
Monitors con’t / Reader/Writer Locks /
Deadlock (start)

1



Changelog

Changes made in this version not seen in first lecture:
2 October: bounded buffer producer/consumer: condition should have
been buffer.full, not !buffer.full
2 October: bounded buffer producer/consumer: signalling only when
buffer.size = capacity - 1 doesn’t work correctly
2 October: writer-priority reader/writer lock: condition for signaling
writer should have been waiting_writers != 0
2 October: simulation of reader/writer lock: correct readers being
decremented too early
2 October: simulation of reader/writer lock: condition for signaling
writer should have been waiting_writers != 0
2 October: rwlock exercise solution?: add “if (need to wait)”
2 October: rwlock exercise solution?: remove extraneous writer IDs
2 October: monitor exercise: make entire code fit on slide
2 October: monitors with semaphore: clarify on slide that this is to
guarentee order

1



last time

barriers — wait for everyone else
counting semaphores

track number of something
wait if not any

monitors: mutex + condition variables
condition variable: wait and signal/broadcast

pattern: loop of waiting (spurious wakeup)
associated mutex lock: check if need to wait safely

producer/consumer solution with semaphores/monitors
producer: add to queue, wait if full
consumer: remove from queue, wait if empty

2



life HW

life HW is out

checkpoint (Friday): use POSIX barriers

final (week from Friday): write your own barriers

questions?

3



unbounded buffer producer/consumer

pthread_mutex_t lock;
pthread_cond_t data_ready;
UnboundedQueue buffer;

Produce(item) {
pthread_mutex_lock(&lock);
buffer.enqueue(item);
pthread_cond_signal(&data_ready);
pthread_mutex_unlock(&lock);

}

Consume() {
pthread_mutex_lock(&lock);
while (buffer.empty()) {

pthread_cond_wait(&data_ready, &lock);
}
item = buffer.dequeue();
pthread_mutex_unlock(&lock);
return item;

}

rule: never touch buffer
without acquiring lock

otherwise: what if two threads
simulatenously en/dequeue?
(both use same array/linked list entry?)
(both reallocate array?)

check if empty
if so, dequeue

okay because have lock

other threads cannot dequeue here

wake one Consume thread
if any are waiting

0 iterations: Produce() called before Consume()
1 iteration: Produce() signalled, probably
2+ iterations: spurious wakeup or …?

Thread 1 Thread 2
Produce()
…lock
…enqueue
…signal
…unlock

Consume()
…lock
…empty? no
…dequeue
…unlock
return

Thread 1 Thread 2
Consume()
…lock
…empty? yes
…unlock/start wait

Produce()
…lock
…enqueue
…signal stop wait
…unlock lock

…empty? no
…dequeue
…unlock
return

waiting for
data_ready

Thread 1 Thread 2 Thread 3
Consume()
…lock
…empty? yes
…unlock/start wait

Produce()
…lock Consume()
…enqueue
…signal stop wait
…unlock lock

…empty? no
…dequeue
…unlock

…lock return
…empty? yes
…unlock/start wait

waiting for
data_ready

waiting for
lock

waiting for
lock

in pthreads: signalled thread not
gaurenteed to hold lock next

alternate design:
signalled thread gets lock next

called “Hoare scheduling”
not done by pthreads, Java, …

4



unbounded buffer producer/consumer

pthread_mutex_t lock;
pthread_cond_t data_ready;
UnboundedQueue buffer;

Produce(item) {
pthread_mutex_lock(&lock);
buffer.enqueue(item);
pthread_cond_signal(&data_ready);
pthread_mutex_unlock(&lock);

}

Consume() {
pthread_mutex_lock(&lock);
while (buffer.empty()) {

pthread_cond_wait(&data_ready, &lock);
}
item = buffer.dequeue();
pthread_mutex_unlock(&lock);
return item;

}

rule: never touch buffer
without acquiring lock

otherwise: what if two threads
simulatenously en/dequeue?
(both use same array/linked list entry?)
(both reallocate array?)

check if empty
if so, dequeue

okay because have lock

other threads cannot dequeue here

wake one Consume thread
if any are waiting

0 iterations: Produce() called before Consume()
1 iteration: Produce() signalled, probably
2+ iterations: spurious wakeup or …?

Thread 1 Thread 2
Produce()
…lock
…enqueue
…signal
…unlock

Consume()
…lock
…empty? no
…dequeue
…unlock
return

Thread 1 Thread 2
Consume()
…lock
…empty? yes
…unlock/start wait

Produce()
…lock
…enqueue
…signal stop wait
…unlock lock

…empty? no
…dequeue
…unlock
return

waiting for
data_ready

Thread 1 Thread 2 Thread 3
Consume()
…lock
…empty? yes
…unlock/start wait

Produce()
…lock Consume()
…enqueue
…signal stop wait
…unlock lock

…empty? no
…dequeue
…unlock

…lock return
…empty? yes
…unlock/start wait

waiting for
data_ready

waiting for
lock

waiting for
lock

in pthreads: signalled thread not
gaurenteed to hold lock next

alternate design:
signalled thread gets lock next

called “Hoare scheduling”
not done by pthreads, Java, …

4



unbounded buffer producer/consumer

pthread_mutex_t lock;
pthread_cond_t data_ready;
UnboundedQueue buffer;

Produce(item) {
pthread_mutex_lock(&lock);
buffer.enqueue(item);
pthread_cond_signal(&data_ready);
pthread_mutex_unlock(&lock);

}

Consume() {
pthread_mutex_lock(&lock);
while (buffer.empty()) {

pthread_cond_wait(&data_ready, &lock);
}
item = buffer.dequeue();
pthread_mutex_unlock(&lock);
return item;

}

rule: never touch buffer
without acquiring lock

otherwise: what if two threads
simulatenously en/dequeue?
(both use same array/linked list entry?)
(both reallocate array?)

check if empty
if so, dequeue

okay because have lock

other threads cannot dequeue here

wake one Consume thread
if any are waiting

0 iterations: Produce() called before Consume()
1 iteration: Produce() signalled, probably
2+ iterations: spurious wakeup or …?

