Monitors con't / Reader/Writer Locks /
Deadlock (start)

Changelog

Changes made in this version not seen in first lecture:
2 October: bounded buffer producer/consumer: condition should have
been buffer.full, not !buffer.full
2 October: bounded buffer producer/consumer: signalling only when
buffer.size = capacity - 1 doesn’t work correctly
2 October: writer-priority reader/writer lock: condition for signaling
writer should have been waiting_ writers != 0
2 October: simulation of reader/writer lock: correct readers being
decremented too early
2 October: simulation of reader/writer lock: condition for signaling
writer should have been waiting_ writers != 0
2 October: rwlock exercise solution?: add “if (need to wait)"”
2 October: rwlock exercise solution?: remove extraneous writer IDs
2 October: monitor exercise: make entire code fit on slide
2 October: monitors with semaphore: clarify on slide that this is to

last time

barriers — wait for everyone else

counting semaphores
track number of something
wait if not any

monitors: mutex + condition variables

condition variable: wait and signal/broadcast

pattern: loop of waiting (spurious wakeup)
associated mutex lock: check if need to wait safely

producer/consumer solution with semaphores/monitors
producer: add to queue, wait if full
consumer: remove from queue, wait if empty

life HW

life HW is out
checkpoint (Friday): use POSIX barriers

final (week from Friday): write your own barriers

questions?

unbounded buffer producer/consumer

pthread_mutex_t lock;
pthread_cond_t data_ready;
UnboundedQueue buffer;

Produce(item) {
pthread_mutex_lock(&lock) ;
buffer.enqueue(item);
pthread_cond_signal(&data_ready);
pthread_mutex_unlock(&lock) ;

}

Consume () {
pthread_mutex_lock(&lock);
while (buffer.empty()) {
pthread_cond_wait(&data_ready, &lock);
}

item = buffer.dequeue();
pthread_mutex_unlock(&lock) ;
return item;

unbounded buffer producer/consumer

pthread_mutex_t lock; rule: never touch buffer

pthread_cond_t data_ready; without acquiring lock
UnboundedQueue buffer;

Produce (item) { otherwise: what if two threads
pthread_mutex_lock(&lock) ; . | | d -
buffer .enqueus (item) ; simulatenously en/dequeue’

pthread_cond_signal(&data_ready); | (both use same array/linked list entry?)
pthread_mutex_unlock(&lock) ;

} (both reallocate array?)

Consume() {
pthread_mutex_lock(&lock) ;
while (buffer.empty()) {
pthread_cond_wait(&data_ready, &lock);
}

item = buffer.dequeue();
pthread_mutex_unlock(&lock) ;
return item;

unbounded buffer producer/consumer

pthread_mutex_t lock;
pthread_cond_t data_ready;
UnboundedQueue buffer;

Produce(item) {

}

Consume () {

pthread_mutex_lock(&lock) ;
buffer.enqueue(item);

pthread_cond_signal(&data_ready);
pthread_mutex_unlock(&lock) ;

pthread_mutex_lock(&lock);

check if empty
if so, dequeue

okay because have lock

while (buffer.empty()) {
pthread_cond_wait(&data_ready, &lock);

} < other threads

item = buffer.dequeue();

pthread_mutex_unlock(&lock) ;

return item;

cannot dequeue here

unbounded buffer producer/consumer

pthread_mutex_t lock;
pthread_cond_t data_ready;
UnboundedQueue buffer;

Produce(item) {
pthread_mutex_lock(&lock) ;
buffer .anqueus (item) ; ’ Yvake one Corlls.ume thread
pthread_cond_signal(&data_ready) ; —— if any are waiting
pthread_mutex_unlock(&lock) ;

}

Consume () {
pthread_mutex_lock(&lock);
while (buffer.empty()) {
pthread_cond_wait(&data_ready, &lock);
}

item = buffer.dequeue();
pthread_mutex_unlock(&lock) ;
return item;

unbounded buffer producer/consumer

Thread 1 Thread 2
Produce()
pthread_mutex_t lock; lock
pthread_cond_t data_ready; _enqueue
UnboundedQueue buffer; _signal
Produce(item) { -unock Consume()
pthread_mutex_lock(&lock) ; lock
buffer.enqueue(item); — ?
pthread_cond_signal(&data_ready -€MPty* No
pthread_mutex_unlock(&lock) ; -dequeue
3 ..unlock
return

