
Synchronization 3: Barriers (con’t) /
Semaphores / Monitors

1

Changelog

Changes made in this version not seen in first lecture:
27 September: counting resources: use consistent colors for up/down
27 September: counting semaphores with binary semaphores: add
missing mutex unlock, correct function names

1

last time

compiler reordering — optimizer assumes no threads
unless you use something special to tell it

cache coherency — keeping caches in sync
communicate via shared bus
ensure at most one writing cache at a time

hardware support for locking
atomic read-modify-write
and instructions to prevent reordering

mutexes: locks with wait queues
give up CPU instead of “spinning”

2

quiz question: code snippet

node *head = NULL;
void prepend(int new_value) {

node *new_head = new node;
new_head−>value = new_value;
new_head−>next = head;
head = new_head;

}

new_head: on stack (local to thread)
new_head−>next: on heap (unique for each call)
head: in global data area
head = new_head: pointer assignment (doesn’t dereference pointers)

3

quiz question: interleaving
void prepend(int new_value) {

node *new_head = new node;
new_head−>value = new_value;
new_head−>next = head;
...
...
...
...
...
head = new_head;

}

void prepend(int new_value) {
...
...
...
node *new_head = new node;
new_head−>value = new_value;
new_head−>next = head;
head = new_head;

}

4

example 2: parallel processing

compute minimum of 100M element array with 2 processors

algorithm:

compute minimum of 50M of the elements on each CPU
one thread for each CPU

wait for all computations to finish

take minimum of all the minimums

5

example 2: parallel processing

compute minimum of 100M element array with 2 processors

algorithm:

compute minimum of 50M of the elements on each CPU
one thread for each CPU

wait for all computations to finish

take minimum of all the minimums

5

barriers API

barrier.Initialize(NumberOfThreads)

barrier.Wait() — return after all threads have waited

idea: multiple threads perform computations in parallel

threads wait for all other threads to call Wait()

6

barrier: waiting for finish

partial_mins[0] =
/* min of first

50M elems */;

barrier.Wait();

total_min = min(
partial_mins[0],
partial_mins[1]

);

Thread 0

barrier.Initialize(2);

partial_mins[1] =
/* min of last

50M elems */
barrier.Wait();

Thread 1

7

barriers: reuse

barriers are reusable:

results[0][0] = getInitial(0);
barrier.Wait();

results[1][0] =
computeFrom(

results[0][0],
results[0][1]

);
barrier.Wait();

results[2][0] =
computeFrom(

results[1][0],
results[1][1]

);

Thread 0
results[0][1] = getInitial(1);
barrier.Wait();

results[1][1] =
computeFrom(

results[0][0],
results[0][1]

);
barrier.Wait();

results[2][1] =
computeFrom(

results[1][0],
results[1][1]

);

Thread 1

8

barriers: reuse

barriers are reusable:

results[0][0] = getInitial(0);
barrier.Wait();

results[1][0] =
computeFrom(

results[0][0],
results[0][1]

);
barrier.Wait();

results[2][0] =
computeFrom(

results[1][0],
results[1][1]

);

Thread 0
results[0][1] = getInitial(1);
barrier.Wait();

results[1][1] =
computeFrom(

results[0][0],
results[0][1]

);
barrier.Wait();

results[2][1] =
computeFrom(

results[1][0],
results[1][1]

);

Thread 1

8

barriers: reuse

barriers are reusable:

results[0][0] = getInitial(0);
barrier.Wait();

results[1][0] =
computeFrom(

results[0][0],
results[0][1]

);
barrier.Wait();

results[2][0] =
computeFrom(

results[1][0],
results[1][1]

);

Thread 0
results[0][1] = getInitial(1);
barrier.Wait();

results[1][1] =
computeFrom(

results[0][0],
results[0][1]

);
barrier.Wait();

results[2][1] =
computeFrom(

results[1][0],
results[1][1]

);

Thread 1

8

pthread barriers

pthread_barrier_t barrier;
pthread_barrier_init(

&barrier,
NULL /* attributes */,
numberOfThreads

);
...
...
pthread_barrier_wait(&barrier);

9

life homework (pseudocode)

for (int time = 0; time < MAX_ITERATIONS; ++time) {
for (int y = 0; y < size; ++y) {

for (int x = 0; x < size; ++x) {
to_grid(x, y) = computeValue(from_grid, x, y);

}
}
swap(from_grid, to_grid);

}

10

life homework

compute grid of values for time t from grid for time t − 1
compute new value at i, j based on surrounding values

parallel version: produce parts of grid in different threads

use barriers to finish time t before going to time t + 1
avoid trying to read things that aren’t computed

11

life homework even/odd

naive way has an operation that needs locking:
for (int time = 0; time < MAX_ITERATIONS; ++time) {

... compute to_grid ...
swap(from_grid, to_grid);

}

but this alternative needs less locking:
Grid grids[2];
for (int time = 0; time < MAX_ITERATIONS; ++time) {

from_grid = &grids[time % 2];
to_grid = &grids[time % 2 + 1];
... compute to_grid ...

}

12

life homework even/odd

naive way has an operation that needs locking:
for (int time = 0; time < MAX_ITERATIONS; ++time) {

... compute to_grid ...
swap(from_grid, to_grid);

}

but this alternative needs less locking:
Grid grids[2];
for (int time = 0; time < MAX_ITERATIONS; ++time) {

from_grid = &grids[time % 2];
to_grid = &grids[time % 2 + 1];
... compute to_grid ...

}

12

generalizing locks

barriers are very useful

do things locks can’t do

but can’t do things locks can do

semaphores and condition variables are more general

can implement locks and barriers and …

13

generalizing locks: semaphores

semaphore has a non-negative integer value and two operations:

P() or down or wait:
wait for semaphore to become positive (> 0),
then decerement by 1

V() or up or signal or post:
increment semaphore by 1 (waking up thread if needed)

P, V from Dutch: proberen (test), verhogen (increment)

14

semaphores are kinda integers

semaphore like an integer, but…

cannot read/write directly
down/up operaion only way to access (typically)
exception: initialization

never negative — wait instead
down operation wants to make negative? thread waits

15

reserving books

suppose tracking copies of library book…
Semaphore free_copies = Semaphore(3);
void ReserveBook() {

// wait for copy to be free
free_copies.down();
... // ... then take reserved copy

}

void ReturnBook() {
... // return reserved copy
free_copies.up();
// ... then wakekup waiting thread

} 16

counting resources: reserving books

suppose tracking copies of same library book
non-negative integer count = # how many books used?
up = give back book; down = take book

Copy 1
Copy 2
Copy 3

3free copies

taken out 2
after calling down to reserve

taken out
after calling down to reserve

taken out
taken out
taken out

after calling down three times
to reserve all copies

taken out
taken out
taken out reserve book

call down again
start waiting…

taken out
taken out
taken out reserve book

call down
waiting
done waiting

return book

call up
release waiter

17

counting resources: reserving books

suppose tracking copies of same library book
non-negative integer count = # how many books used?
up = give back book; down = take book