Thread 1 Thread 2
Produce()
…lock
…enqueue
…signal
…unlock

Consume()
…lock
…empty? no
…dequeue
…unlock
return

Thread 1 Thread 2
Consume()
…lock
…empty? yes
…unlock/start wait

Produce()
…lock
…enqueue
…signal stop wait
…unlock lock

…empty? no
…dequeue
…unlock
return

waiting for
data_ready

Thread 1 Thread 2 Thread 3
Consume()
…lock
…empty? yes
…unlock/start wait

Produce()
…lock Consume()
…enqueue
…signal stop wait
…unlock lock

…empty? no
…dequeue
…unlock

…lock return
…empty? yes
…unlock/start wait

waiting for
data_ready

waiting for
lock

waiting for
lock

in pthreads: signalled thread not
gaurenteed to hold lock next

alternate design:
signalled thread gets lock next

called “Hoare scheduling”
not done by pthreads, Java, …

4



unbounded buffer producer/consumer

pthread_mutex_t lock;
pthread_cond_t data_ready;
UnboundedQueue buffer;

Produce(item) {
pthread_mutex_lock(&lock);
buffer.enqueue(item);
pthread_cond_signal(&data_ready);
pthread_mutex_unlock(&lock);

}

Consume() {
pthread_mutex_lock(&lock);
while (buffer.empty()) {

pthread_cond_wait(&data_ready, &lock);
}
item = buffer.dequeue();
pthread_mutex_unlock(&lock);
return item;

}

rule: never touch buffer
without acquiring lock

otherwise: what if two threads
simulatenously en/dequeue?
(both use same array/linked list entry?)
(both reallocate array?)

check if empty
if so, dequeue

okay because have lock

other threads cannot dequeue here

wake one Consume thread
if any are waiting

0 iterations: Produce() called before Consume()
1 iteration: Produce() signalled, probably
2+ iterations: spurious wakeup or …?

Thread 1 Thread 2
Produce()
…lock
…enqueue
…signal
…unlock

Consume()
…lock
…empty? no
…dequeue
…unlock
return

Thread 1 Thread 2
Consume()
…lock
…empty? yes
…unlock/start wait

Produce()
…lock
…enqueue
…signal stop wait
…unlock lock

…empty? no
…dequeue
…unlock
return

waiting for
data_ready

Thread 1 Thread 2 Thread 3
Consume()
…lock
…empty? yes
…unlock/start wait

Produce()
…lock Consume()
…enqueue
…signal stop wait
…unlock lock

…empty? no
…dequeue
…unlock

…lock return
…empty? yes
…unlock/start wait

waiting for
data_ready

waiting for
lock

waiting for
lock

in pthreads: signalled thread not
gaurenteed to hold lock next

alternate design:
signalled thread gets lock next

called “Hoare scheduling”
not done by pthreads, Java, …

4



unbounded buffer producer/consumer

pthread_mutex_t lock;
pthread_cond_t data_ready;
UnboundedQueue buffer;

Produce(item) {
pthread_mutex_lock(&lock);
buffer.enqueue(item);
pthread_cond_signal(&data_ready);
pthread_mutex_unlock(&lock);

}

Consume() {
pthread_mutex_lock(&lock);
while (buffer.empty()) {

pthread_cond_wait(&data_ready, &lock);
}
item = buffer.dequeue();
pthread_mutex_unlock(&lock);
return item;

}

rule: never touch buffer
without acquiring lock

otherwise: what if two threads
simulatenously en/dequeue?
(both use same array/linked list entry?)
(both reallocate array?)

check if empty
if so, dequeue

okay because have lock

other threads cannot dequeue here

wake one Consume thread
if any are waiting

0 iterations: Produce() called before Consume()
1 iteration: Produce() signalled, probably
2+ iterations: spurious wakeup or …?

Thread 1 Thread 2
Produce()
…lock
…enqueue
…signal
…unlock

Consume()
…lock
…empty? no
…dequeue
…unlock
return

Thread 1 Thread 2
Consume()
…lock
…empty? yes
…unlock/start wait

Produce()
…lock
…enqueue
…signal stop wait
…unlock lock

…empty? no
…dequeue
…unlock
return

waiting for
data_ready

Thread 1 Thread 2 Thread 3
Consume()
…lock
…empty? yes
…unlock/start wait

Produce()
…lock Consume()
…enqueue
…signal stop wait
…unlock lock

…empty? no
…dequeue
…unlock

…lock return
…empty? yes
…unlock/start wait

waiting for
data_ready

waiting for
lock

waiting for
lock

in pthreads: signalled thread not
gaurenteed to hold lock next

alternate design:
signalled thread gets lock next

called “Hoare scheduling”
not done by pthreads, Java, …

4



unbounded buffer producer/consumer

pthread_mutex_t lock;
pthread_cond_t data_ready;
UnboundedQueue buffer;

Produce(item) {
pthread_mutex_lock(&lock);
buffer.enqueue(item);
pthread_cond_signal(&data_ready);
pthread_mutex_unlock(&lock);

}

Consume() {
pthread_mutex_lock(&lock);
while (buffer.empty()) {

pthread_cond_wait(&data_ready, &lock);
}
item = buffer.dequeue();
pthread_mutex_unlock(&lock);
return item;

}

rule: never touch buffer
without acquiring lock

otherwise: what if two threads
simulatenously en/dequeue?
(both use same array/linked list entry?)
(both reallocate array?)

check if empty
if so, dequeue

okay because have lock

other threads cannot dequeue here

wake one Consume thread
if any are waiting

0 iterations: Produce() called before Consume()
1 iteration: Produce() signalled, probably
2+ iterations: spurious wakeup or …?