Consume () {
pthread_mutex_lock(&lock);
while (buffer.empty()) {
pthread_cond_wait(&data_ready, &lock);
}

item = buffer.dequeue(); . .
pthread_mutex_unlock (&lock))\ | O iterations: Produce() called before Consume()

return item; 1 iteration: Produce() signalled, probably
¥ 2+ iterations: spurious wakeup or ..7

unbounded buffer producer/consumer
Thread 1 Thread 2

Consume()
pthread_mutex_t lock; lock
pthread_cond_t data_ready; ..empty? yes

UnboundedQueue buffer; —unlock /start wait

Produce (item) { W)_ waiting for
pthread_mutex_lock(&lock); b data_ready
.enqueue

buffer.enqueue(item);

pthread_cond_signal(&data_ready); signal stop wait
pthread_mutex_unlock(&lock); .unlock lock
1 ..empty? no
..dequeue
..unlock

Consume () {
pthread_mutex_lock(&lock); return
while (buffer.empty()) {

pthread_cond_wait(&data_ready, &lock);
}

item = buffer.dequeue(); . .
pthread_mutex_unlock (&lock)) | O iterations: Produce() called before Consume()

return item; 1 iteration: Produce() signalled, probably
¥ 2+ iterations: spurious wakeup or ..7

unbounded buffer producer/consumer

pthread_mutex_t lock;
pthread_cond_t data_ready;
UnboundedQueue buffer;

Produce(item) {
pthread_mutex_lock(&lock) ;
buffer.enqueue(item);

pthread_cond_signal(&data_red"

pthread_mutex_unlock(&lock) ;
}

Consume () {
pthread_mutex_lock(&lock);
while (buffer.empty()) {

pthread_cond_wait(&data_r
}

item = buffer.dequeue();
pthread_mutex_unlock(&lock) }
return item;

Thread 1 Thread 2 Thread 3
Consume()
..lock
..empty? yes
..unlock /start wait
Produce() waiting for
..Jock data_ready Consume()
..enqueue B waiting for
.signal stop wait lock
..unlock . lock
waiting for —empty? no
lock ..dequeue
-..unlock
..lock return
..empty? yes

..unlock/start wait

0 iterations: Produce() called before Consume()

1 iteration: Produce() signalled, probably

2+ iterations: spurious wakeup or ..?

unbounded buffer producer/consumer

Thread 1 Thread 2 Thread 3
Consume
pthread_mutex_t lock; .Joc; 0
Rthreaq_qgnd_t gaté_ready; _empty? yes
in pthreads: signalled thread not produce() "-””|°Ck/_s_tartfwa't
teed to hold lock next ok — waiting for
gaurenteed to hold lock nex y —Tock data,_ ready Consurneg)
..enqueue waiting for
alternate design: 5 7 &-signal stop wait lock
signalled thread gets lock next |ck) ; ~.unlock i f lock
[- ” Waltlng Or ..empty? no
called “Hoare scheduling lock]
..dequeue
not done by pthreads, Java, .. —unlock
pthread_mutex_lock(&lock) ; .lock return
while (buffer.empty()) { ..empty? yes
pthread_cond_wait(&data_t ..unlock /start wait

}

item = buffer.dequeue();
pthread_mutex_unlock(&lock) }
return item;

0 iterations: Produce() called before Consume()
1 iteration: Produce() signalled, probably
2+ iterations: spurious wakeup or ..?

bounded buffer producer/consumer

pthread_mutex_t lock;
pthread_cond_t data_ready; pthread_cond_t space_ready;
BoundedQueue buffer;

Produce(item) {
pthread_mutex_lock(&lock) ;
while (buffer.full()) { pthread_cond_wait(&space_ready, &lock); }
buffer.enqueue(item);
pthread_cond_signal(&data_ready);
pthread_mutex_unlock(&lock);
}

Consume() {
pthread_mutex_lock(&lock) ;
while (buffer.empty()) {
pthread_cond_wait(&data_ready, &lock);
}

item = buffer.dequeue();
pthread_cond_signal(&space_ready);
pthread_mutex_unlock(&lock) ;
return titem;

bounded buffer producer/consumer

pthread_mutex_t lock;
pthread_cond_t data_ready; pthread_cond_t space_ready;
BoundedQueue buffer;

Produce(item) {
pthread_mutex_lock(&lock) ;
while (buffer.full()) { pthread_cond_wait(&space_ready, &lock); }
buffer.enqueue(item);
pthread_cond_signal(&data_ready);
pthread_mutex_unlock(&lock);
}

Consume() {
pthread_mutex_lock(&lock) ;
while (buffer.empty()) {

pthread_cond_wait(&data_ready, &lock);

}
item = buffer.dequeue();
pthread_cond_signal (&space_ready);
pthread_mutex_unlock(&lock);
return titem;

bounded buffer producer/consumer

pthread_mutex_t lock;
pthread_cond_t data_ready; pthread_cond_t space_ready;
BoundedQueue buffer;

