i)

pthread_join(threads[i], NULL);
return info[0].result + info[1].result;

}

array: global variable — shared

my_info: pointer to sum_all’s stack
only okay because sum_all waits!

12

threads: sum example (to main stack)
int array[1024];
struct ThreadInfo {

int start, end, result;
};
void *sum_thread(void *argument) {

ThreadInfo *my_info = (ThreadInfo *) argument;
int sum = 0;
for (int i = my_info->start; i < my_info->end; ++i) {

sum += array[i];
}
my_info->result = sum;
return NULL;

}
int sum_all() {

pthread_t thread[2]; ThreadInfo info[2];
for (int i = 0; i < 2; ++i) {

info[i].start = i*512; info[i].end = (i+1)*512;
pthread_create(&threads[i], NULL, sum_thread, &info[i]);

}
for (int i = 0; i < 2; ++i)

pthread_join(threads[i], NULL);
return info[0].result + info[1].result;

}

array: global variable — shared

my_info: pointer to sum_all’s stack
only okay because sum_all waits!

12

threads: sum example (no globals)
struct ThreadInfo { int *array; int start; int end; int result };
void *sum_thread(void *argument) {

ThreadInfo *my_info = (ThreadInfo *) argument;
int sum = 0;
for (int i = my_info->start; i < my_info->end; ++i) {

sum += my_info->array[i];
}
my_info->result = sum;
return NULL;

}
int sum_all(int *array) {

ThreadInfo info[2]; pthread_t thread[2];
for (int i = 0; i < 2; ++i) {

info[i].array = array; info[i].start = i*512; info[i].end = (i+1)*512;
pthread_create(&threads[i], NULL, sum_thread, (void *) i);

}
for (int i = 0; i < 2; ++i)

pthread_join(threads[i], NULL);
return info[0].result + info[1].result;

}

13

threads: sum example (no globals)
struct ThreadInfo { int *array; int start; int end; int result };
void *sum_thread(void *argument) {

ThreadInfo *my_info = (ThreadInfo *) argument;
int sum = 0;
for (int i = my_info->start; i < my_info->end; ++i) {

sum += my_info->array[i];
}
my_info->result = sum;
return NULL;

}
int sum_all(int *array) {

ThreadInfo info[2]; pthread_t thread[2];
for (int i = 0; i < 2; ++i) {

info[i].array = array; info[i].start = i*512; info[i].end = (i+1)*512;
pthread_create(&threads[i], NULL, sum_thread, (void *) i);

}
for (int i = 0; i < 2; ++i)

pthread_join(threads[i], NULL);
return info[0].result + info[1].result;

}

13

threads: sum example (no globals)
struct ThreadInfo { int *array; int start; int end; int result };
void *sum_thread(void *argument) {

ThreadInfo *my_info = (ThreadInfo *) argument;
int sum = 0;
for (int i = my_info->start; i < my_info->end; ++i) {

sum += my_info->array[i];
}
my_info->result = sum;
return NULL;

}
int sum_all(int *array) {

ThreadInfo info[2]; pthread_t thread[2];
for (int i = 0; i < 2; ++i) {

info[i].array = array; info[i].start = i*512; info[i].end = (i+1)*512;
pthread_create(&threads[i], NULL, sum_thread, (void *) i);

}
for (int i = 0; i < 2; ++i)

pthread_join(threads[i], NULL);
return info[0].result + info[1].result;

}

13

threads: sum example (no globals)
struct ThreadInfo { int *array; int start; int end; int result };
void *sum_thread(void *argument) {

ThreadInfo *my_info = (ThreadInfo *) argument;
int sum = 0;
for (int i = my_info->start; i < my_info->end; ++i) {

sum += my_info->array[i];
}
my_info->result = sum;
return NULL;

}
int sum_all(int *array) {

ThreadInfo info[2]; pthread_t thread[2];
for (int i = 0; i < 2; ++i) {

info[i].array = array; info[i].start = i*512; info[i].end = (i+1)*512;
pthread_create(&threads[i], NULL, sum_thread, (void *) i);

}
for (int i = 0; i < 2; ++i)

pthread_join(threads[i], NULL);
return info[0].result + info[1].result;

}

13

threads: sum example (on heap)

struct ThreadInfo { pthread_t thread; int *array; int start; int end; int result };
void *sum_thread(void *argument) {