Copy 1
Copy 2
Copy 3

3free copiestaken out 2
after calling down to reserve

taken out
after calling down to reserve

taken out
taken out
taken out

after calling down three times
to reserve all copies

taken out
taken out
taken out reserve book

call down again
start waiting…

taken out
taken out
taken out reserve book

call down
waiting
done waiting

return book

call up
release waiter

17

counting resources: reserving books

suppose tracking copies of same library book
non-negative integer count = # how many books used?
up = give back book; down = take book

Copy 1
Copy 2
Copy 3

2free copies

taken out 2
after calling down to reserve

taken out
after calling down to reserve

taken out
taken out
taken out

after calling down three times
to reserve all copies

taken out
taken out
taken out reserve book

call down again
start waiting…

taken out
taken out
taken out reserve book

call down
waiting
done waiting

return book

call up
release waiter

17

counting resources: reserving books

suppose tracking copies of same library book
non-negative integer count = # how many books used?
up = give back book; down = take book

Copy 1
Copy 2
Copy 3

0free copies

taken out 2
after calling down to reserve

taken out
after calling down to reserve

taken out
taken out
taken out

after calling down three times
to reserve all copies

taken out
taken out
taken out reserve book

call down again
start waiting…

taken out
taken out
taken out reserve book

call down
waiting
done waiting

return book

call up
release waiter

17

counting resources: reserving books

suppose tracking copies of same library book
non-negative integer count = # how many books used?
up = give back book; down = take book

Copy 1
Copy 2
Copy 3

0free copies

taken out 2
after calling down to reserve

taken out
after calling down to reserve

taken out
taken out
taken out

after calling down three times
to reserve all copies

taken out
taken out
taken out reserve book

call down again
start waiting…

taken out
taken out
taken out reserve book

call down
waiting
done waiting

return book

call up
release waiter

17

counting resources: reserving books

suppose tracking copies of same library book
non-negative integer count = # how many books used?
up = give back book; down = take book

Copy 1
Copy 2
Copy 3

0free copies

taken out 2
after calling down to reserve

taken out
after calling down to reserve

taken out
taken out
taken out

after calling down three times
to reserve all copies

taken out
taken out
taken out reserve book

call down again
start waiting…

taken out
taken out
taken out reserve book

call down
waiting
done waiting

return book

call up
release waiter

17

implementing mutexes with semaphores

struct Mutex {
Semaphore s; /* with inital value 1 */
/* value = 1 --> mutex if free */
/* value = 0 --> mutex is busy */

}

MutexLock(Mutex *m) {
m−>s.down();

}
MutexUnlock(Mutex *m) {

m−>s.up();
}

18

implementing join with semaphores

struct Thread {
...
Semaphore finish_semaphore; /* with initial value 0 */
/* value = 0: either thread not finished OR already joined */
/* value = 1: thread finished AND not joined */

};
thread_join(Thread *t) {

t−>finish_semaphore−>down();
}

/* assume called when thread finishes */
thread_exit(Thread *t) {

t−>finish_semaphore−>up();
/* tricky part: deallocating struct Thread safely? */

}

19

POSIX semaphores

#include <semaphore.h>
...
sem_t my_semaphore;
int process_shared = /* 1 if sharing between processes */;
sem_init(&my_semaphore, process_shared, initial_value);
...
sem_wait(&my_semaphore); /* down */
sem_post(&my_semaphore); /* up */
...
sem_destroy(&my_semaphore);

20

semaphore intuition

What do you need to wait for?
critical section to be finished
queue to be non-empty
array to have space for new items

what can you count that will be 0 when you need to wait?
of threads that can start critical section now
of threads that can join another thread without waiting
of items in queue
of empty spaces in array

use up/down operations to maintain count

21

example: producer/consumer

producer buffer consumer

shared buffer (queue) of fixed size
one or more producers inserts into queue
one or more consumers removes from queue

producer(s) and consumer(s) don’t work in lockstep
(might need to wait for each other to catch up)

example: C compiler
preprocessor → compiler → assembler → linker

22

example: producer/consumer

producer buffer consumer

shared buffer (queue) of fixed size
one or more producers inserts into queue
one or more consumers removes from queue

producer(s) and consumer(s) don’t work in lockstep
(might need to wait for each other to catch up)

example: C compiler
preprocessor → compiler → assembler → linker

22

example: producer/consumer

producer buffer consumer

shared buffer (queue) of fixed size
one or more producers inserts into queue
one or more consumers removes from queue

producer(s) and consumer(s) don’t work in lockstep
(might need to wait for each other to catch up)

example: C compiler
preprocessor → compiler → assembler → linker

22

producer/consumer constraints

consumer waits for producer(s) if buffer is empty

producer waits for consumer(s) if buffer is full

any thread waits while a thread is manipulating the buffer

one semaphore per constraint:
sem_t full_slots; // consumer waits if empty
sem_t empty_slots; // producer waits if full
sem_t mutex; // either waits if anyone changing buffer
FixedSizedQueue buffer;

23

producer/consumer constraints

consumer waits for producer(s) if buffer is empty

producer waits for consumer(s) if buffer is full

any thread waits while a thread is manipulating the buffer

one semaphore per constraint:
sem_t full_slots; // consumer waits if empty
sem_t empty_slots; // producer waits if full
sem_t mutex; // either waits if anyone changing buffer
FixedSizedQueue buffer;

23

producer/consumer pseudocode
sem_init(&full_slots, ..., 0 /* # buffer slots initially used */);
sem_init(&empty_slots, ..., BUFFER_CAPACITY);
sem_init(&mutex, ..., 1 /* # thread that can use buffer at once */);
buffer.set_size(BUFFER_CAPACITY);
...

Produce(item) {
sem_wait(&empty_slots); // wait until free slot, reserve it
sem_wait(&mutex);
buffer.enqueue(item);
sem_post(&mutex);
sem_post(&full_slots); // tell consumers there is more data

}

Consume() {
sem_wait(&full_slots); // wait until queued item, reserve it
sem_wait(&mutex);
item = buffer.dequeue();
sem_post(&mutex);
sem_post(&empty_slots); // let producer reuse item slot
return item;

}

full_slots ≤ number of items on queue
empty_slots ≤ number of free slots on queueexercise: when is full_slots value + empty_slots value

not equal to size of the queue?

Can we do
sem_wait(&mutex);
sem_wait(&empty_slots);

instead?
No. Consumer waits on sem_wait(&mutex)
so can’t sem_post(&empty_slots)
(result: producer waits forever
problem called deadlock)

Can we do
sem_post(&full_slots);
sem_post(&mutex);

instead?
Yes — post never waits

24

producer/consumer pseudocode
sem_init(&full_slots, ..., 0 /* # buffer slots initially used */);
sem_init(&empty_slots, ..., BUFFER_CAPACITY);
sem_init(&mutex, ..., 1 /* # thread that can use buffer at once */);
buffer.set_size(BUFFER_CAPACITY);
...

Produce(item) {
sem_wait(&empty_slots); // wait until free slot, reserve it
sem_wait(&mutex);
buffer.enqueue(item);
sem_post(&mutex);
sem_post(&full_slots); // tell consumers there is more data

}

Consume() {
sem_wait(&full_slots); // wait until queued item, reserve it
sem_wait(&mutex);
item = buffer.dequeue();
sem_post(&mutex);
sem_post(&empty_slots); // let producer reuse item slot
return item;

}

full_slots ≤ number of items on queue
empty_slots ≤ number of free slots on queue

exercise: when is full_slots value + empty_slots value
not equal to size of the queue?