Produce(item) {
pthread_mutex_lock(&lock) ;
while (buffer.full()) { pthread_cond_wait(&space_ready, &lock); }
buffer.enqueue(item);
pthread_cond_signal(&data_ready);
pfhrpnr‘l mutex 1unlock(&lack)

¥ correct (but slow?) to replace with:

Consun pthread_cond_broadcast(&space_ready);

P (just more “spurious wakeups"”)

pthread_cond_walt (&dlata_ready , &lock);

}
item = buffer.dequeue();
pthread_cond_signal (&space_ready);
pthread_mutex_unlock(&lock);
return titem;

bounded buffer producer/consumer

pthread_mutex_t lock;
pthread_cond_t data_ready; pthread_cond_t space_ready;
BoundedQueue buffer;

Produce(item) {
pthread_mutex_lock(&lock) ;
while (buffer.full()) { pthread_cond_wait(&space_ready, &lock); }

buffer.enqueue(item);

pthread_cond_signal(&data_ready) ; correct but slow to replace

pthread_mutex_unlock(&lock) ; data_ready and space_ready
¥ with ‘combined’ condvar ready
Consume () { and use broadcast

pthread_mutex_lock(&lock) ; (just more “spurious wakeups”)

while (buffer.empty()) {

pthread_cond_wait(&data_ready, &lock);

}

item = buffer.dequeue();

pthread_cond_signal (&space_ready);

pthread_mutex_unlock(&lock) ;

return titem;
}

monitor pattern

pthread_mutex_lock(&lock) ;

while (!condition A) {
pthread_cond_wait(&condvar_for_A, &lock);

}

... /* manipulate shared data, changing other conditions */

if (set condition B) {
pthread_cond_broadcast(&condvar_for_B);
/* or signal, if only one thread cares */

¥

if (set condition C) {
pthread_cond_broadcast(&condvar_for_C);
/* or signal, if only one thread cares */

}

pthread_mutex_unlock (&lock)

monitors rules of thumb

never touch shared data without holding the lock

keep lock held for entire operation:
verifying condition (e.g. buffer not full) up to and including
manipulating data (e.g. adding to buffer)

create condvar for every kind of scenario waited for
always write loop calling cond_wait to wait for condition X

broadcast /signal condition variable every time you change X

monitors rules of thumb

never touch shared data without holding the lock

keep lock held for entire operation:
verifying condition (e.g. buffer not full) up to and including
manipulating data (e.g. adding to buffer)

create condvar for every kind of scenario waited for
always write loop calling cond_wait to wait for condition X

broadcast /signal condition variable every time you change X

correct but slow to...
broadcast when just signal would work
broadcast or signal when nothing changed
use one condvar for multiple conditions

monitor exercise (1)

suppose we want producer/consumer, but..

but change to ConsumeTwo() which returns a pair of values
and don’t want two calls to ConsumeTwo() to wait...

with each getting one item

what should we change below?

pthread_mutex_t lock;
pthread_cond_t data_ready;
UnboundedQueue buffer;

Produce(item) {
pthread_mutex_lock(&lock) ;
buffer.enqueue(item);
pthread_cond_signal(&data_ready);
pthread_mutex_unlock(&lock) ;

Consume () {

}

pthread_mutex_lock(&lock) ;
while (buffer.empty()) {

pthread_cond_wait(&data_rec
}

item = buffer.dequeue();
pthread_mutex_unlock(&lock) ;
return item;

building semaphore with monitors

pthread_mutex_t Tock;]

lock to protect shared state

building semaphore with monitors

pthread_mutex_t lock;
unsigned int count;|

lock to protect shared state
shared state: semaphore tracks a count

building semaphore with monitors

pthread_mutex_t lock;
unsigned 1int count;

* condition, signal when becomes count > 0 *
pthread_cond_t count_1is_positive_cv;

lock to protect shared state
shared state: semaphore tracks a count

add cond var for each reason we wait
semaphore: wait for count to become positive (for down)

building semaphore with monitors

pthread_mutex_t lock;
unsigned 1int count;
/* condition, signal when becomes count > 0 */
pthread_cond_t count_is_positive_cv;
void down() {
pthread_mutex_lock(&lock);
while (!(count > 0)) {
pthread_cond_wait(
&count_is_positive_cv,
&lock) ;

1
count -= 1;
pthread_mutex_unlock(&lock);

}

lock to protect shared state
shared state: semaphore tracks a count

add cond var for each reason we wait
semaphore: wait for count to become positive (for down)

wait using condvar; broadcast/signal when condition changes

building semaphore with monitors

pthread_mutex_t lock;
unsigned 1int count;