...
}
ThreadInfo *start_sum_all(int *array) {

ThreadInfo *info = new ThreadInfo[2];
for (int i = 0; i < 2; ++i) {

info[i].array = array; info[i].start = i*512; info[i].end = (i+1)*512;
pthread_create(&info[i].thread, NULL, sum_thread, (void *) &info[i]);

}
return info;

}
void finish_sum_all(ThreadInfo *info) {

for (int i = 0; i < 2; ++i)
pthread_join(info[i].thread, NULL);

int result = info[0].result + info[1].result;
delete[] info;
return result;

}

14

threads: sum example (on heap)

struct ThreadInfo { pthread_t thread; int *array; int start; int end; int result };
void *sum_thread(void *argument) {

...
}
ThreadInfo *start_sum_all(int *array) {

ThreadInfo *info = new ThreadInfo[2];
for (int i = 0; i < 2; ++i) {

info[i].array = array; info[i].start = i*512; info[i].end = (i+1)*512;
pthread_create(&info[i].thread, NULL, sum_thread, (void *) &info[i]);

}
return info;

}
void finish_sum_all(ThreadInfo *info) {

for (int i = 0; i < 2; ++i)
pthread_join(info[i].thread, NULL);

int result = info[0].result + info[1].result;
delete[] info;
return result;

}

14

threads: sum example (on heap)

struct ThreadInfo { pthread_t thread; int *array; int start; int end; int result };
void *sum_thread(void *argument) {

...
}
ThreadInfo *start_sum_all(int *array) {

ThreadInfo *info = new ThreadInfo[2];
for (int i = 0; i < 2; ++i) {

info[i].array = array; info[i].start = i*512; info[i].end = (i+1)*512;
pthread_create(&info[i].thread, NULL, sum_thread, (void *) &info[i]);

}
return info;

}
void finish_sum_all(ThreadInfo *info) {

for (int i = 0; i < 2; ++i)
pthread_join(info[i].thread, NULL);

int result = info[0].result + info[1].result;
delete[] info;
return result;

}

14

the correctness problem

schedulers introduce non-determinism
scheduler might run threads in any order
scheduler can switch threads at any time

worse with threads on multiple cores
cores not precisely synchronized (stalling for caches, etc., etc.)
different cores happen in different order each time

makes reliable testing very difficult

solution: correctness by design

15

example application: ATM server

commands: withdraw, deposit

one correctness goal: don’t lose money

16

ATM server
(pseudocode)
ServerLoop() {

while (true) {
ReceiveRequest(&operation, &accountNumber, &amount);
if (operation == DEPOSIT) {

Deposit(accountNumber, amount);
} else ...

}
}
Deposit(accountNumber, amount) {

account = GetAccount(accountId);
account−>balance += amount;
StoreAccount(account);

}

17

a threaded server?

Deposit(accountNumber, amount) {
account = GetAccount(accountId);
account−>balance += amount;
StoreAccount(account);

}

maybe Get/StoreAccount can be slow?
read/write disk sometimes? contact another server sometimes?

maybe lots of requests to process?
maybe real logic has more checks than Deposit()
…

all reasons to handle multiple requests at once
→ many threads all running the server loop

18

multiple threads

main() {
for (int i = 0; i < NumberOfThreads; ++i) {

pthread_create(&server_loop_threads[i], NULL,
ServerLoop, NULL);

}
...

}

ServerLoop() {
while (true) {

ReceiveRequest(&operation, &accountNumber, &amount);
if (operation == DEPOSIT) {

Deposit(accountNumber, amount);
} else ...

}
}

19

a side note

why am I spending time justifying this?

multiple threads for something like this make things much trickier

we’ll be learning why…

20

the lost write

account−>balance += amount; (in two threads, same account)

mov account−>balance, %rax
add amount, %rax

Thread A Thread B

mov account−>balance, %rax
add amount, %rax

mov %rax, account−>balance

mov %rax, account−>balance

context switch

context switch

context switch

lost write to balance
“winner” of the race

lost track of thread A’s money

21

the lost write

account−>balance += amount; (in two threads, same account)

mov account−>balance, %rax
add amount, %rax

Thread A Thread B

mov account−>balance, %rax
add amount, %rax

mov %rax, account−>balance

mov %rax, account−>balance

context switch

context switch

context switch
lost write to balance

“winner” of the race

lost track of thread A’s money

21

the lost write

account−>balance += amount; (in two threads, same account)

mov account−>balance, %rax
add amount, %rax

Thread A Thread B

mov account−>balance, %rax
add amount, %rax

mov %rax, account−>balance

mov %rax, account−>balance

context switch

context switch

context switch
lost write to balance

“winner” of the race
lost track of thread A’s money

21

thinking about race conditions (1)

what are the possible values of x?