Thread 1 Thread 2
Produce()
…lock
…enqueue
…signal
…unlock

Consume()
…lock
…empty? no
…dequeue
…unlock
return

Thread 1 Thread 2
Consume()
…lock
…empty? yes
…unlock/start wait

Produce()
…lock
…enqueue
…signal stop wait
…unlock lock

…empty? no
…dequeue
…unlock
return

waiting for
data_ready

Thread 1 Thread 2 Thread 3
Consume()
…lock
…empty? yes
…unlock/start wait

Produce()
…lock Consume()
…enqueue
…signal stop wait
…unlock lock

…empty? no
…dequeue
…unlock

…lock return
…empty? yes
…unlock/start wait

waiting for
data_ready

waiting for
lock

waiting for
lock

in pthreads: signalled thread not
gaurenteed to hold lock next

alternate design:
signalled thread gets lock next

called “Hoare scheduling”
not done by pthreads, Java, …

4



unbounded buffer producer/consumer

pthread_mutex_t lock;
pthread_cond_t data_ready;
UnboundedQueue buffer;

Produce(item) {
pthread_mutex_lock(&lock);
buffer.enqueue(item);
pthread_cond_signal(&data_ready);
pthread_mutex_unlock(&lock);

}

Consume() {
pthread_mutex_lock(&lock);
while (buffer.empty()) {

pthread_cond_wait(&data_ready, &lock);
}
item = buffer.dequeue();
pthread_mutex_unlock(&lock);
return item;

}

rule: never touch buffer
without acquiring lock

otherwise: what if two threads
simulatenously en/dequeue?
(both use same array/linked list entry?)
(both reallocate array?)

check if empty
if so, dequeue

okay because have lock

other threads cannot dequeue here

wake one Consume thread
if any are waiting

0 iterations: Produce() called before Consume()
1 iteration: Produce() signalled, probably
2+ iterations: spurious wakeup or …?

Thread 1 Thread 2
Produce()
…lock
…enqueue
…signal
…unlock

Consume()
…lock
…empty? no
…dequeue
…unlock
return

Thread 1 Thread 2
Consume()
…lock
…empty? yes
…unlock/start wait

Produce()
…lock
…enqueue
…signal stop wait
…unlock lock

…empty? no
…dequeue
…unlock
return

waiting for
data_ready

Thread 1 Thread 2 Thread 3
Consume()
…lock
…empty? yes
…unlock/start wait

Produce()
…lock Consume()
…enqueue
…signal stop wait
…unlock lock

…empty? no
…dequeue
…unlock

…lock return
…empty? yes
…unlock/start wait

waiting for
data_ready

waiting for
lock

waiting for
lock

in pthreads: signalled thread not
gaurenteed to hold lock next

alternate design:
signalled thread gets lock next

called “Hoare scheduling”
not done by pthreads, Java, …

4



unbounded buffer producer/consumer

pthread_mutex_t lock;
pthread_cond_t data_ready;
UnboundedQueue buffer;

Produce(item) {
pthread_mutex_lock(&lock);
buffer.enqueue(item);
pthread_cond_signal(&data_ready);
pthread_mutex_unlock(&lock);

}

Consume() {
pthread_mutex_lock(&lock);
while (buffer.empty()) {

pthread_cond_wait(&data_ready, &lock);
}
item = buffer.dequeue();
pthread_mutex_unlock(&lock);
return item;

}

rule: never touch buffer
without acquiring lock

otherwise: what if two threads
simulatenously en/dequeue?
(both use same array/linked list entry?)
(both reallocate array?)

check if empty
if so, dequeue

okay because have lock

other threads cannot dequeue here

wake one Consume thread
if any are waiting

0 iterations: Produce() called before Consume()
1 iteration: Produce() signalled, probably
2+ iterations: spurious wakeup or …?

Thread 1 Thread 2
Produce()
…lock
…enqueue
…signal
…unlock

Consume()
…lock
…empty? no
…dequeue
…unlock
return

Thread 1 Thread 2
Consume()
…lock
…empty? yes
…unlock/start wait

Produce()
…lock
…enqueue
…signal stop wait
…unlock lock

…empty? no
…dequeue
…unlock
return

waiting for
data_ready

Thread 1 Thread 2 Thread 3
Consume()
…lock
…empty? yes
…unlock/start wait

Produce()
…lock Consume()
…enqueue
…signal stop wait
…unlock lock

…empty? no
…dequeue
…unlock

…lock return
…empty? yes
…unlock/start wait

waiting for
data_ready

waiting for
lock

waiting for
lock

in pthreads: signalled thread not
gaurenteed to hold lock next

alternate design:
signalled thread gets lock next

called “Hoare scheduling”
not done by pthreads, Java, …

4



bounded buffer producer/consumer
pthread_mutex_t lock;
pthread_cond_t data_ready; pthread_cond_t space_ready;
BoundedQueue buffer;

Produce(item) {
pthread_mutex_lock(&lock);
while (buffer.full()) { pthread_cond_wait(&space_ready, &lock); }
buffer.enqueue(item);
pthread_cond_signal(&data_ready);
pthread_mutex_unlock(&lock);

}

Consume() {
pthread_mutex_lock(&lock);
while (buffer.empty()) {

pthread_cond_wait(&data_ready, &lock);
}
item = buffer.dequeue();
pthread_cond_signal(&space_ready);
pthread_mutex_unlock(&lock);
return item;

}

correct (but slow?) to replace with:
pthread_cond_broadcast(&space_ready);

(just more “spurious wakeups”)

correct but slow to replace
data_ready and space_ready
with ‘combined’ condvar ready
and use broadcast
(just more “spurious wakeups”)

5



bounded buffer producer/consumer
pthread_mutex_t lock;
pthread_cond_t data_ready; pthread_cond_t space_ready;
BoundedQueue buffer;

Produce(item) {
pthread_mutex_lock(&lock);
while (buffer.full()) { pthread_cond_wait(&space_ready, &lock); }
buffer.enqueue(item);
pthread_cond_signal(&data_ready);
pthread_mutex_unlock(&lock);

}

Consume() {
pthread_mutex_lock(&lock);
while (buffer.empty()) {

pthread_cond_wait(&data_ready, &lock);
}
item = buffer.dequeue();
pthread_cond_signal(&space_ready);
pthread_mutex_unlock(&lock);
return item;

}

correct (but slow?) to replace with:
pthread_cond_broadcast(&space_ready);

(just more “spurious wakeups”)

correct but slow to replace
data_ready and space_ready
with ‘combined’ condvar ready
and use broadcast
(just more “spurious wakeups”)

5



bounded buffer producer/consumer
pthread_mutex_t lock;
pthread_cond_t data_ready; pthread_cond_t space_ready;
BoundedQueue buffer;

Produce(item) {
pthread_mutex_lock(&lock);
while (buffer.full()) { pthread_cond_wait(&space_ready, &lock); }
buffer.enqueue(item);
pthread_cond_signal(&data_ready);
pthread_mutex_unlock(&lock);

}

Consume() {
pthread_mutex_lock(&lock);
while (buffer.empty()) {

pthread_cond_wait(&data_ready, &lock);
}
item = buffer.dequeue();
pthread_cond_signal(&space_ready);
pthread_mutex_unlock(&lock);
return item;