/* condition, signal when becomes count > 0 */

pthread_cond_t count_is_positive_cv;
void down() {
pthread_mutex_lock(&lock);
while (!(count > 0)) {
pthread_cond_wait(
&count_is_positive_cv,
&lock) ;
}
count -= 1;
pthread_mutex_unlock(&lock) ;
}

lock to protect shared state

void up() {

pthread_mutex_lock(&lock);

count += 1;

if (count == 1) { /* became > 0 *
pthread_cond_signal(

&count_is_positive_cv

)

}

pthread_mutex_unlock(&lock);

shared state: semaphore tracks a count

add cond var for each reason we wait
semaphore: wait for count to become positive (for down)

wait using condvar; broadcast/signal when condition changes

monitors with semaphores: locks

sem_t semaphore; // initial value 1

Lock() {
sem_wait(&semaphore);

}

Unlock() {
sem_post (&semaphore) ;

}

10

monitors with semaphores: cvs (attempt 1)

condition variables are more challenging

start with only wait/signal:

sem_t threads_to_wakeup; // initially 0
Wait(Lock lock) {
lock.Unlock();
sem_wait(&threads_to_wakeup) ;
lock.Lock();

}

Signal() {
sem_post(&threads_to_wakeup) ;

}

11

monitors with semaphores: cvs (attempt 1)

condition variables are more challenging

start with only wait/signal:

sem_t threads_to_wakeup; // initially 0
Wait(Lock lock) {
lock.Unlock();
sem_wait(&threads_to_wakeup) ;
lock.Lock();

}

Signal() {
sem_post(&threads_to_wakeup) ;

}

annoying: signal wakes up non-waiting threads (in the far future)

11

monitors with semaphores: cvs (attempt 2)

condition variables are more challenging

start with only wait/signal:

sem_t private_lock; // initially 1

int num_waiters;

sem_t threads_to_wakeup; // initially 0

Wait(Lock lock) {
sem_wait(&private_lock);
++num_waiters;
sem_post(&private_lock);
lock.Unlock();
sem_wait(&threads_to_wakeup);
lock.Lock();

Signal() {
sem_wait(&private_lock);
if (num_waiters > 0) {
sem_post (&threads_to_wakeup) ;
--num_waiters;
}
sem_post(&private_lock);

}

12

monitors with semaphores: cvs (attempt 2)

condition variables are more challenging

start with only wait/signal:

sem_t private_lock; // initially 1
int num_waiters;
sem_t threads_to_wakeup; // initially 0

Wait(Lock lock) { Signal() {
sem_wait(&private_lock); sem_wait(&private_lock);
++num_waiters; if (num_waiters > 0) {
sem_post(&private_lock); sem_post (&threads_to_wakeup) ;
lock.Unlock(); --num_waiters;
sem_wait(&threads_to_wakeup); }
lock.Lock(); sem_post(&private_lock);

} }

but what if we want to gaurentee threads woken up in order?

12

monitors with semaphores: cvs (attempt 3)

if we want to make sure threads woken up in order

ThreadSafeQueue<sem_t> waiters;
Wait(Lock lock) {
sem_t private_semaphore;
... /* init semaphore
with count 0 */ Signal() {
waiters.Enqueue (&semaphore) ; sem_t *next = waiters.DequeueOrNull();
lock.Unlock(); if (next != NULL) {
sem_post(private_semaphore); sem_post(next);
lock.Lock(); }

} }

monitors with semaphores: cvs (attempt 3)

if we want to make sure threads woken up in order

ThreadSafeQueue<sem_t> waiters;
Wait(Lock lock) {
sem_t private_semaphore;
... /* init semaphore
with count 0 */ Signal() {
waiters.Enqueue (&semaphore) ; sem_t *next = waiters.DequeueOrNull();
lock.Unlock(); if (next != NULL) {

sem_post(private_semaphore); sem_post(next);
lock.Lock(); }

} }

(but now implement queue with semaphores...)