(initially x = y = 0)
Thread A Thread B

x← 1 y ← 2

must be 1. Thread B can’t do anything

22

thinking about race conditions (1)

what are the possible values of x?

(initially x = y = 0)
Thread A Thread B

x← 1 y ← 2

must be 1. Thread B can’t do anything

22

thinking about race conditions (2)

what are the possible values of x?

(initially x = y = 0)
Thread A Thread B
x← y + 1 y ← 2

y ← y × 2

1 or 3 or 5 (non-deterministic)

23

thinking about race conditions (2)

what are the possible values of x?

(initially x = y = 0)
Thread A Thread B
x← y + 1 y ← 2

y ← y × 2

1 or 3 or 5 (non-deterministic)

23

thinking about race conditions (3)

what are the possible values of x?

(initially x = y = 0)
Thread A Thread B

x← 1 x← 2

1 or 2

…but why not 3? maybe each bit of x assigned seperately?

24

thinking about race conditions (3)

what are the possible values of x?

(initially x = y = 0)
Thread A Thread B

x← 1 x← 2

1 or 2

…but why not 3? maybe each bit of x assigned seperately?

24

thinking about race conditions (3)

what are the possible values of x?

(initially x = y = 0)
Thread A Thread B

x← 1 x← 2

1 or 2

…but why not 3? maybe each bit of x assigned seperately?

24

atomic operation

atomic operation = operation that runs to completion or not at all

we will use these to let threads work together

most machines: loading/storing words is atomic
so can’t get 3 from x← 1 and x← 2 running in parallel

but some instructions are not atomic
one example: normal x86 add constant to memory

25

lost adds (program)

.global update_loop
update_loop:

addl $1, the_value // the_value (global variable) += 1
dec %rdi // argument 1 -= 1
jg update_loop // if argument 1 >= 0 repeat
ret

int the_value;
extern void *update_loop(void *);
int main(void) {

the_value = 0;
pthread_t A, B;
pthread_create(&A, NULL, update_loop, (void*) 1000000);
pthread_create(&B, NULL, update_loop, (void*) 1000000);
pthread_join(A, NULL);
pthread_join(B, NULL);
// expected result: 1000000 + 1000000 = 2000000
printf("the_value␣=␣%d\n", the_value);

} 26

lost adds (results)

800000 1000000 1200000 1400000 1600000 1800000 2000000
0

1000

2000

3000

4000

5000

fre
qu

en
cy

the_value = ?

27

but how?

probably not possible on single core
exceptions can’t occur in the middle of add instruction

…but ‘add to memory’ implemented with multiple steps
still needs to load, add, store internally
can be interleaved with what other cores do

(and actually it’s more complicated than that — we’ll talk later)

28

but how?

probably not possible on single core
exceptions can’t occur in the middle of add instruction

…but ‘add to memory’ implemented with multiple steps
still needs to load, add, store internally
can be interleaved with what other cores do

(and actually it’s more complicated than that — we’ll talk later)

28

so, what is actually atomic

for now we’ll assume: load/stores of ‘words’
(64-bit machine = 64-bits words)

in general: processor designer will tell you

their job to design caches, etc. to work as documented

29

too much milk

roommates Alice and Bob want to keep fridge stocked with milk:
time Alice Bob
3:00 look in fridge. no milk
3:05 leave for store
3:10 arrive at store look in fridge. no milk
3:15 buy milk leave for store
3:20 return home, put milk in fridge arrive at store
3:25 buy milk
3:30 return home, put milk in fridge

how can Alice and Bob coordinate better?