}

correct (but slow?) to replace with:
pthread_cond_broadcast(&space_ready);

(just more “spurious wakeups”)

correct but slow to replace
data_ready and space_ready
with ‘combined’ condvar ready
and use broadcast
(just more “spurious wakeups”)

5



bounded buffer producer/consumer
pthread_mutex_t lock;
pthread_cond_t data_ready; pthread_cond_t space_ready;
BoundedQueue buffer;

Produce(item) {
pthread_mutex_lock(&lock);
while (buffer.full()) { pthread_cond_wait(&space_ready, &lock); }
buffer.enqueue(item);
pthread_cond_signal(&data_ready);
pthread_mutex_unlock(&lock);

}

Consume() {
pthread_mutex_lock(&lock);
while (buffer.empty()) {

pthread_cond_wait(&data_ready, &lock);
}
item = buffer.dequeue();
pthread_cond_signal(&space_ready);
pthread_mutex_unlock(&lock);
return item;

}

correct (but slow?) to replace with:
pthread_cond_broadcast(&space_ready);

(just more “spurious wakeups”)

correct but slow to replace
data_ready and space_ready
with ‘combined’ condvar ready
and use broadcast
(just more “spurious wakeups”)

5



monitor pattern

pthread_mutex_lock(&lock);
while (!condition A) {

pthread_cond_wait(&condvar_for_A, &lock);
}
... /* manipulate shared data, changing other conditions */
if (set condition B) {

pthread_cond_broadcast(&condvar_for_B);
/* or signal, if only one thread cares */

}
if (set condition C) {

pthread_cond_broadcast(&condvar_for_C);
/* or signal, if only one thread cares */

}
...
pthread_mutex_unlock(&lock)

6



monitors rules of thumb

never touch shared data without holding the lock
keep lock held for entire operation:

verifying condition (e.g. buffer not full) up to and including
manipulating data (e.g. adding to buffer)

create condvar for every kind of scenario waited for
always write loop calling cond_wait to wait for condition X
broadcast/signal condition variable every time you change X

correct but slow to…
broadcast when just signal would work
broadcast or signal when nothing changed
use one condvar for multiple conditions

7



monitors rules of thumb

never touch shared data without holding the lock
keep lock held for entire operation:

verifying condition (e.g. buffer not full) up to and including
manipulating data (e.g. adding to buffer)

create condvar for every kind of scenario waited for
always write loop calling cond_wait to wait for condition X
broadcast/signal condition variable every time you change X
correct but slow to…

broadcast when just signal would work
broadcast or signal when nothing changed
use one condvar for multiple conditions

7



monitor exercise (1)

suppose we want producer/consumer, but…
but change to ConsumeTwo() which returns a pair of values

and don’t want two calls to ConsumeTwo() to wait…
with each getting one item

what should we change below?
pthread_mutex_t lock;
pthread_cond_t data_ready;
UnboundedQueue buffer;

Produce(item) {
pthread_mutex_lock(&lock);
buffer.enqueue(item);
pthread_cond_signal(&data_ready);
pthread_mutex_unlock(&lock);

}

Consume() {
pthread_mutex_lock(&lock);
while (buffer.empty()) {

pthread_cond_wait(&data_ready, &lock);
}
item = buffer.dequeue();
pthread_mutex_unlock(&lock);
return item;

}

8



building semaphore with monitors
pthread_mutex_t lock;
unsigned int count;
/* condition, signal when becomes count > 0 */
pthread_cond_t count_is_positive_cv;
void down() {

pthread_mutex_lock(&lock);
while (!(count > 0)) {

pthread_cond_wait(
&count_is_positive_cv,
&lock);

}
count -= 1;
pthread_mutex_unlock(&lock);

}

void up() {
pthread_mutex_lock(&lock);
count += 1;
if (count == 1) { /* became > 0 */

pthread_cond_signal(
&count_is_positive_cv

);
}
pthread_mutex_unlock(&lock);

}

lock to protect shared state

shared state: semaphore tracks a count

add cond var for each reason we wait
semaphore: wait for count to become positive (for down)

wait using condvar; broadcast/signal when condition changes

9



building semaphore with monitors
pthread_mutex_t lock;
unsigned int count;
/* condition, signal when becomes count > 0 */
pthread_cond_t count_is_positive_cv;
void down() {

pthread_mutex_lock(&lock);
while (!(count > 0)) {

pthread_cond_wait(
&count_is_positive_cv,
&lock);

}
count -= 1;
pthread_mutex_unlock(&lock);

}

void up() {
pthread_mutex_lock(&lock);
count += 1;
if (count == 1) { /* became > 0 */

pthread_cond_signal(
&count_is_positive_cv

);
}
pthread_mutex_unlock(&lock);

}

lock to protect shared state
shared state: semaphore tracks a count

add cond var for each reason we wait
semaphore: wait for count to become positive (for down)

wait using condvar; broadcast/signal when condition changes

9



building semaphore with monitors
pthread_mutex_t lock;
unsigned int count;
/* condition, signal when becomes count > 0 */
pthread_cond_t count_is_positive_cv;
void down() {

pthread_mutex_lock(&lock);
while (!(count > 0)) {

pthread_cond_wait(
&count_is_positive_cv,
&lock);

}
count -= 1;
pthread_mutex_unlock(&lock);

}

void up() {
pthread_mutex_lock(&lock);
count += 1;
if (count == 1) { /* became > 0 */

pthread_cond_signal(
&count_is_positive_cv

);
}
pthread_mutex_unlock(&lock);

}

lock to protect shared state
shared state: semaphore tracks a count

add cond var for each reason we wait
semaphore: wait for count to become positive (for down)

wait using condvar; broadcast/signal when condition changes

9



building semaphore with monitors
pthread_mutex_t lock;
unsigned int count;
/* condition, signal when becomes count > 0 */
pthread_cond_t count_is_positive_cv;
void down() {

pthread_mutex_lock(&lock);
while (!(count > 0)) {

pthread_cond_wait(
&count_is_positive_cv,
&lock);

}
count -= 1;
pthread_mutex_unlock(&lock);

}

void up() {
pthread_mutex_lock(&lock);
count += 1;
if (count == 1) { /* became > 0 */

pthread_cond_signal(
&count_is_positive_cv

);
}
pthread_mutex_unlock(&lock);