13

reader/writer problem

some shared data

only one thread modifying (read-+write) at a time

read-only access from multiple threads is safe

14

reader/writer problem

some shared data
only one thread modifying (read-+write) at a time

read-only access from multiple threads is safe

could use lock — but doesn’t allow multiple readers

14

reader /writer locks

abstraction: lock that distinguishes readers/writers

operations:
read lock: wait until no writers
read unlock: stop being registered as reader
write lock: wait until no readers and no writers
write unlock: stop being registered as writer

15

reader /writer locks

abstraction: lock that distinguishes readers/writers

operations:
read lock: wait until no writers
read unlock: stop being registered as reader
write lock: wait until no readers and no writers
write unlock: stop being registered as writer

15

pthread rwlocks

pthread_rwlock_t rwlock;
pthread_rwlock_init(&rwlock, NULL /* attributes */);

pthread_rwlock_rdlock(&rwlock) ;
.. /* read shared data */
pthread rwlock_unlock (&rwlock) ;

pthread_rwlock_wrlock (&rwlock) ;

.. /* read+write shared data */
pthread rwlock_unlock (&rwlock) ;

é%ﬁread_rwlock_destroy(&rwlock);

16

rwlocks with monitors (attempt 1)

lock to protect shared state

17

rwlocks with monitors (attempt 1)

mutex_t lock;
unsigned int readers, writers;

state: number of active readers, writers

17

rwlocks with monitors (attempt 1)

mutex_t lock;
unsigned int readers, writers;

* condition, signal when writers becomes 0 */
cond_t ok_to_read_cv;

* condition, signal when readers + writers becomes 0 *
cond_t ok_to_write_cv;

conditions to wait for (no readers or writers, no writers)

17

rwlocks with monitors (attempt 1)

mutex_t lock;

unsigned int readers, writers;
/* condition, signal when writers becomes 0 */
cond_t ok_to_read_cv;
/* condition, signal when readers + writers becomes 0 */
cond_t ok_to_write_cv;

}

ReadLock () {

mutex_lock(&lock) ;

while (writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}

++readers;

mutex_unlock (&lock) ;

ReadUnlock() {

mutex_lock(&lock) ;
--readers;
if (readers == 0) {
cond_signal (&ok_to_write_cv);

I

I

WriteLock() {

WriteUnlock() {

mutex_lock(&lock);

while (readers + writers != 0) {
cond_wait(&ok_to_write_cv);

3

++writers;

mutex_unlock (&lock) ;

mutex_lock(&lock) ;

--writers;
cond_signal(&ok_to_write_cv);
cond_broadcast (&ok_to_read_cv);
mutex_unlock(&lock) ;

}

mutex_unlock (&lock) ;

raadecact wialcaun Al randare
L4 A% A>1® A" vvur\\.ur} aTr T eausTyg

when no writers

17

rwlocks with monitors (attempt 1)

mutex_t lock;

unsigned int readers, writers;

/* condition, signal when writers becomes 0 */

cond_t ok_to_read_cv;

/* condition, signal when readers + writers becomes 0 */
cond_t ok_to_write_cv;

ReadLock() { WriteLock() {
mutex_lock(&lock) ; mutex_lock(&lock) ;
while (writers != 0) { while (readers + writers != 0) {
cond_wait(&ok_to_read_cv, &lock); cond_wait(&ok_to_write_cv);
}
t+readers; ++writers;
mutex_unlock(&lock); mutex_unlock(&lock);
} }
ReadUnlock() { WriteUnlock() {
mutex_lock(&lock) ; mutex_lock(&lock) ;
--readers; --writers;
if (readers == 0) { cond_signal(&ok_to_write_cv);
cond_signal(&ok_to_write_cv); cond_broadcast (&ok_to_read_cv);
} mutex_unlock(&lock);
mutex_unlock(&lock) ; }

Wakeup a single writer when no readers or writers

17

rwlocks with monitors

mutex_t lock;
unsigned int readers, writers;

(attempt 1)

/* condition, signal when writers becomes 0 */

cond_t ok_to_read_cv;

/* condition, signal when readers + writers becomes 0 */

cond_t ok_to_write_cv;
ReadLock() {
mutex_lock(&lock) ;
while (writers != 0) {
cond_wait(&ok_to_read_cv, &lock);
1

t+readers;
mutex_unlock(&lock);
} }

ReadUnlock() {
mutex_lock(&lock) ;
--readers;
if (readers 0) {
cond_signal(&ok_to_write_cv);
}

mutex_unlock (&lock) ; }

WriteLock() {

mutex_lock(&lock) ;
while (readers + writers != 0) {
cond_wait(&ok_to_write_cv);

++writers;
mutex_unlock(&lock);

WriteUnlock() {

mutex_lock(&lock) ;

--writers;

cond_signal (&ok_to_write_cv);
cond_broadcast (&ok_to_read_cv);
mutex_unlock(&lock) ;

broblem: wakeup readers first or writer first?

this solution: wake them all up and they fight! inefficient! 17

reader /writer-priority

policy question: writers first or readers first?