Can we do
sem_wait(&mutex);
sem_wait(&empty_slots);

instead?
No. Consumer waits on sem_wait(&mutex)
so can’t sem_post(&empty_slots)
(result: producer waits forever
problem called deadlock)

Can we do
sem_post(&full_slots);
sem_post(&mutex);

instead?
Yes — post never waits

24

producer/consumer pseudocode
sem_init(&full_slots, ..., 0 /* # buffer slots initially used */);
sem_init(&empty_slots, ..., BUFFER_CAPACITY);
sem_init(&mutex, ..., 1 /* # thread that can use buffer at once */);
buffer.set_size(BUFFER_CAPACITY);
...

Produce(item) {
sem_wait(&empty_slots); // wait until free slot, reserve it
sem_wait(&mutex);
buffer.enqueue(item);
sem_post(&mutex);
sem_post(&full_slots); // tell consumers there is more data

}

Consume() {
sem_wait(&full_slots); // wait until queued item, reserve it
sem_wait(&mutex);
item = buffer.dequeue();
sem_post(&mutex);
sem_post(&empty_slots); // let producer reuse item slot
return item;

}

full_slots ≤ number of items on queue
empty_slots ≤ number of free slots on queue

exercise: when is full_slots value + empty_slots value
not equal to size of the queue?

Can we do
sem_wait(&mutex);
sem_wait(&empty_slots);

instead?
No. Consumer waits on sem_wait(&mutex)
so can’t sem_post(&empty_slots)
(result: producer waits forever
problem called deadlock)

Can we do
sem_post(&full_slots);
sem_post(&mutex);

instead?
Yes — post never waits

24

producer/consumer pseudocode
sem_init(&full_slots, ..., 0 /* # buffer slots initially used */);
sem_init(&empty_slots, ..., BUFFER_CAPACITY);
sem_init(&mutex, ..., 1 /* # thread that can use buffer at once */);
buffer.set_size(BUFFER_CAPACITY);
...

Produce(item) {
sem_wait(&empty_slots); // wait until free slot, reserve it
sem_wait(&mutex);
buffer.enqueue(item);
sem_post(&mutex);
sem_post(&full_slots); // tell consumers there is more data

}

Consume() {
sem_wait(&full_slots); // wait until queued item, reserve it
sem_wait(&mutex);
item = buffer.dequeue();
sem_post(&mutex);
sem_post(&empty_slots); // let producer reuse item slot
return item;

}

full_slots ≤ number of items on queue
empty_slots ≤ number of free slots on queueexercise: when is full_slots value + empty_slots value

not equal to size of the queue?

Can we do
sem_wait(&mutex);
sem_wait(&empty_slots);

instead?

No. Consumer waits on sem_wait(&mutex)
so can’t sem_post(&empty_slots)
(result: producer waits forever
problem called deadlock)

Can we do
sem_post(&full_slots);
sem_post(&mutex);

instead?
Yes — post never waits

24

producer/consumer pseudocode
sem_init(&full_slots, ..., 0 /* # buffer slots initially used */);
sem_init(&empty_slots, ..., BUFFER_CAPACITY);
sem_init(&mutex, ..., 1 /* # thread that can use buffer at once */);
buffer.set_size(BUFFER_CAPACITY);
...

Produce(item) {
sem_wait(&empty_slots); // wait until free slot, reserve it
sem_wait(&mutex);
buffer.enqueue(item);
sem_post(&mutex);
sem_post(&full_slots); // tell consumers there is more data

}

Consume() {
sem_wait(&full_slots); // wait until queued item, reserve it
sem_wait(&mutex);
item = buffer.dequeue();
sem_post(&mutex);
sem_post(&empty_slots); // let producer reuse item slot
return item;

}

full_slots ≤ number of items on queue
empty_slots ≤ number of free slots on queueexercise: when is full_slots value + empty_slots value

not equal to size of the queue?

Can we do
sem_wait(&mutex);
sem_wait(&empty_slots);

instead?
No. Consumer waits on sem_wait(&mutex)
so can’t sem_post(&empty_slots)
(result: producer waits forever
problem called deadlock)

Can we do
sem_post(&full_slots);
sem_post(&mutex);

instead?
Yes — post never waits

24

producer/consumer: cannot reorder
mutex/empty
ProducerReordered() {

// BROKEN: WRONG ORDER
sem_wait(&mutex);
sem_wait(&empty_slots);

...

sem_post(&mutex);

Consumer() {
sem_wait(&full_slots);

// can't finish until
// Producer's sem_post(&mutex):
sem_wait(&mutex);

...

// so this is not reached
sem_post(&full_slots);

25

producer/consumer pseudocode
sem_init(&full_slots, ..., 0 /* # buffer slots initially used */);
sem_init(&empty_slots, ..., BUFFER_CAPACITY);
sem_init(&mutex, ..., 1 /* # thread that can use buffer at once */);
buffer.set_size(BUFFER_CAPACITY);
...

Produce(item) {
sem_wait(&empty_slots); // wait until free slot, reserve it
sem_wait(&mutex);
buffer.enqueue(item);
sem_post(&mutex);
sem_post(&full_slots); // tell consumers there is more data

}

Consume() {
sem_wait(&full_slots); // wait until queued item, reserve it
sem_wait(&mutex);
item = buffer.dequeue();
sem_post(&mutex);
sem_post(&empty_slots); // let producer reuse item slot
return item;

}

full_slots ≤ number of items on queue
empty_slots ≤ number of free slots on queueexercise: when is full_slots value + empty_slots value

not equal to size of the queue?

Can we do
sem_wait(&mutex);
sem_wait(&empty_slots);

instead?
No. Consumer waits on sem_wait(&mutex)
so can’t sem_post(&empty_slots)
(result: producer waits forever
problem called deadlock)

Can we do
sem_post(&full_slots);
sem_post(&mutex);

instead?
Yes — post never waits

26

producer/consumer summary

producer: wait (down) empty_slots, post (up) full_slots

consumer: wait (down) full_slots, post (up) empty_slots

two producers or consumers?
still works!