}

lock to protect shared state
shared state: semaphore tracks a count

add cond var for each reason we wait
semaphore: wait for count to become positive (for down)

wait using condvar; broadcast/signal when condition changes
9



building semaphore with monitors
pthread_mutex_t lock;
unsigned int count;
/* condition, signal when becomes count > 0 */
pthread_cond_t count_is_positive_cv;
void down() {

pthread_mutex_lock(&lock);
while (!(count > 0)) {

pthread_cond_wait(
&count_is_positive_cv,
&lock);

}
count -= 1;
pthread_mutex_unlock(&lock);

}

void up() {
pthread_mutex_lock(&lock);
count += 1;
if (count == 1) { /* became > 0 */

pthread_cond_signal(
&count_is_positive_cv

);
}
pthread_mutex_unlock(&lock);

}

lock to protect shared state
shared state: semaphore tracks a count

add cond var for each reason we wait
semaphore: wait for count to become positive (for down)

wait using condvar; broadcast/signal when condition changes
9



monitors with semaphores: locks

sem_t semaphore; // initial value 1

Lock() {
sem_wait(&semaphore);

}

Unlock() {
sem_post(&semaphore);

}

10



monitors with semaphores: cvs (attempt 1)

condition variables are more challenging

start with only wait/signal:

sem_t threads_to_wakeup; // initially 0
Wait(Lock lock) {

lock.Unlock();
sem_wait(&threads_to_wakeup);
lock.Lock();

}
Signal() {

sem_post(&threads_to_wakeup);
}

annoying: signal wakes up non-waiting threads (in the far future)

11



monitors with semaphores: cvs (attempt 1)

condition variables are more challenging

start with only wait/signal:

sem_t threads_to_wakeup; // initially 0
Wait(Lock lock) {

lock.Unlock();
sem_wait(&threads_to_wakeup);
lock.Lock();

}
Signal() {

sem_post(&threads_to_wakeup);
}

annoying: signal wakes up non-waiting threads (in the far future)

11



monitors with semaphores: cvs (attempt 2)

condition variables are more challenging

start with only wait/signal:
sem_t private_lock; // initially 1
int num_waiters;
sem_t threads_to_wakeup; // initially 0
Wait(Lock lock) {

sem_wait(&private_lock);
++num_waiters;
sem_post(&private_lock);
lock.Unlock();
sem_wait(&threads_to_wakeup);
lock.Lock();

}

Signal() {
sem_wait(&private_lock);
if (num_waiters > 0) {

sem_post(&threads_to_wakeup);
--num_waiters;

}
sem_post(&private_lock);

}

but what if we want to gaurentee threads woken up in order?

12



monitors with semaphores: cvs (attempt 2)

condition variables are more challenging

start with only wait/signal:
sem_t private_lock; // initially 1
int num_waiters;
sem_t threads_to_wakeup; // initially 0
Wait(Lock lock) {

sem_wait(&private_lock);
++num_waiters;
sem_post(&private_lock);
lock.Unlock();
sem_wait(&threads_to_wakeup);
lock.Lock();

}

Signal() {
sem_wait(&private_lock);
if (num_waiters > 0) {

sem_post(&threads_to_wakeup);
--num_waiters;

}
sem_post(&private_lock);

}

but what if we want to gaurentee threads woken up in order?
12



monitors with semaphores: cvs (attempt 3)

if we want to make sure threads woken up in order
ThreadSafeQueue<sem_t> waiters;
Wait(Lock lock) {

sem_t private_semaphore;
... /* init semaphore

with count 0 */
waiters.Enqueue(&semaphore);
lock.Unlock();
sem_post(private_semaphore);
lock.Lock();

}

Signal() {
sem_t *next = waiters.DequeueOrNull();
if (next != NULL) {

sem_post(next);
}

}

(but now implement queue with semaphores…)

13



monitors with semaphores: cvs (attempt 3)

if we want to make sure threads woken up in order
ThreadSafeQueue<sem_t> waiters;
Wait(Lock lock) {

sem_t private_semaphore;
... /* init semaphore

with count 0 */
waiters.Enqueue(&semaphore);
lock.Unlock();
sem_post(private_semaphore);
lock.Lock();

}

Signal() {
sem_t *next = waiters.DequeueOrNull();
if (next != NULL) {

sem_post(next);
}

}

(but now implement queue with semaphores…)

13



reader/writer problem

some shared data

only one thread modifying (read+write) at a time

read-only access from multiple threads is safe

could use lock — but doesn’t allow multiple readers

14



reader/writer problem

some shared data

only one thread modifying (read+write) at a time

read-only access from multiple threads is safe

could use lock — but doesn’t allow multiple readers

14



reader/writer locks

abstraction: lock that distinguishes readers/writers

operations:
read lock: wait until no writers
read unlock: stop being registered as reader
write lock: wait until no readers and no writers
write unlock: stop being registered as writer

15



reader/writer locks

abstraction: lock that distinguishes readers/writers

operations:
read lock: wait until no writers
read unlock: stop being registered as reader
write lock: wait until no readers and no writers
write unlock: stop being registered as writer

15



pthread rwlocks

pthread_rwlock_t rwlock;
pthread_rwlock_init(&rwlock, NULL /* attributes */);
...

pthread_rwlock_rdlock(&rwlock);
... /* read shared data */
pthread_rwlock_unlock(&rwlock);

pthread_rwlock_wrlock(&rwlock);
... /* read+write shared data */
pthread_rwlock_unlock(&rwlock);

...
pthread_rwlock_destroy(&rwlock);

16



rwlocks with monitors (attempt 1)
mutex_t lock;
unsigned int readers, writers;
/* condition, signal when writers becomes 0 */
cond_t ok_to_read_cv;
/* condition, signal when readers + writers becomes 0 */
cond_t ok_to_write_cv;
ReadLock() {

mutex_lock(&lock);
while (writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

}

ReadUnlock() {
mutex_lock(&lock);
--readers;
if (readers == 0) {
cond_signal(&ok_to_write_cv);

}
mutex_unlock(&lock);

}

WriteLock() {
mutex_lock(&lock);
while (readers + writers != 0) {
cond_wait(&ok_to_write_cv);

}
++writers;
mutex_unlock(&lock);