30

too much milk “solution” 1 (algorithm)

leave a note: “I am buying milk”
place before buying
remove after buying
don’t try buying if there’s a note

≈ setting/checking a variable (e.g. “note = 1”)
with atomic load/store of variable

if (no milk) {
if (no note) {

leave note;
buy milk;
remove note;

}
}

31

too much milk “solution” 1 (timeline)

if (no milk) {
if (no note) {

Alice Bob

if (no milk) {
if (no note) {

leave note;
buy milk;
remove note;

}
}

leave note;
buy milk;
remove note;

}
}

32

too much milk “solution” 2 (algorithm)

intuition: leave note when buying or checking if need to buy

leave note;
if (no milk) {

if (no note) {
buy milk;

}
}
remove note;

33

too much milk: “solution” 2 (timeline)

leave note;
if (no milk) {

if (no note) {

Alice

buy milk;
}

}
remove note;

but there’s always a note
…will never buy milk (twice or once)

34

too much milk: “solution” 2 (timeline)

leave note;
if (no milk) {

if (no note) {

Alice

buy milk;
}

}
remove note;

but there’s always a note

…will never buy milk (twice or once)

34

too much milk: “solution” 2 (timeline)

leave note;
if (no milk) {

if (no note) {

Alice

buy milk;
}

}
remove note;

but there’s always a note
…will never buy milk (twice or once)

34

“solution” 3: algorithm

intuition: label notes so Alice knows which is hers (and vice-versa)
computer equivalent: separate noteFromAlice and noteFromBob variables

leave note from Alice;
if (no milk) {

if (no note from Bob) {
buy milk

}
}
remove note from Alice;

Alice
leave note from Bob;
if (no milk) {

if (no note from Alice) {
buy milk

}
}
remove note from Bob;

Bob

35

too much milk: “solution” 3 (timeline)

leave note from Alice
if (no milk) {

Alice Bob

leave note from Bob
if (no note from Bob) {

buy milk
}

}
if (no milk) {

if (no note from Alice) {
buy milk

}
}
remove note from Bob

remove note from Alice

36

too much milk: is it possible

is there a solutions with writing/reading notes?
≈ loading/storing from shared memory

yes, but it’s not very elegant

37

too much milk: solution 4 (algorithm)

leave note from Alice
while (note from Bob) {

do nothing
}
if (no milk) {

buy milk
}
remove note from Alice

Alice
leave note from Bob
if (no note from Alice) {

if (no milk) {
buy milk

}
}
remove note from Bob

Bob

exercise (hard): prove (in)correctness

exercise (hard): extend to three people

38

too much milk: solution 4 (algorithm)

leave note from Alice
while (note from Bob) {

do nothing
}
if (no milk) {

buy milk
}
remove note from Alice

Alice
leave note from Bob
if (no note from Alice) {

if (no milk) {
buy milk

}
}
remove note from Bob

Bob

exercise (hard): prove (in)correctness

exercise (hard): extend to three people

38

too much milk: solution 4 (algorithm)

leave note from Alice
while (note from Bob) {

do nothing
}
if (no milk) {

buy milk
}
remove note from Alice

Alice
leave note from Bob
if (no note from Alice) {

if (no milk) {
buy milk

}
}
remove note from Bob

Bob

exercise (hard): prove (in)correctness

exercise (hard): extend to three people

38

too much milk: solution 4 (algorithm)

leave note from Alice
while (note from Bob) {

do nothing
}
if (no milk) {

buy milk
}
remove note from Alice

Alice
leave note from Bob
if (no note from Alice) {

if (no milk) {
buy milk

}
}
remove note from Bob

Bob

exercise (hard): prove (in)correctness

exercise (hard): extend to three people

38

Peterson’s algorithm

general version of solution

see, e.g., Wikipedia

we’ll use special hardware support instead

39

some definitions

mutual exclusion: ensuring only one thread does a particular thing
at a time

like checking for and, if needed, buying milk

critical section: code that exactly one thread can execute at a
time

result of critical section

lock: object only one thread can hold at a time
interface for creating critical sections

40

some definitions

mutual exclusion: ensuring only one thread does a particular thing
at a time

like checking for and, if needed, buying milk

critical section: code that exactly one thread can execute at a
time

result of critical section

lock: object only one thread can hold at a time
interface for creating critical sections

40

some definitions

mutual exclusion: ensuring only one thread does a particular thing
at a time

like checking for and, if needed, buying milk

critical section: code that exactly one thread can execute at a
time

result of critical section

lock: object only one thread can hold at a time
interface for creating critical sections

40

the lock primitive

locks: an object with (at least) two operations:
acquire or lock — wait until lock is free, then “grab” it
release or unlock — let others use lock, wakeup waiters

Lock(MilkLock);
if (no milk) {

buy milk
}
Unlock(MilkLock);

41

pthread mutex

#include <pthread.h>

pthread_mutex_t MilkLock;
pthread_mutex_init(&MilkLock, NULL);
...
pthread_mutex_lock(&MilkLock);
if (no milk) {

buy milk
}
pthread_mutex_unlock(&MilkLock);

42

xv6 spinlocks

#include "spinlock.h"
...
struct spinlock MilkLock;
initlock(&MilkLock, "name␣for␣debugging");
...
acquire(&MilkLock);
if (no milk) {

buy milk
}
release(&MilkLock);

43

C++ containers and locking

can you use a vector from multiple threads?