27

binary semaphores

binary semaphores — semaphores that are only zero or one

as powerful as normal semaphores
exercise: simulate counting semaphores with binary semaphores (more
than one) and an integer

28

counting semaphores with binary semaphores
// assuming initialValue > 0
BinarySemaphore mutex(1);
int value = initialValue;
BinarySemaphore gate(1);

void Down() {
mutex.Down();
value −= 1;
if (val == 0) {

mutex.Up();
// decremented to 0, wait
gate.Down();
mutex.Down();

}
mutex.Up();

}

void Up() {
mutex.Down();
value += 1;
if (value == 1) {
// value was 0, start a waiter
gate.Up();

}
mutex.Up();

}

29

Anderson-Dahlin and semaphores

Anderson/Dahlin complains about semaphores
“Our view is that programming with locks and condition variables is
superior to programming with semaphores.”

argument 1: clearer to have separate constructs for
waiting for condition to be come true, and
allowing only one thread to manipulate a thing at a time

arugment 2: tricky to verify thread calls up exactly once for every
down

alternatives allow one to be sloppier (in a sense)

30

monitors/condition variables

locks for mutual exclusion

condition variables for waiting for event
operations: wait (for event); signal/broadcast (that event happened)

related data structures

monitor = lock + 0 or more condition variables + shared data
Java: every object is a monitor (has instance variables, built-in lock,
cond. var)
pthreads: build your own: provides you locks + condition variables

31

monitor idea

lock
shared data
condvar 1
condvar 2…
operation1(…)
operation2(…)

a monitor

lock must be acquired
before accessing
any part of monitor’s stuff

threads waiting for lock

threads waiting for
condition to be true
about shared data

32

monitor idea

lock
shared data
condvar 1
condvar 2…
operation1(…)
operation2(…)

a monitor

lock must be acquired
before accessing
any part of monitor’s stuff

threads waiting for lock

threads waiting for
condition to be true
about shared data

32

monitor idea

lock
shared data
condvar 1
condvar 2…
operation1(…)
operation2(…)

a monitor

lock must be acquired
before accessing
any part of monitor’s stuff

threads waiting for lock

threads waiting for
condition to be true
about shared data

32

monitor idea

lock
shared data
condvar 1
condvar 2…
operation1(…)
operation2(…)

a monitor

lock must be acquired
before accessing
any part of monitor’s stuff

threads waiting for lock

threads waiting for
condition to be true
about shared data

32

condvar operations

lock
shared data
condvar 1
condvar 2…
operation1(…)
operation2(…)

a monitor
threads waiting for lock

threads waiting for
condition to be true
about shared data

condvar operations:
Wait(cv, lock) — unlock lock, add current thread to cv queue
…and reacquire lock before returning
Broadcast(cv) — remove all from condvar queue
Signal(cv) — remove one from condvar queue

unlock lock — allow thread from queue to go

calling thread starts waitingall threads removed from cv queue
to start waiting for lock
any one thread removed from cv queue
to start waiting for lock

33

condvar operations

lock
shared data
condvar 1
condvar 2…
operation1(…)
operation2(…)

a monitor
threads waiting for lock

threads waiting for
condition to be true
about shared data

condvar operations:
Wait(cv, lock) — unlock lock, add current thread to cv queue
…and reacquire lock before returning
Broadcast(cv) — remove all from condvar queue
Signal(cv) — remove one from condvar queue

unlock lock — allow thread from queue to go

calling thread starts waiting

all threads removed from cv queue
to start waiting for lock
any one thread removed from cv queue
to start waiting for lock

33

condvar operations

lock
shared data
condvar 1
condvar 2…
operation1(…)
operation2(…)

a monitor
threads waiting for lock

threads waiting for
condition to be true
about shared data

condvar operations:
Wait(cv, lock) — unlock lock, add current thread to cv queue
…and reacquire lock before returning
Broadcast(cv) — remove all from condvar queue
Signal(cv) — remove one from condvar queue

unlock lock — allow thread from queue to go

calling thread starts waitingall threads removed from cv queue
to start waiting for lock
any one thread removed from cv queue
to start waiting for lock

33

condvar operations

lock
shared data
condvar 1
condvar 2…
operation1(…)
operation2(…)

a monitor
threads waiting for lock

threads waiting for
condition to be true
about shared data

condvar operations:
Wait(cv, lock) — unlock lock, add current thread to cv queue
…and reacquire lock before returning
Broadcast(cv) — remove all from condvar queue
Signal(cv) — remove one from condvar queue

unlock lock — allow thread from queue to go

calling thread starts waiting

all threads removed from cv queue
to start waiting for lock

any one thread removed from cv queue
to start waiting for lock

33

condvar operations

lock
shared data
condvar 1
condvar 2…
operation1(…)
operation2(…)

a monitor
threads waiting for lock

threads waiting for
condition to be true
about shared data

condvar operations:
Wait(cv, lock) — unlock lock, add current thread to cv queue
…and reacquire lock before returning
Broadcast(cv) — remove all from condvar queue
Signal(cv) — remove one from condvar queue

unlock lock — allow thread from queue to go

calling thread starts waitingall threads removed from cv queue
to start waiting for lock

any one thread removed from cv queue
to start waiting for lock

33

pthread cv usage
// MISSING: init calls, etc.
pthread_mutex_t lock;
bool finished; // data, only accessed with after acquiring lock
pthread_cond_t finished_cv; // to wait for 'finished' to be true

void WaitForFinished() {
pthread_mutex_lock(&lock);
while (!finished) {
pthread_cond_wait(&finished_cv, &lock);

}
pthread_mutex_unlock(&lock);

}

void Finish() {
pthread_mutex_lock(&lock);
finished = true;
pthread_cond_broadcast(&finished_cv);
pthread_mutex_unlock(&lock);

}

acquire lock before
reading or writing finished

check whether we need to wait at all
(why a loop? we’ll explain later)

know we need to wait
(finished can’t change while we have lock)
so wait, releasing lock…

allow all waiters to proceed
(once we unlock the lock)

34

pthread cv usage
// MISSING: init calls, etc.
pthread_mutex_t lock;
bool finished; // data, only accessed with after acquiring lock
pthread_cond_t finished_cv; // to wait for 'finished' to be true

void WaitForFinished() {
pthread_mutex_lock(&lock);
while (!finished) {
pthread_cond_wait(&finished_cv, &lock);

}
pthread_mutex_unlock(&lock);

}

void Finish() {
pthread_mutex_lock(&lock);
finished = true;
pthread_cond_broadcast(&finished_cv);
pthread_mutex_unlock(&lock);

}

acquire lock before
reading or writing finished

check whether we need to wait at all
(why a loop? we’ll explain later)

know we need to wait
(finished can’t change while we have lock)
so wait, releasing lock…

allow all waiters to proceed
(once we unlock the lock)

34

pthread cv usage
// MISSING: init calls, etc.
pthread_mutex_t lock;
bool finished; // data, only accessed with after acquiring lock
pthread_cond_t finished_cv; // to wait for 'finished' to be true

void WaitForFinished() {
pthread_mutex_lock(&lock);
while (!finished) {
pthread_cond_wait(&finished_cv, &lock);

}
pthread_mutex_unlock(&lock);

}

void Finish() {
pthread_mutex_lock(&lock);
finished = true;
pthread_cond_broadcast(&finished_cv);
pthread_mutex_unlock(&lock);

}

acquire lock before
reading or writing finished

check whether we need to wait at all
(why a loop? we’ll explain later)

know we need to wait
(finished can’t change while we have lock)
so wait, releasing lock…

allow all waiters to proceed
(once we unlock the lock)

34

pthread cv usage
// MISSING: init calls, etc.
pthread_mutex_t lock;
bool finished; // data, only accessed with after acquiring lock
pthread_cond_t finished_cv; // to wait for 'finished' to be true

void WaitForFinished() {
pthread_mutex_lock(&lock);
while (!finished) {
pthread_cond_wait(&finished_cv, &lock);

}
pthread_mutex_unlock(&lock);