}

WriteUnlock() {
mutex_lock(&lock);
--writers;
cond_signal(&ok_to_write_cv);
cond_broadcast(&ok_to_read_cv);
mutex_unlock(&lock);

}

lock to protect shared state
17



rwlocks with monitors (attempt 1)
mutex_t lock;
unsigned int readers, writers;
/* condition, signal when writers becomes 0 */
cond_t ok_to_read_cv;
/* condition, signal when readers + writers becomes 0 */
cond_t ok_to_write_cv;
ReadLock() {

mutex_lock(&lock);
while (writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

}

ReadUnlock() {
mutex_lock(&lock);
--readers;
if (readers == 0) {
cond_signal(&ok_to_write_cv);

}
mutex_unlock(&lock);

}

WriteLock() {
mutex_lock(&lock);
while (readers + writers != 0) {
cond_wait(&ok_to_write_cv);

}
++writers;
mutex_unlock(&lock);

}

WriteUnlock() {
mutex_lock(&lock);
--writers;
cond_signal(&ok_to_write_cv);
cond_broadcast(&ok_to_read_cv);
mutex_unlock(&lock);

}

state: number of active readers, writers
17



rwlocks with monitors (attempt 1)
mutex_t lock;
unsigned int readers, writers;
/* condition, signal when writers becomes 0 */
cond_t ok_to_read_cv;
/* condition, signal when readers + writers becomes 0 */
cond_t ok_to_write_cv;
ReadLock() {

mutex_lock(&lock);
while (writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

}

ReadUnlock() {
mutex_lock(&lock);
--readers;
if (readers == 0) {
cond_signal(&ok_to_write_cv);

}
mutex_unlock(&lock);

}

WriteLock() {
mutex_lock(&lock);
while (readers + writers != 0) {
cond_wait(&ok_to_write_cv);

}
++writers;
mutex_unlock(&lock);

}

WriteUnlock() {
mutex_lock(&lock);
--writers;
cond_signal(&ok_to_write_cv);
cond_broadcast(&ok_to_read_cv);
mutex_unlock(&lock);

}

conditions to wait for (no readers or writers, no writers)
17



rwlocks with monitors (attempt 1)
mutex_t lock;
unsigned int readers, writers;
/* condition, signal when writers becomes 0 */
cond_t ok_to_read_cv;
/* condition, signal when readers + writers becomes 0 */
cond_t ok_to_write_cv;
ReadLock() {

mutex_lock(&lock);
while (writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

}

ReadUnlock() {
mutex_lock(&lock);
--readers;
if (readers == 0) {
cond_signal(&ok_to_write_cv);

}
mutex_unlock(&lock);

}

WriteLock() {
mutex_lock(&lock);
while (readers + writers != 0) {
cond_wait(&ok_to_write_cv);

}
++writers;
mutex_unlock(&lock);

}

WriteUnlock() {
mutex_lock(&lock);
--writers;
cond_signal(&ok_to_write_cv);
cond_broadcast(&ok_to_read_cv);
mutex_unlock(&lock);

}

broadcast — wakeup all readers when no writers
17



rwlocks with monitors (attempt 1)
mutex_t lock;
unsigned int readers, writers;
/* condition, signal when writers becomes 0 */
cond_t ok_to_read_cv;
/* condition, signal when readers + writers becomes 0 */
cond_t ok_to_write_cv;
ReadLock() {

mutex_lock(&lock);
while (writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

}

ReadUnlock() {
mutex_lock(&lock);
--readers;
if (readers == 0) {
cond_signal(&ok_to_write_cv);

}
mutex_unlock(&lock);

}

WriteLock() {
mutex_lock(&lock);
while (readers + writers != 0) {

cond_wait(&ok_to_write_cv);
}
++writers;
mutex_unlock(&lock);

}

WriteUnlock() {
mutex_lock(&lock);
--writers;
cond_signal(&ok_to_write_cv);
cond_broadcast(&ok_to_read_cv);
mutex_unlock(&lock);

}

wakeup a single writer when no readers or writers
17



rwlocks with monitors (attempt 1)
mutex_t lock;
unsigned int readers, writers;
/* condition, signal when writers becomes 0 */
cond_t ok_to_read_cv;
/* condition, signal when readers + writers becomes 0 */
cond_t ok_to_write_cv;
ReadLock() {

mutex_lock(&lock);
while (writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

}

ReadUnlock() {
mutex_lock(&lock);
--readers;
if (readers == 0) {
cond_signal(&ok_to_write_cv);

}
mutex_unlock(&lock);

}

WriteLock() {
mutex_lock(&lock);
while (readers + writers != 0) {

cond_wait(&ok_to_write_cv);
}
++writers;
mutex_unlock(&lock);

}

WriteUnlock() {
mutex_lock(&lock);
--writers;
cond_signal(&ok_to_write_cv);
cond_broadcast(&ok_to_read_cv);
mutex_unlock(&lock);

}

problem: wakeup readers first or writer first?
this solution: wake them all up and they fight! inefficient! 17



reader/writer-priority

policy question: writers first or readers first?
writers-first: no readers go when writer waiting
readers-first: no writers go when reader waiting

previous implementation: whatever randomly happens
writers signalled first, maybe gets lock first?
…but non-determinstic in pthreads

can make explicit decision

18



writer-priority (1)
mutex_t lock; cond_t ok_to_read_cv; cond_t ok_to_write_cv;
int readers = 0, writers = 0;
int waiting_writers = 0;
ReadLock() {
mutex_lock(&lock);
while (writers != 0

&& waiting_writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

}

ReadUnlock() {
mutex_lock(&lock);
--readers;
if (readers == 0) {
cond_signal(&ok_to_write_cv);

}
mutex_unlock(&lock);

}

WriteLock() {
mutex_lock(&lock);
++waiting_writers;
while (readers + writers != 0) {
cond_wait(&ok_to_write_cv, &lock);

}
--waiting_writers;
++writers;
mutex_unlock(&lock);

}

WriteUnlock() {
mutex_lock(&lock);
--writers;
if (waiting_writers != 0) {
cond_signal(&ok_to_write_cv);

} else {
cond_broadcast(&ok_to_read_cv);

}
mutex_unlock(&lock);