…question: how is it implemented?

dynamically allocated array
reallocated on size changes

can access from multiple threads …as long as not being resized?

44

C++ containers and locking

can you use a vector from multiple threads?

…question: how is it implemented?
dynamically allocated array
reallocated on size changes

can access from multiple threads …as long as not being resized?

44

C++ containers and locking

can you use a vector from multiple threads?

…question: how is it implemented?
dynamically allocated array
reallocated on size changes

can access from multiple threads …as long as not being resized?

44

C++ standard rules for containers

multiple threads can read anything at the same time

can only read element if no other thread is modifying it

can only add/remove elements if no other threads are accessing
container

some exceptions, read documentation really carefully

45

implementing locks: single core

intuition: context switch only happens on interrupt
timer expiration, I/O, etc. causes OS to run

solution: disable them
reenable on unlock

x86 instructions:
cli — disable interrupts
sti — enable interrupts

46

implementing locks: single core

intuition: context switch only happens on interrupt
timer expiration, I/O, etc. causes OS to run

solution: disable them
reenable on unlock

x86 instructions:
cli — disable interrupts
sti — enable interrupts

46

naive interrupt enable/disable (1)

Lock() {
disable interrupts

}

Unlock() {
enable interrupts

}

problem: user can hang the system:
Lock(some_lock);
while (true) {}

problem: can’t do I/O within lock
Lock(some_lock);
read from disk

/* waits forever for (disabled) interrupt
from disk IO finishing */

47

naive interrupt enable/disable (1)

Lock() {
disable interrupts

}

Unlock() {
enable interrupts

}

problem: user can hang the system:
Lock(some_lock);
while (true) {}

problem: can’t do I/O within lock
Lock(some_lock);
read from disk

/* waits forever for (disabled) interrupt
from disk IO finishing */

47

naive interrupt enable/disable (1)

Lock() {
disable interrupts

}

Unlock() {
enable interrupts

}

problem: user can hang the system:
Lock(some_lock);
while (true) {}

problem: can’t do I/O within lock
Lock(some_lock);
read from disk

/* waits forever for (disabled) interrupt
from disk IO finishing */

47

naive interrupt enable/disable (2)

Lock() {
disable interrupts

}

Unlock() {
enable interrupts

}

problem: nested locks
Lock(milk_lock);
if (no milk) {

Lock(store_lock);
buy milk
Unlock(store_lock);
/* interrupts enabled here?? */

}
Unlock(milk_lock);

48

naive interrupt enable/disable (2)

Lock() {
disable interrupts

}

Unlock() {
enable interrupts

}

problem: nested locks
Lock(milk_lock);
if (no milk) {

Lock(store_lock);
buy milk
Unlock(store_lock);
/* interrupts enabled here?? */

}
Unlock(milk_lock);

48

naive interrupt enable/disable (2)

Lock() {
disable interrupts

}

Unlock() {
enable interrupts

}

problem: nested locks
Lock(milk_lock);
if (no milk) {

Lock(store_lock);
buy milk
Unlock(store_lock);
/* interrupts enabled here?? */

}
Unlock(milk_lock);

48

naive interrupt enable/disable (2)

Lock() {
disable interrupts

}

Unlock() {
enable interrupts

}

problem: nested locks
Lock(milk_lock);
if (no milk) {

Lock(store_lock);
buy milk
Unlock(store_lock);
/* interrupts enabled here?? */

}
Unlock(milk_lock);

48

xv6 interrupt disabling (1)

...
acquire(struct spinlock *lk) {
pushcli(); // disable interrupts to avoid deadlock
... /* this part basically just for multicore */

}
release(struct spinlock *lk)
{
... /* this part basically just for multicore */
popcli();

}

49

xv6 push/popcli

pushcli / popcli — need to be in pairs

pushcli — disable interrupts if not already

popcli — enable interrupts if corresponding pushcli disabled them
don’t enable them if they were already disabled