}

void Finish() {
pthread_mutex_lock(&lock);
finished = true;
pthread_cond_broadcast(&finished_cv);
pthread_mutex_unlock(&lock);

}

acquire lock before
reading or writing finished

check whether we need to wait at all
(why a loop? we’ll explain later)

know we need to wait
(finished can’t change while we have lock)
so wait, releasing lock…

allow all waiters to proceed
(once we unlock the lock)

34

pthread cv usage
// MISSING: init calls, etc.
pthread_mutex_t lock;
bool finished; // data, only accessed with after acquiring lock
pthread_cond_t finished_cv; // to wait for 'finished' to be true

void WaitForFinished() {
pthread_mutex_lock(&lock);
while (!finished) {
pthread_cond_wait(&finished_cv, &lock);

}
pthread_mutex_unlock(&lock);

}

void Finish() {
pthread_mutex_lock(&lock);
finished = true;
pthread_cond_broadcast(&finished_cv);
pthread_mutex_unlock(&lock);

}

acquire lock before
reading or writing finished

check whether we need to wait at all
(why a loop? we’ll explain later)

know we need to wait
(finished can’t change while we have lock)
so wait, releasing lock…

allow all waiters to proceed
(once we unlock the lock)

34

WaitForFinish timeline 1
WaitForFinish thread Finish thread
mutex_lock(&lock)
(thread has lock)

mutex_lock(&lock)
(start waiting for lock)

while (!finished) ...
cond_wait(&finished_cv, &lock);
(start waiting for cv) (done waiting for lock)

finished = true
cond_broadcast(&finished_cv)

(done waiting for cv)
(start waiting for lock)

mutex_unlock(&lock)
(done waiting for lock)
while (!finished) ...
(finished now true, so return)
mutex_unlock(&lock) 35

WaitForFinish timeline 2
WaitForFinish thread Finish thread

mutex_lock(&lock)
finished = true
cond_broadcast(&finished_cv)
mutex_unlock(&lock)

mutex_lock(&lock)
while (!finished) ...
(finished now true, so return)
mutex_unlock(&lock)

36

why the loop

while (!finished) {
pthread_cond_wait(&finished_cv, &lock);

}

we only broadcast if finished is true

so why check finished afterwards?

pthread_cond_wait manual page:
“Spurious wakeups ... may occur.”

spurious wakeup = wait returns even though nothing happened

37

why the loop

while (!finished) {
pthread_cond_wait(&finished_cv, &lock);

}

we only broadcast if finished is true

so why check finished afterwards?

pthread_cond_wait manual page:
“Spurious wakeups ... may occur.”

spurious wakeup = wait returns even though nothing happened

37

why spurious wakeups?

makes implementing condition variables simpler

can be hard to avoid loop in more complicated scenarios

e.g. signal() saying okay to remove item from queue
what if another thread sneaks in and does it first?

maybe signal() could be redesigned to prevent this somehow?
…but that’s harder to implement

38

why spurious wakeups?

makes implementing condition variables simpler

can be hard to avoid loop in more complicated scenarios

e.g. signal() saying okay to remove item from queue
what if another thread sneaks in and does it first?

maybe signal() could be redesigned to prevent this somehow?
…but that’s harder to implement

38

unbounded buffer producer/consumer

pthread_mutex_t lock;
pthread_cond_t data_ready;
UnboundedQueue buffer;

Produce(item) {
pthread_mutex_lock(&lock);
buffer.enqueue(item);
pthread_cond_signal(&data_ready);
pthread_mutex_unlock(&lock);

}

Consume() {
pthread_mutex_lock(&lock);
while (buffer.empty()) {

pthread_cond_wait(&data_ready, &lock);
}
item = buffer.dequeue();
pthread_mutex_unlock(&lock);
return item;

}

rule: never touch buffer
without acquiring lock

otherwise: what if two threads
simulatenously en/dequeue?
(both use same array/linked list entry?)
(both reallocate array?)

check if empty
if so, dequeue

okay because have lock

other threads cannot dequeue here

wake one Consume thread
if any are waiting

0 iterations: Produce() called before Consume()
1 iteration: Produce() signalled, probably
2+ iterations: spurious wakeup or …?

Thread 1 Thread 2
Produce()
…lock
…enqueue
…signal
…unlock

Consume()
…lock
…empty? no
…dequeue
…unlock
return

Thread 1 Thread 2
Consume()
…lock
…empty? yes
…unlock/start wait

Produce()
…lock
…enqueue
…signal stop wait
…unlock lock

…empty? no
…dequeue
…unlock
return

waiting for
data_ready

Thread 1 Thread 2 Thread 3
Consume()
…lock
…empty? yes
…unlock/start wait

Produce()
…lock Consume()
…enqueue
…signal stop wait
…unlock lock

…empty? no
…dequeue
…unlock

…lock return
…empty? yes
…unlock/start wait

waiting for
data_ready

waiting for
lock

waiting for
lock

in pthreads: signalled thread not
gaurenteed to hold lock next

alternate design:
signalled thread gets lock next

called “Hoare scheduling”
not done by pthreads, Java, …

39

unbounded buffer producer/consumer

pthread_mutex_t lock;
pthread_cond_t data_ready;
UnboundedQueue buffer;

Produce(item) {
pthread_mutex_lock(&lock);
buffer.enqueue(item);
pthread_cond_signal(&data_ready);
pthread_mutex_unlock(&lock);

}

Consume() {
pthread_mutex_lock(&lock);
while (buffer.empty()) {

pthread_cond_wait(&data_ready, &lock);
}
item = buffer.dequeue();
pthread_mutex_unlock(&lock);
return item;

}

rule: never touch buffer
without acquiring lock

otherwise: what if two threads
simulatenously en/dequeue?
(both use same array/linked list entry?)
(both reallocate array?)

check if empty
if so, dequeue

okay because have lock

other threads cannot dequeue here

wake one Consume thread
if any are waiting

0 iterations: Produce() called before Consume()
1 iteration: Produce() signalled, probably
2+ iterations: spurious wakeup or …?

Thread 1 Thread 2
Produce()
…lock
…enqueue
…signal
…unlock

Consume()
…lock
…empty? no
…dequeue
…unlock
return

Thread 1 Thread 2
Consume()
…lock
…empty? yes
…unlock/start wait

Produce()
…lock
…enqueue
…signal stop wait
…unlock lock

…empty? no
…dequeue
…unlock
return

waiting for
data_ready

Thread 1 Thread 2 Thread 3
Consume()
…lock
…empty? yes
…unlock/start wait

Produce()
…lock Consume()
…enqueue
…signal stop wait
…unlock lock

…empty? no
…dequeue
…unlock

…lock return
…empty? yes
…unlock/start wait

waiting for
data_ready

waiting for
lock

waiting for
lock

in pthreads: signalled thread not
gaurenteed to hold lock next

alternate design:
signalled thread gets lock next

called “Hoare scheduling”
not done by pthreads, Java, …

39

unbounded buffer producer/consumer

pthread_mutex_t lock;
pthread_cond_t data_ready;
UnboundedQueue buffer;

Produce(item) {
pthread_mutex_lock(&lock);
buffer.enqueue(item);
pthread_cond_signal(&data_ready);
pthread_mutex_unlock(&lock);

}

Consume() {
pthread_mutex_lock(&lock);
while (buffer.empty()) {

pthread_cond_wait(&data_ready, &lock);
}
item = buffer.dequeue();
pthread_mutex_unlock(&lock);
return item;

}

rule: never touch buffer
without acquiring lock

otherwise: what if two threads
simulatenously en/dequeue?
(both use same array/linked list entry?)
(both reallocate array?)

check if empty
if so, dequeue

okay because have lock

other threads cannot dequeue here

wake one Consume thread
if any are waiting

0 iterations: Produce() called before Consume()
1 iteration: Produce() signalled, probably
2+ iterations: spurious wakeup or …?