}
19



writer-priority (1)
mutex_t lock; cond_t ok_to_read_cv; cond_t ok_to_write_cv;
int readers = 0, writers = 0;
int waiting_writers = 0;
ReadLock() {
mutex_lock(&lock);
while (writers != 0

&& waiting_writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

}

ReadUnlock() {
mutex_lock(&lock);
--readers;
if (readers == 0) {
cond_signal(&ok_to_write_cv);

}
mutex_unlock(&lock);

}

WriteLock() {
mutex_lock(&lock);
++waiting_writers;
while (readers + writers != 0) {
cond_wait(&ok_to_write_cv, &lock);

}
--waiting_writers;
++writers;
mutex_unlock(&lock);

}

WriteUnlock() {
mutex_lock(&lock);
--writers;
if (waiting_writers != 0) {
cond_signal(&ok_to_write_cv);

} else {
cond_broadcast(&ok_to_read_cv);

}
mutex_unlock(&lock);

}
19



writer-priority (1)
mutex_t lock; cond_t ok_to_read_cv; cond_t ok_to_write_cv;
int readers = 0, writers = 0;
int waiting_writers = 0;
ReadLock() {
mutex_lock(&lock);
while (writers != 0

&& waiting_writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

}

ReadUnlock() {
mutex_lock(&lock);
--readers;
if (readers == 0) {
cond_signal(&ok_to_write_cv);

}
mutex_unlock(&lock);

}

WriteLock() {
mutex_lock(&lock);
++waiting_writers;
while (readers + writers != 0) {
cond_wait(&ok_to_write_cv, &lock);

}
--waiting_writers;
++writers;
mutex_unlock(&lock);

}

WriteUnlock() {
mutex_lock(&lock);
--writers;
if (waiting_writers != 0) {
cond_signal(&ok_to_write_cv);

} else {
cond_broadcast(&ok_to_read_cv);

}
mutex_unlock(&lock);

}
19



reader-priority (1)
...
int waiting_readers = 0;
ReadLock() {
mutex_lock(&lock);
++waiting_readers;
while (writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
--waiting_readers;
++readers;
mutex_unlock(&lock);

}

ReadUnlock() {
...
if (waiting_readers == 0) {
cond_signal(&ok_to_write_cv);

}
}

WriteLock() {
mutex_lock(&lock);
while (waiting_readers +

readers + writers != 0) {
cond_wait(&ok_to_write_cv);

}
++writers;
mutex_unlock(&lock);

}
WriteUnlock() {
mutex_lock(&lock);
--writers;
if (waiting_readers == 0) {
cond_signal(&ok_to_write_cv);

} else {
cond_broadcast(&ok_to_read_cv);

}
mutex_unlock(&lock);

}

20



reader-priority (1)
...
int waiting_readers = 0;
ReadLock() {
mutex_lock(&lock);
++waiting_readers;
while (writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
--waiting_readers;
++readers;
mutex_unlock(&lock);

}

ReadUnlock() {
...
if (waiting_readers == 0) {
cond_signal(&ok_to_write_cv);

}
}

WriteLock() {
mutex_lock(&lock);
while (waiting_readers +

readers + writers != 0) {
cond_wait(&ok_to_write_cv);

}
++writers;
mutex_unlock(&lock);

}
WriteUnlock() {
mutex_lock(&lock);
--writers;
if (waiting_readers == 0) {
cond_signal(&ok_to_write_cv);

} else {
cond_broadcast(&ok_to_read_cv);

}
mutex_unlock(&lock);

}

20



choosing orderings?

can use monitors to implement lots of lock policies

want X to go first/last — add extra variables
(number of waiters, even lists of items, etc.)

need way to write condition “you can go now”
e.g. writer-priority: readers can go if no writer waiting

21



simulation of reader/write lock
writer-priority version

W = writers, R = readers, WW = waiting_writers
reader 1 reader 2 writer 1 reader 3 W R WW

0 0 0
ReadLock 0 1 0
(reading) ReadLock 0 2 0
(reading) (reading) WriteLock wait 0 2 1
(reading) (reading) WriteLock wait ReadLock wait 0 2 1
ReadUnlock (reading) WriteLock wait ReadLock wait 0 1 1

ReadUnlock WriteLock wait ReadLock wait 0 0 1
WriteLock ReadLock wait 1 0 0
(read+writing) ReadLock wait 1 0 0
WriteUnlock ReadLock wait 0 0 0

ReadLock 0 1 0

mutex_lock(&lock);
while (writers != 0 && waiting_writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

mutex_lock(&lock);
++waiting_writers;
while (readers + writers != 0) {
cond_wait(&ok_to_write_cv, &lock);

}

mutex_lock(&lock);
--readers;
if (readers == 0)
...

mutex_lock(&lock);
--readers;
if (readers == 0)
cond_signal(&ok_to_write_cv)

mutex_unlock(&lock);

while (readers + writers != 0) {
cond_wait(&ok_to_write_cv, &lock);

}
--waiting_writers; ++writers;
mutex_unlock(&lock);

mutex_lock(&lock);
if (waiting_writers != 0) {

cond_signal(&ok_to_write_cv);
} else {
cond_broadcast(&ok_to_read_cv);

}

while (writers != 0 && waiting_writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

22



simulation of reader/write lock
writer-priority version

W = writers, R = readers, WW = waiting_writers
reader 1 reader 2 writer 1 reader 3 W R WW

0 0 0
ReadLock 0 1 0
(reading) ReadLock 0 2 0
(reading) (reading) WriteLock wait 0 2 1
(reading) (reading) WriteLock wait ReadLock wait 0 2 1
ReadUnlock (reading) WriteLock wait ReadLock wait 0 1 1

ReadUnlock WriteLock wait ReadLock wait 0 0 1
WriteLock ReadLock wait 1 0 0
(read+writing) ReadLock wait 1 0 0
WriteUnlock ReadLock wait 0 0 0

ReadLock 0 1 0

mutex_lock(&lock);
while (writers != 0 && waiting_writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

mutex_lock(&lock);
++waiting_writers;
while (readers + writers != 0) {
cond_wait(&ok_to_write_cv, &lock);

}

mutex_lock(&lock);
--readers;
if (readers == 0)
...

mutex_lock(&lock);
--readers;
if (readers == 0)
cond_signal(&ok_to_write_cv)

mutex_unlock(&lock);

while (readers + writers != 0) {
cond_wait(&ok_to_write_cv, &lock);