writers-first: no readers go when writer waiting
readers-first: no writers go when reader waiting

previous implementation: whatever randomly happens

writers signalled first, maybe gets lock first?
..but non-determinstic in pthreads

can make explicit decision

18

writer-priority (1)

mutex_t lock; cond_t ok_to_read_cv; cond_t ok_to_write_cv;
int readers = 0, writers = 0;
int waiting_writers = 0;

ReadLock() { WriteLock() {
mutex_lock(&lock) ; mutex_lock(&lock) ;
while (writers != 0 ++waiting_writers;
&& waiting_writers != 0) { while (readers + writers != 0) {
cond_wait(&ok_to_read_cv, &lock); cond_wait(&ok_to_write_cv, &lock);
}
++readers; --waiting_writers;
mutex_unlock(&lock); ++writers;
} mutex_unlock (&lock) ;
}
ReadUnlock() {
mutex_lock(&lock) ; WriteUnlock() {
--readers; mutex_lock(&lock) ;
if (readers == 0) { --writers;
cond_signal(&ok_to_write_cv); if (waiting_writers != 0) {
} cond_signal(&ok_to_write_cv);
mutex_unlock(&lock) ; } else {
} cond_broadcast (&ok_to_read_cv);
}
mutex_unlock(&lock) ;
}

19

writer-priority (1)

mutex_t lock; cond_t ok_to_read_cv; cond_t ok_to_write_cv;
int readers = 0, writers = 0;
int waiting_writers = 0;

ReadLock() { WriteLock() {
mutex_lock(&lock) ; mutex_lock(&lock) ;
while (writers != 0 ++waiting_writers;
&& waiting_writers != 0) { while (readers + writers != 0) {
cond_wait(&ok_to_read_cv, &lock); cond_wait(&ok_to_write_cv, &lock);
}
++readers; --waiting_writers;
mutex_unlock(&lock) ; ++writers;
} mutex_unlock (&lock) ;
}
ReadUnlock() {
mutex_lock(&lock) ; WriteUnlock() {
--readers; mutex_lock(&lock) ;
if (readers == 0) { --writers;
cond_signal(&ok_to_write_cv); if (waiting_writers != 0) {
} cond_signal(&ok_to_write_cv);
mutex_unlock(&lock); } else {
} cond_broadcast (&ok_to_read_cv);
}
mutex_unlock(&lock) ;
}

19

writer-priority (1)

mutex_t lock; cond_t ok_to_read_cv; cond_t ok_to_write_cv;
int readers = 0, writers = 0;
int waiting_writers = 0;

ReadLock() { WriteLock() {
mutex_lock(&lock) ; mutex_lock(&lock) ;
while (writers != 0 ++waiting_writers;
&& waiting_writers != 0) { while (readers + writers != 0) {
cond_wait(&ok_to_read_cv, &lock); cond_wait(&ok_to_write_cv, &lock);
}
++readers; --waiting_writers;
mutex_unlock(&lock); ++writers;
} mutex_unlock (&lock) ;
}
ReadUnlock() {
mutex_lock(&lock) ; WriteUnlock() {
--readers; mutex_lock(&lock) ;
if (readers == 0) { --writers;
cond_signal(&ok_to_write_cv); if (waiting_writers != 0) {
} cond_signal(&ok_to_write_cv);
mutex_unlock(&lock) ; } else {
} cond_broadcast (&ok_to_read_cv);
}
mutex_unlock(&lock) ;
}

19

reader-priority (1)

int waiting_readers = 0;
ReadLock() {
mutex_lock (&lock);
++waiting_readers;
while (writers != 0) {

}

--waiting_readers;

++readers;

mutex_unlock(&lock) ;
}

ReadUnlock() {

cond_wait(&ok_to_read_cv, &lock);

if (waiting_readers == 0) {
cond_signal(&ok_to_write_cv);
}

}

WriteLock() {

mutex_lock (&lock) ;
while (waiting_readers +
readers + writers != 0) {
cond_wait(&ok_to_write_cv);

++writers;
mutex_unlock (&lock) ;

WriteUnlock() {

mutex_lock(&lock) ;

--writers;

if (waiting_readers == 0) {
cond_signal(&ok_to_write_cv);

} else {

cond_broadcast (&ok_to_read_cv);

}
mutex_unlock (&lock) ;

20

reader-priority (1)

int waiting_readers = 0;
ReadLock() {
mutex_lock (&lock);
++waiting_readers;
while (writers != 0) {

}

--waiting_readers;

++readers;

mutex_unlock(&lock) ;
}

ReadUnlock() {

cond_wait(&ok_to_read_cv, &lock);

if (waiting_readers == 0) {
cond_signal(&ok_to_write_cv);
}
}

WriteLock() {

mutex_lock (&lock) ;
while (waiting_readers +
readers + writers != 0) {
cond_wait(&ok_to_write_cv);