Thread 1 Thread 2
Produce()
…lock
…enqueue
…signal
…unlock

Consume()
…lock
…empty? no
…dequeue
…unlock
return

Thread 1 Thread 2
Consume()
…lock
…empty? yes
…unlock/start wait

Produce()
…lock
…enqueue
…signal stop wait
…unlock lock

…empty? no
…dequeue
…unlock
return

waiting for
data_ready

Thread 1 Thread 2 Thread 3
Consume()
…lock
…empty? yes
…unlock/start wait

Produce()
…lock Consume()
…enqueue
…signal stop wait
…unlock lock

…empty? no
…dequeue
…unlock

…lock return
…empty? yes
…unlock/start wait

waiting for
data_ready

waiting for
lock

waiting for
lock

in pthreads: signalled thread not
gaurenteed to hold lock next

alternate design:
signalled thread gets lock next

called “Hoare scheduling”
not done by pthreads, Java, …

39

unbounded buffer producer/consumer

pthread_mutex_t lock;
pthread_cond_t data_ready;
UnboundedQueue buffer;

Produce(item) {
pthread_mutex_lock(&lock);
buffer.enqueue(item);
pthread_cond_signal(&data_ready);
pthread_mutex_unlock(&lock);

}

Consume() {
pthread_mutex_lock(&lock);
while (buffer.empty()) {

pthread_cond_wait(&data_ready, &lock);
}
item = buffer.dequeue();
pthread_mutex_unlock(&lock);
return item;

}

rule: never touch buffer
without acquiring lock

otherwise: what if two threads
simulatenously en/dequeue?
(both use same array/linked list entry?)
(both reallocate array?)

check if empty
if so, dequeue

okay because have lock

other threads cannot dequeue here

wake one Consume thread
if any are waiting

0 iterations: Produce() called before Consume()
1 iteration: Produce() signalled, probably
2+ iterations: spurious wakeup or …?

Thread 1 Thread 2
Produce()
…lock
…enqueue
…signal
…unlock

Consume()
…lock
…empty? no
…dequeue
…unlock
return

Thread 1 Thread 2
Consume()
…lock
…empty? yes
…unlock/start wait

Produce()
…lock
…enqueue
…signal stop wait
…unlock lock

…empty? no
…dequeue
…unlock
return

waiting for
data_ready

Thread 1 Thread 2 Thread 3
Consume()
…lock
…empty? yes
…unlock/start wait

Produce()
…lock Consume()
…enqueue
…signal stop wait
…unlock lock

…empty? no
…dequeue
…unlock

…lock return
…empty? yes
…unlock/start wait

waiting for
data_ready

waiting for
lock

waiting for
lock

in pthreads: signalled thread not
gaurenteed to hold lock next

alternate design:
signalled thread gets lock next

called “Hoare scheduling”
not done by pthreads, Java, …

39

unbounded buffer producer/consumer

pthread_mutex_t lock;
pthread_cond_t data_ready;
UnboundedQueue buffer;

Produce(item) {
pthread_mutex_lock(&lock);
buffer.enqueue(item);
pthread_cond_signal(&data_ready);
pthread_mutex_unlock(&lock);

}

Consume() {
pthread_mutex_lock(&lock);
while (buffer.empty()) {

pthread_cond_wait(&data_ready, &lock);
}
item = buffer.dequeue();
pthread_mutex_unlock(&lock);
return item;

}

rule: never touch buffer
without acquiring lock

otherwise: what if two threads
simulatenously en/dequeue?
(both use same array/linked list entry?)
(both reallocate array?)

check if empty
if so, dequeue

okay because have lock

other threads cannot dequeue here

wake one Consume thread
if any are waiting

0 iterations: Produce() called before Consume()
1 iteration: Produce() signalled, probably
2+ iterations: spurious wakeup or …?

Thread 1 Thread 2
Produce()
…lock
…enqueue
…signal
…unlock

Consume()
…lock
…empty? no
…dequeue
…unlock
return

Thread 1 Thread 2
Consume()
…lock
…empty? yes
…unlock/start wait

Produce()
…lock
…enqueue
…signal stop wait
…unlock lock

…empty? no
…dequeue
…unlock
return

waiting for
data_ready

Thread 1 Thread 2 Thread 3
Consume()
…lock
…empty? yes
…unlock/start wait

Produce()
…lock Consume()
…enqueue
…signal stop wait
…unlock lock

…empty? no
…dequeue
…unlock

…lock return
…empty? yes
…unlock/start wait

waiting for
data_ready

waiting for
lock

waiting for
lock

in pthreads: signalled thread not
gaurenteed to hold lock next

alternate design:
signalled thread gets lock next

called “Hoare scheduling”
not done by pthreads, Java, …

39

unbounded buffer producer/consumer

pthread_mutex_t lock;
pthread_cond_t data_ready;
UnboundedQueue buffer;

Produce(item) {
pthread_mutex_lock(&lock);
buffer.enqueue(item);
pthread_cond_signal(&data_ready);
pthread_mutex_unlock(&lock);

}

Consume() {
pthread_mutex_lock(&lock);
while (buffer.empty()) {

pthread_cond_wait(&data_ready, &lock);
}
item = buffer.dequeue();
pthread_mutex_unlock(&lock);
return item;

}

rule: never touch buffer
without acquiring lock

otherwise: what if two threads
simulatenously en/dequeue?
(both use same array/linked list entry?)
(both reallocate array?)

check if empty
if so, dequeue

okay because have lock

other threads cannot dequeue here

wake one Consume thread
if any are waiting

0 iterations: Produce() called before Consume()
1 iteration: Produce() signalled, probably
2+ iterations: spurious wakeup or …?