50

a simple race
thread_A:

movl $1, x /* x ← 1 */
movl y, %eax /* return y */
ret

thread_B:
movl $1, y /* y ← 1 */
movl x, %eax /* return x */
ret

x = y = 0;
pthread_create(&A, NULL, thread_A, NULL);
pthread_create(&B, NULL, thread_B, NULL);
pthread_join(A, &A_result); pthread_join(B, &B_result);
printf("A:%d␣B:%d\n", (int) A_result, (int) B_result);

if loads/stores atomic, then possible results:
A:1 B:1 — moves into x/y execute, then moves into eax
A:0 B:1 — thread A executes before thread B
A:1 B:0 — thread B executes before thread A

51

a simple race
thread_A:

movl $1, x /* x ← 1 */
movl y, %eax /* return y */
ret

thread_B:
movl $1, y /* y ← 1 */
movl x, %eax /* return x */
ret

x = y = 0;
pthread_create(&A, NULL, thread_A, NULL);
pthread_create(&B, NULL, thread_B, NULL);
pthread_join(A, &A_result); pthread_join(B, &B_result);
printf("A:%d␣B:%d\n", (int) A_result, (int) B_result);

if loads/stores atomic, then possible results:
A:1 B:1 — moves into x/y execute, then moves into eax
A:0 B:1 — thread A executes before thread B
A:1 B:0 — thread B executes before thread A

51

a simple race: results
thread_A:

movl $1, x /* x ← 1 */
movl y, %eax /* return y */
ret

thread_B:
movl $1, y /* y ← 1 */
movl x, %eax /* return x */
ret

x = y = 0;
pthread_create(&A, NULL, thread_A, NULL);
pthread_create(&B, NULL, thread_B, NULL);
pthread_join(A, &A_result); pthread_join(B, &B_result);
printf("A:%d␣B:%d\n", (int) A_result, (int) B_result);

my desktop, 100M trials:
frequency result

99 823 739 A:0 B:1 (‘A executes before B’)
171 161 A:1 B:0 (‘B executes before A’)

4 706 A:1 B:1 (‘execute moves into x/y first’)
394 A:0 B:0 ???

52

a simple race: results
thread_A:

movl $1, x /* x ← 1 */
movl y, %eax /* return y */
ret

thread_B:
movl $1, y /* y ← 1 */
movl x, %eax /* return x */
ret

x = y = 0;
pthread_create(&A, NULL, thread_A, NULL);
pthread_create(&B, NULL, thread_B, NULL);
pthread_join(A, &A_result); pthread_join(B, &B_result);
printf("A:%d␣B:%d\n", (int) A_result, (int) B_result);

my desktop, 100M trials:
frequency result

99 823 739 A:0 B:1 (‘A executes before B’)
171 161 A:1 B:0 (‘B executes before A’)

4 706 A:1 B:1 (‘execute moves into x/y first’)
394 A:0 B:0 ???

52

load/store reordering

recall: out-of-order processors

processors execute instructons in different order
hide delays from slow caches, variable computation rates, etc.

convenient optimization: execute loads/stores in different order

53

why load/store reordering?

prior example: load of x executing before store of y

why do this? otherwise delay the load
if x and y unrelated — no benefit to waiting

54

some x86 reordering restrictions

each core sees its own loads/stores in order
(if a core store something, it can always load it back)

stores from other cores appear in a consistent order
(but a core might observe its own stores “too early”)

causality: if a core reads X, then writes Y, no core can observe the
read of Y before the read X

Source: Intel 64 and IA-32 Software Developer’s Manual, Volume 3A, Chapter 8 55

how do you do anything with this?

special instructions with stronger ordering rules

special instructions that restirct ordering of instructions around
them (“fences”)

loads/stores can’t cross the fence

56

pthreads and reordering

synchronizing pthreads functions prevent reordering
everything before function call actually happens before everything after

includes preventing some optimizations
e.g. keeping global variable in register for too long

not just pthread_mutex_lock/unlock!

includes pthread_create, pthread_join, …

57

GCC: preventing reordering

intended to help implementing things like pthread_mutex_lock

builtin functions starting with __sync and __atomic

prevent CPU reordering and prevent compiler reordering

also provide other tools for implementing locks (more later)

could also hand-write assembly code
compiler can’t know what assembly code is doing