++writers;
mutex_unlock (&lock) ;

WriteUnlock() {

mutex_lock(&lock) ;

--writers;

if (waiting_readers == 0) {
cond_signal(&ok_to_write_cv);

} else {
cond_broadcast (&ok_to_read_cv);

}

mutex_unlock (&lock) ;

20

choosing orderings?

can use monitors to implement lots of lock policies

want X to go first/last — add extra variables
(number of waiters, even lists of items, etc.)

need way to write condition “you can go now"
e.g. writer-priority: readers can go if no writer waiting

21

simulation of reader/write lock
writer-priority version

W = writers, R = readers, WW = waiting_ writers

reader 1 reader 2 writer 1 reader 3

oD

O]

22

simulation of reader/write lock
writer-priority version

W = writers, R = readers, WW = waiting_ writers

reader 1 reader 2 writer 1 reader 3

oD

O]

22

simulation of reader/write lock
writer-priority version

W = writers, R = readers, WW = waiting_ writers

reader 1 reader 2 writer 1 reader 3 W R WW
0 0 0
[ReadLock 0] 1 0]

mutex_lock(&lock) ;

while (writers != 0 && waiting_writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}

++readers;

mutex_unlock (&lock) ;

22

simulation of reader/write lock

writer-priority version

W = writers, R = readers, WW = waiting_ writers

reader 1 reader 2 writer 1 reader 3 W R W
0 0 0

Readlock 0] 1 0]

(reading) ReadLock \ 0] 2 0]

22

simulation of reader/write lock

writer-priority version

W = writers, R = readers, WW = waiting_ writers

reader 1 reader 2 writer 1 reader 3 W R WWwW
0 0 0
ReadLock 0] 1 0
(reading) ReadlLock 0] 2 0
(reading) (reading) WriteLock wait | 0 2 1

|

}

mutex_lock(&lock) ;

++waiting_writers;

while (readers + writers != 0) {
cond_wait(&ok_to_write_cv, &lock);

22

simulation of reader/write lock

writer-priority version

W = writers, R = readers, WW = waiting_ writers

reader 1 reader 2 writer 1 reader 3 W R WWwW
0 0 0
ReadLock 0 1 0
(reading) ReadlLock 0] 2 0
(reading) (reading) WriteLock wait 0] 2 1
(reading) (reading) WriteLock wait |ReadLock wait |O 2 1

22

simulation of reader/write lock

writer-priority version

W = writers, R = readers, WW = waiting_ writers

reader 1 reader 2 writer 1 reader 3 W R WWwW
0 0 0
ReadLock 0] 1 0
(reading) ReadlLock 0] 2 0
(reading) (reading) WriteLock wait 0] 2 1
(reading) (read| mutex_lock(&lock); |wait |ReadLock wait |0 2 1
ReadUnlock e ;;riiizzzf,s --) |wait |[ReadlLockwait |0 1 1

22

simulation of reader/write lock

writer-priority version

W = writers, R = readers, WW = waiting_ writers

reader 1 reader 2 writer 1 reader 3 W R WWwW
0] 0] 0]
ReadLock 0] 1 0]
(reading) ReadLock 0 2 0
(reading) (reading) WriteLock wait 0 2 1
(reading) (reading) Writet—! b Dol aal a0 2 1
ReadUnlock (reading) Write Tgtggalgg?(&lock); 1 1
ReadUnlock = if (readers == 0) 0 1

cond_signal(&ok_to_write_cv)
mutex_unlock (&lock) ;

22

simulation of reader/write lock

writer-priority version

W = writers, R = readers, WW = waiting_ writers

reader 1 reader 2 writer 1 reader 3 W R WWwW
(0] 0] 0
Readlock while (readers + writers != 0) { 0 1 0
(reading) Read cond_wait(&ok_to_write_cv, &lock); 0 2 0
(reading) (rea 1'—wa‘i't'ing_wr‘i‘cers; ++writers; (0] 2 1
(reading) (rea mutex_unlock(&lock); it @ 2 1
ReadUnlock (reading) WriteLc\ [k wait |[ReadLock wait |[@ 1 1
ReadUnlock WriteLo\Ek wait |ReadLock wait |0 0] 1
WritelLock ReadlLock wait |1 0] 0]