Thread 1 Thread 2
Produce()
…lock
…enqueue
…signal
…unlock

Consume()
…lock
…empty? no
…dequeue
…unlock
return

Thread 1 Thread 2
Consume()
…lock
…empty? yes
…unlock/start wait

Produce()
…lock
…enqueue
…signal stop wait
…unlock lock

…empty? no
…dequeue
…unlock
return

waiting for
data_ready

Thread 1 Thread 2 Thread 3
Consume()
…lock
…empty? yes
…unlock/start wait

Produce()
…lock Consume()
…enqueue
…signal stop wait
…unlock lock

…empty? no
…dequeue
…unlock

…lock return
…empty? yes
…unlock/start wait

waiting for
data_ready

waiting for
lock

waiting for
lock

in pthreads: signalled thread not
gaurenteed to hold lock next

alternate design:
signalled thread gets lock next

called “Hoare scheduling”
not done by pthreads, Java, …

39

unbounded buffer producer/consumer

pthread_mutex_t lock;
pthread_cond_t data_ready;
UnboundedQueue buffer;

Produce(item) {
pthread_mutex_lock(&lock);
buffer.enqueue(item);
pthread_cond_signal(&data_ready);
pthread_mutex_unlock(&lock);

}

Consume() {
pthread_mutex_lock(&lock);
while (buffer.empty()) {

pthread_cond_wait(&data_ready, &lock);
}
item = buffer.dequeue();
pthread_mutex_unlock(&lock);
return item;

}

rule: never touch buffer
without acquiring lock

otherwise: what if two threads
simulatenously en/dequeue?
(both use same array/linked list entry?)
(both reallocate array?)

check if empty
if so, dequeue

okay because have lock

other threads cannot dequeue here

wake one Consume thread
if any are waiting

0 iterations: Produce() called before Consume()
1 iteration: Produce() signalled, probably
2+ iterations: spurious wakeup or …?

Thread 1 Thread 2
Produce()
…lock
…enqueue
…signal
…unlock

Consume()
…lock
…empty? no
…dequeue
…unlock
return

Thread 1 Thread 2
Consume()
…lock
…empty? yes
…unlock/start wait

Produce()
…lock
…enqueue
…signal stop wait
…unlock lock

…empty? no
…dequeue
…unlock
return

waiting for
data_ready

Thread 1 Thread 2 Thread 3
Consume()
…lock
…empty? yes
…unlock/start wait

Produce()
…lock Consume()
…enqueue
…signal stop wait
…unlock lock

…empty? no
…dequeue
…unlock

…lock return
…empty? yes
…unlock/start wait

waiting for
data_ready

waiting for
lock

waiting for
lock

in pthreads: signalled thread not
gaurenteed to hold lock next

alternate design:
signalled thread gets lock next

called “Hoare scheduling”
not done by pthreads, Java, …

39

unbounded buffer producer/consumer

pthread_mutex_t lock;
pthread_cond_t data_ready;
UnboundedQueue buffer;

Produce(item) {
pthread_mutex_lock(&lock);
buffer.enqueue(item);
pthread_cond_signal(&data_ready);
pthread_mutex_unlock(&lock);

}

Consume() {
pthread_mutex_lock(&lock);
while (buffer.empty()) {

pthread_cond_wait(&data_ready, &lock);
}
item = buffer.dequeue();
pthread_mutex_unlock(&lock);
return item;

}

rule: never touch buffer
without acquiring lock

otherwise: what if two threads
simulatenously en/dequeue?
(both use same array/linked list entry?)
(both reallocate array?)

check if empty
if so, dequeue

okay because have lock

other threads cannot dequeue here

wake one Consume thread
if any are waiting

0 iterations: Produce() called before Consume()
1 iteration: Produce() signalled, probably
2+ iterations: spurious wakeup or …?

Thread 1 Thread 2
Produce()
…lock
…enqueue
…signal
…unlock

Consume()
…lock
…empty? no
…dequeue
…unlock
return

Thread 1 Thread 2
Consume()
…lock
…empty? yes
…unlock/start wait

Produce()
…lock
…enqueue
…signal stop wait
…unlock lock

…empty? no
…dequeue
…unlock
return

waiting for
data_ready

Thread 1 Thread 2 Thread 3
Consume()
…lock
…empty? yes
…unlock/start wait

Produce()
…lock Consume()
…enqueue
…signal stop wait
…unlock lock

…empty? no
…dequeue
…unlock

…lock return
…empty? yes
…unlock/start wait

waiting for
data_ready

waiting for
lock

waiting for
lock

in pthreads: signalled thread not
gaurenteed to hold lock next

alternate design:
signalled thread gets lock next

called “Hoare scheduling”
not done by pthreads, Java, …

39

Hoare versus Mesa monitors

Hoare-style monitors
signal ‘hands off’ lock to awoken thread

Mesa-style monitors
any eligible thread gets lock next
(maybe some other idea of priority?)

every current threading library I know of does Mesa-style

40

41

threads: sum example (to global)
int array[1024];
int results[2];
void *sum_thread(void *argument) {

int id = (int) argument;
int sum = 0;
for (int i = id * 512; i < (id + 1) * 512; ++i) {

sum += array[i];
}
results[id] = sum;
return NULL;

}
int sum_all() {

pthread_t thread[2];
for (int i = 0; i < 2; ++i) {

pthread_create(&threads[i], NULL, sum_thread, (void *) i);
}
for (int i = 0; i < 2; ++i)

pthread_join(threads[i], NULL);
return results[0] + results[1];

}

array, results: global variables — shared

42

threads: sum example (to global)
int array[1024];
int results[2];
void *sum_thread(void *argument) {

int id = (int) argument;
int sum = 0;
for (int i = id * 512; i < (id + 1) * 512; ++i) {

sum += array[i];
}
results[id] = sum;
return NULL;

}
int sum_all() {

pthread_t thread[2];
for (int i = 0; i < 2; ++i) {

pthread_create(&threads[i], NULL, sum_thread, (void *) i);
}
for (int i = 0; i < 2; ++i)

pthread_join(threads[i], NULL);
return results[0] + results[1];

}

array, results: global variables — shared

42

threads: sum example (to main stack)
int array[1024];
struct ThreadInfo {

int start, end, result;
};
void *sum_thread(void *argument) {

ThreadInfo *my_info = (ThreadInfo *) argument;
int sum = 0;
for (int i = my_info->start; i < my_info->end; ++i) {

sum += array[i];
}
my_info->result = sum;
return NULL;

}
int sum_all() {

pthread_t thread[2]; ThreadInfo info[2];
for (int i = 0; i < 2; ++i) {

info[i].start = i*512; info[i].end = (i+1)*512;
pthread_create(&threads[i], NULL, sum_thread, &info[i]);

}
for (int i = 0; i < 2; ++i)

pthread_join(threads[i], NULL);
return info[0].result + info[1].result;

}

array: global variable — shared

my_info: pointer to sum_all’s stack
only okay because sum_all waits!

43

threads: sum example (to main stack)
int array[1024];
struct ThreadInfo {

int start, end, result;
};
void *sum_thread(void *argument) {

ThreadInfo *my_info = (ThreadInfo *) argument;
int sum = 0;
for (int i = my_info->start; i < my_info->end; ++i) {

sum += array[i];
}
my_info->result = sum;
return NULL;

}
int sum_all() {

pthread_t thread[2]; ThreadInfo info[2];
for (int i = 0; i < 2; ++i) {

info[i].start = i*512; info[i].end = (i+1)*512;
pthread_create(&threads[i], NULL, sum_thread, &info[i]);

}
for (int i = 0; i < 2; ++i)

pthread_join(threads[i], NULL);
return info[0].result + info[1].result;

}

array: global variable — shared

my_info: pointer to sum_all’s stack
only okay because sum_all waits!