58

GCC: preventing reordering example (1)

void Alice() {
note_from_alice = 1;
do {

__atomic_thread_fence(__ATOMIC_SEQ_CST);
} while (note_from_bob);
if (no_milk) {++milk;}

}

Alice:
movl $1, note_from_alice // note_from_alice ← 1

.L3:
mfence // make sure store is visible to other cores before loading

// not needed on second+ iteration of loop
cmpl $0, note_from_bob // if (note_from_bob == 0) repeat fence
jne .L3
cmpl $0, no_milk
... 59

mfence

x86 instruction mfence

make sure all loads/stores in progress finish

…and make sure no loads/stores were started early

fairly expensive
Intel ‘Skylake’: order 33 cycles + time waiting for pending stores/loads

60

GCC: preventing reordering example (2)

void Alice() {
int one = 1;
__atomic_store(¬e_from_alice, &one, __ATOMIC_SEQ_CST);
do {
} while (__atomic_load_n(¬e_from_bob, __ATOMIC_SEQ_CST));
if (no_milk) {++milk;}

}

Alice:
movl $1, note_from_alice
mfence

.L2:
movl note_from_bob, %eax
testl %eax, %eax
jne .L2
...

61

backup slides

62

passing thread IDs (1)

DataType items[1000];
void *thread_function(void *argument) {

int thread_id = (int) argument;
int start = 500 * thread_id;
int end = start + 500;
for (int i = start; i < end; ++i) {

DoSomethingWith(items[i]);
}
...

}
void run_threads() {

vector<pthread_t> threads(2);
for (int i = 0; i < 2; ++i) {

pthread_create(&threads[i], NULL,
thread_function, (void*) i);

}
}

63

passing thread IDs (1)

DataType items[1000];
void *thread_function(void *argument) {

int thread_id = (int) argument;
int start = 500 * thread_id;
int end = start + 500;
for (int i = start; i < end; ++i) {

DoSomethingWith(items[i]);
}
...

}
void run_threads() {

vector<pthread_t> threads(2);
for (int i = 0; i < 2; ++i) {

pthread_create(&threads[i], NULL,
thread_function, (void*) i);

}
}

63

passing thread IDs (2)

DataType items[1000];
int num_threads;
void *thread_function(void *argument) {

int thread_id = (int) argument;
int start = thread_id * (1000 / num_threads);
int end = start + (1000 / num_threads);
if (thread_id == num_threads − 1) end = 1000;
for (int i = start; i < end; ++i) {

DoSomethingWith(items[i]);
}
...

}
void run_threads() {

vector<pthread_t> threads(num_threads);
for (int i = 0; i < num_threads; ++i) {

pthread_create(&threads[i], NULL,
thread_function, (void*) i);

}
...

}
64

passing thread IDs (2)

DataType items[1000];
int num_threads;
void *thread_function(void *argument) {

int thread_id = (int) argument;
int start = thread_id * (1000 / num_threads);
int end = start + (1000 / num_threads);
if (thread_id == num_threads − 1) end = 1000;
for (int i = start; i < end; ++i) {

DoSomethingWith(items[i]);
}
...

}
void run_threads() {

vector<pthread_t> threads(num_threads);
for (int i = 0; i < num_threads; ++i) {

pthread_create(&threads[i], NULL,
thread_function, (void*) i);

}
...

}
64

passing data structures

class ThreadInfo {
public:

...
};

void *thread_function(void *argument) {
ThreadInfo *info = (ThreadInfo *) argument;
...
delete info;

}

void run_threads(int N) {
vector<pthread_t> threads(num_threads);
for (int i = 0; i < num_threads; ++i) {

pthread_create(&threads[i], NULL,
thread_function, (void *) new ThreadInfo(...));

}
...

} 65

passing data structures

class ThreadInfo {
public:

...
};

void *thread_function(void *argument) {
ThreadInfo *info = (ThreadInfo *) argument;
...
delete info;

}

void run_threads(int N) {
vector<pthread_t> threads(num_threads);
for (int i = 0; i < num_threads; ++i) {

pthread_create(&threads[i], NULL,
thread_function, (void *) new ThreadInfo(...));

}
...

} 65

	thread API revisited
	on thread resources, detached threads
	various ways of organizing thread sum

	introduction: correctness
	the lost write
	motivation: ATM server

	race conditions and atomicity
	thinking about simple races
	atomicity

	example: too much milk
	definitions: mutual exclusion, critical section
	locks
	aside: standard container rule
	disabling interrupts for locks
	xv6's push/popcli

	revisiting atomicity
	load/store reordering
	pthreads and load/store reordering
	backup slides
	passing values to threads