22

simulation of reader/write lock

writer-priority version

W = writers, R = readers, WW = waiting_ writers

reader 1 reader 2 writer 1 reader 3 W R WWwW
(0] 0] 0
ReadlLock 0 1 0
(reading) ReadlLock 0] 2 0
(reading) (reading) WriteLock wait 0] 2 1
(reading) (reading) WriteLock wait |ReadLock wait |O 2 1
ReadUnlock (reading) WriteLock wait |ReadLock wait |[@ 1 1
ReadUnlock WritelLock wait |ReadLock wait [0 0 1
WriteLock ReadlLock wait |1 0 0
(read+writing) |ReadLock wait |1 0] 0

22

simulation of reader/write lock

writer-priority version

W = writers, R = readers, WW = waiting_ writers

reader 1 reader 2 writer 1 reader 3 W R WWwW
(0] 0] 0
ReadlLock 0 1 0
(reehins) Rzl mutex_loclk(&lock); 0 2 0
(reading) (read] if (waiting_writers != @) { 0 2 1
(reading) (read) 2222_?gnal(&ok_to_wr'lte_cv); vait |O 2 1
ReadUnlock (readl cond_broadcast(&ok_to_read_cv); pait |0 1 1
Readur } vait |[O 0] 1
Wr-iteLc\ [k ReadlLock wait |1 0] 0]
(read+w\f‘|t1’ ng) |[ReadLock wait |1 0] 0
WriteUnlock ReadLock wait |0 0] 0]

22

simulation of reader/write lock

writer-priority version

W = writers, R = readers, WW = waiting_ writers

reader 1 reader 2 writer 1 reader 3 W R WW
(0] 0] 0
ReadlLock 0 1 0
(reading) ReadlLock \ 0] 2 0
(reading) (reading) while (writers != 0 &% waiting_writers != @) {
(reading) (reading) cond_wait(&ok_to_read_cv, &lock);
ReadUnlock (reading) 1}:+readers; :
ReadUnlock mutex_unlock(&lock) ;
WritelLock ReadLod lwa'it 1 0] 0]
(read+writing) ReadLoc\Lwa'it 1 0] 0
WriteUnlock ReadLocV< wait |0 0 0
ReadlLock 0 1 0

22

simulation of reader/write lock

writer-priority version

W = writers, R = readers, WW = waiting_ writers

reader 1 reader 2 writer 1 reader 3 W R WWwW
(0] 0] 0
ReadlLock 0 1 0
(reading) ReadlLock 0] 2 0
(reading) (reading) WriteLock wait 0] 2 1
(reading) (reading) WriteLock wait |ReadLock wait |O 2 1
ReadUnlock (reading) WriteLock wait |ReadLock wait |[@ 1 1
ReadUnlock WritelLock wait |ReadLock wait [0 0 1
WriteLock ReadlLock wait |1 0 0
(read+writing) |ReadLock wait |1 0] 0
WriteUnlock ReadLock wait |0 0] 0]
ReadlLock 0 1 0

22

rwlock exercise

suppose there are multiple waiting writers

which one gets waken up first?
whichever gets signal'd or gets lock first

could instead keep in order they started waiting

exercise: what extra information should we track?
hint: we might need an array

mutex_t lock; cond_t ok_to_read_cv, ok_to_write_cv;
int readers, writers, waiting_writers;

23

rwlock exercise solution?

list of waiting writes?

struct WaitingWriter {
cond_t cv;
bool ready;

s

Queue<WaitingWriter*> waiting_writers;
WriteLock(...) {

%%.(need to wait) {
WaitingWriter self;
self.ready = false;

Wﬁ%le(!self.ready) {
pthread_cond_wait(&self.cv, &lock);
}

}

24

rwlock exercise solution?

dedicated writing thread with queue
(DoWrite~Produce; WritingThread~Consume)

ThreadSafeQueue<WritingTask*> waiting_writes;
WritingThread() {
while (true) {
WritingTask* task = waiting_writer.Dequeue();
WriteLock();
DoWriteTask(task);
task.done = true;
cond_broadcast(&task.cv);
}
}
DoWrite(task) {
// instead of WrtteLock(), DoWriteTask(...); WriteUnlock()
WritingTask task =
waiting_writes. Enqueue(&task),
while (!task.done) { cond_wait(&task.cv); }

the one-way bridge

26

the one-way bridge

26

the one-way bridge

26

the one-way bridge

26

	monitors continued
	previously: unbounded producer/consumer
	bounded producer/consumer with monitors
	general monitor pattern

	monitor exercise
	relating monitors and semaphores
	implementing semaphores with monitors
	implementing monitors with semaphores

	reader-writer
	reader/writer problem
	reader/writer locks
	implementing rwlocks with monitors
	reader/writer lock walkthrough
	reader/writer lock extensions???

	deadlock examples
	a one-way bridge