43

threads: sum example (to main stack)
int array[1024];
struct ThreadInfo {

int start, end, result;
};
void *sum_thread(void *argument) {

ThreadInfo *my_info = (ThreadInfo *) argument;
int sum = 0;
for (int i = my_info->start; i < my_info->end; ++i) {

sum += array[i];
}
my_info->result = sum;
return NULL;

}
int sum_all() {

pthread_t thread[2]; ThreadInfo info[2];
for (int i = 0; i < 2; ++i) {

info[i].start = i*512; info[i].end = (i+1)*512;
pthread_create(&threads[i], NULL, sum_thread, &info[i]);

}
for (int i = 0; i < 2; ++i)

pthread_join(threads[i], NULL);
return info[0].result + info[1].result;

}

array: global variable — shared

my_info: pointer to sum_all’s stack
only okay because sum_all waits!

43

threads: sum example (to main stack)
int array[1024];
struct ThreadInfo {

int start, end, result;
};
void *sum_thread(void *argument) {

ThreadInfo *my_info = (ThreadInfo *) argument;
int sum = 0;
for (int i = my_info->start; i < my_info->end; ++i) {

sum += array[i];
}
my_info->result = sum;
return NULL;

}
int sum_all() {

pthread_t thread[2]; ThreadInfo info[2];
for (int i = 0; i < 2; ++i) {

info[i].start = i*512; info[i].end = (i+1)*512;
pthread_create(&threads[i], NULL, sum_thread, &info[i]);

}
for (int i = 0; i < 2; ++i)

pthread_join(threads[i], NULL);
return info[0].result + info[1].result;

}

array: global variable — shared

my_info: pointer to sum_all’s stack
only okay because sum_all waits!

43

threads: sum example (no globals)
struct ThreadInfo { int *array; int start; int end; int result };
void *sum_thread(void *argument) {

ThreadInfo *my_info = (ThreadInfo *) argument;
int sum = 0;
for (int i = my_info->start; i < my_info->end; ++i) {

sum += my_info->array[i];
}
my_info->result = sum;
return NULL;

}
int sum_all(int *array) {

ThreadInfo info[2]; pthread_t thread[2];
for (int i = 0; i < 2; ++i) {

info[i].array = array; info[i].start = i*512; info[i].end = (i+1)*512;
pthread_create(&threads[i], NULL, sum_thread, (void *) i);

}
for (int i = 0; i < 2; ++i)

pthread_join(threads[i], NULL);
return info[0].result + info[1].result;

}

44

threads: sum example (no globals)
struct ThreadInfo { int *array; int start; int end; int result };
void *sum_thread(void *argument) {

ThreadInfo *my_info = (ThreadInfo *) argument;
int sum = 0;
for (int i = my_info->start; i < my_info->end; ++i) {

sum += my_info->array[i];
}
my_info->result = sum;
return NULL;

}
int sum_all(int *array) {

ThreadInfo info[2]; pthread_t thread[2];
for (int i = 0; i < 2; ++i) {

info[i].array = array; info[i].start = i*512; info[i].end = (i+1)*512;
pthread_create(&threads[i], NULL, sum_thread, (void *) i);

}
for (int i = 0; i < 2; ++i)

pthread_join(threads[i], NULL);
return info[0].result + info[1].result;

}

44

threads: sum example (no globals)
struct ThreadInfo { int *array; int start; int end; int result };
void *sum_thread(void *argument) {

ThreadInfo *my_info = (ThreadInfo *) argument;
int sum = 0;
for (int i = my_info->start; i < my_info->end; ++i) {

sum += my_info->array[i];
}
my_info->result = sum;
return NULL;

}
int sum_all(int *array) {

ThreadInfo info[2]; pthread_t thread[2];
for (int i = 0; i < 2; ++i) {

info[i].array = array; info[i].start = i*512; info[i].end = (i+1)*512;
pthread_create(&threads[i], NULL, sum_thread, (void *) i);

}
for (int i = 0; i < 2; ++i)

pthread_join(threads[i], NULL);
return info[0].result + info[1].result;

}

44

threads: sum example (no globals)
struct ThreadInfo { int *array; int start; int end; int result };
void *sum_thread(void *argument) {

ThreadInfo *my_info = (ThreadInfo *) argument;
int sum = 0;
for (int i = my_info->start; i < my_info->end; ++i) {

sum += my_info->array[i];
}
my_info->result = sum;
return NULL;

}
int sum_all(int *array) {

ThreadInfo info[2]; pthread_t thread[2];
for (int i = 0; i < 2; ++i) {

info[i].array = array; info[i].start = i*512; info[i].end = (i+1)*512;
pthread_create(&threads[i], NULL, sum_thread, (void *) i);

}
for (int i = 0; i < 2; ++i)

pthread_join(threads[i], NULL);
return info[0].result + info[1].result;

}

44

threads: sum example (on heap)

struct ThreadInfo { pthread_t thread; int *array; int start; int end; int result };
void *sum_thread(void *argument) {

...
}
ThreadInfo *start_sum_all(int *array) {

ThreadInfo *info = new ThreadInfo[2];
for (int i = 0; i < 2; ++i) {

info[i].array = array; info[i].start = i*512; info[i].end = (i+1)*512;
pthread_create(&info[i].thread, NULL, sum_thread, (void *) &info[i]);

}
return info;

}
void finish_sum_all(ThreadInfo *info) {

for (int i = 0; i < 2; ++i)
pthread_join(info[i].thread, NULL);

int result = info[0].result + info[1].result;
delete[] info;
return result;

}

45

threads: sum example (on heap)

struct ThreadInfo { pthread_t thread; int *array; int start; int end; int result };
void *sum_thread(void *argument) {

...
}
ThreadInfo *start_sum_all(int *array) {

ThreadInfo *info = new ThreadInfo[2];
for (int i = 0; i < 2; ++i) {

info[i].array = array; info[i].start = i*512; info[i].end = (i+1)*512;
pthread_create(&info[i].thread, NULL, sum_thread, (void *) &info[i]);

}
return info;

}
void finish_sum_all(ThreadInfo *info) {

for (int i = 0; i < 2; ++i)
pthread_join(info[i].thread, NULL);

int result = info[0].result + info[1].result;
delete[] info;
return result;

}

45

threads: sum example (on heap)

struct ThreadInfo { pthread_t thread; int *array; int start; int end; int result };
void *sum_thread(void *argument) {

...
}
ThreadInfo *start_sum_all(int *array) {

ThreadInfo *info = new ThreadInfo[2];
for (int i = 0; i < 2; ++i) {

info[i].array = array; info[i].start = i*512; info[i].end = (i+1)*512;
pthread_create(&info[i].thread, NULL, sum_thread, (void *) &info[i]);

}
return info;

}
void finish_sum_all(ThreadInfo *info) {

for (int i = 0; i < 2; ++i)
pthread_join(info[i].thread, NULL);

int result = info[0].result + info[1].result;
delete[] info;
return result;

}

45

	on the quiz
	barriers (for life HW)
	the life HW
	more general constructs
	counting semaphores
	POSIX semaphores
	semaphore intuition

	producer/consumer problem
	producer/consumer with counting semaphores
	aside: binary semaphores
	the textbook's complaint about semaphores
	monitors
	introduction
	unbounded queue with monitors
	Hoare scheduling note

	backup slides