}
--waiting_writers; ++writers;
mutex_unlock(&lock);

mutex_lock(&lock);
if (waiting_writers != 0) {

cond_signal(&ok_to_write_cv);
} else {
cond_broadcast(&ok_to_read_cv);

}

while (writers != 0 && waiting_writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

22



simulation of reader/write lock
writer-priority version

W = writers, R = readers, WW = waiting_writers
reader 1 reader 2 writer 1 reader 3 W R WW

0 0 0
ReadLock 0 1 0
(reading) ReadLock 0 2 0
(reading) (reading) WriteLock wait 0 2 1
(reading) (reading) WriteLock wait ReadLock wait 0 2 1
ReadUnlock (reading) WriteLock wait ReadLock wait 0 1 1

ReadUnlock WriteLock wait ReadLock wait 0 0 1
WriteLock ReadLock wait 1 0 0
(read+writing) ReadLock wait 1 0 0
WriteUnlock ReadLock wait 0 0 0

ReadLock 0 1 0

mutex_lock(&lock);
while (writers != 0 && waiting_writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

mutex_lock(&lock);
++waiting_writers;
while (readers + writers != 0) {
cond_wait(&ok_to_write_cv, &lock);

}

mutex_lock(&lock);
--readers;
if (readers == 0)
...

mutex_lock(&lock);
--readers;
if (readers == 0)
cond_signal(&ok_to_write_cv)

mutex_unlock(&lock);

while (readers + writers != 0) {
cond_wait(&ok_to_write_cv, &lock);

}
--waiting_writers; ++writers;
mutex_unlock(&lock);

mutex_lock(&lock);
if (waiting_writers != 0) {

cond_signal(&ok_to_write_cv);
} else {
cond_broadcast(&ok_to_read_cv);

}

while (writers != 0 && waiting_writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

22



simulation of reader/write lock
writer-priority version

W = writers, R = readers, WW = waiting_writers
reader 1 reader 2 writer 1 reader 3 W R WW

0 0 0
ReadLock 0 1 0
(reading) ReadLock 0 2 0
(reading) (reading) WriteLock wait 0 2 1
(reading) (reading) WriteLock wait ReadLock wait 0 2 1
ReadUnlock (reading) WriteLock wait ReadLock wait 0 1 1

ReadUnlock WriteLock wait ReadLock wait 0 0 1
WriteLock ReadLock wait 1 0 0
(read+writing) ReadLock wait 1 0 0
WriteUnlock ReadLock wait 0 0 0

ReadLock 0 1 0

mutex_lock(&lock);
while (writers != 0 && waiting_writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

mutex_lock(&lock);
++waiting_writers;
while (readers + writers != 0) {
cond_wait(&ok_to_write_cv, &lock);

}

mutex_lock(&lock);
--readers;
if (readers == 0)
...

mutex_lock(&lock);
--readers;
if (readers == 0)
cond_signal(&ok_to_write_cv)

mutex_unlock(&lock);

while (readers + writers != 0) {
cond_wait(&ok_to_write_cv, &lock);

}
--waiting_writers; ++writers;
mutex_unlock(&lock);

mutex_lock(&lock);
if (waiting_writers != 0) {

cond_signal(&ok_to_write_cv);
} else {
cond_broadcast(&ok_to_read_cv);

}

while (writers != 0 && waiting_writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

22



simulation of reader/write lock
writer-priority version

W = writers, R = readers, WW = waiting_writers
reader 1 reader 2 writer 1 reader 3 W R WW

0 0 0
ReadLock 0 1 0
(reading) ReadLock 0 2 0
(reading) (reading) WriteLock wait 0 2 1
(reading) (reading) WriteLock wait ReadLock wait 0 2 1
ReadUnlock (reading) WriteLock wait ReadLock wait 0 1 1

ReadUnlock WriteLock wait ReadLock wait 0 0 1
WriteLock ReadLock wait 1 0 0
(read+writing) ReadLock wait 1 0 0
WriteUnlock ReadLock wait 0 0 0

ReadLock 0 1 0

mutex_lock(&lock);
while (writers != 0 && waiting_writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

mutex_lock(&lock);
++waiting_writers;
while (readers + writers != 0) {
cond_wait(&ok_to_write_cv, &lock);

}

mutex_lock(&lock);
--readers;
if (readers == 0)
...

mutex_lock(&lock);
--readers;
if (readers == 0)
cond_signal(&ok_to_write_cv)

mutex_unlock(&lock);

while (readers + writers != 0) {
cond_wait(&ok_to_write_cv, &lock);

}
--waiting_writers; ++writers;
mutex_unlock(&lock);

mutex_lock(&lock);
if (waiting_writers != 0) {

cond_signal(&ok_to_write_cv);
} else {
cond_broadcast(&ok_to_read_cv);

}

while (writers != 0 && waiting_writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

22



simulation of reader/write lock
writer-priority version

W = writers, R = readers, WW = waiting_writers
reader 1 reader 2 writer 1 reader 3 W R WW

0 0 0
ReadLock 0 1 0
(reading) ReadLock 0 2 0
(reading) (reading) WriteLock wait 0 2 1
(reading) (reading) WriteLock wait ReadLock wait 0 2 1
ReadUnlock (reading) WriteLock wait ReadLock wait 0 1 1

ReadUnlock WriteLock wait ReadLock wait 0 0 1
WriteLock ReadLock wait 1 0 0
(read+writing) ReadLock wait 1 0 0
WriteUnlock ReadLock wait 0 0 0

ReadLock 0 1 0

mutex_lock(&lock);
while (writers != 0 && waiting_writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

mutex_lock(&lock);
++waiting_writers;
while (readers + writers != 0) {
cond_wait(&ok_to_write_cv, &lock);

}

mutex_lock(&lock);
--readers;
if (readers == 0)
...

mutex_lock(&lock);
--readers;
if (readers == 0)
cond_signal(&ok_to_write_cv)

mutex_unlock(&lock);

while (readers + writers != 0) {
cond_wait(&ok_to_write_cv, &lock);

}
--waiting_writers; ++writers;
mutex_unlock(&lock);

mutex_lock(&lock);
if (waiting_writers != 0) {

cond_signal(&ok_to_write_cv);
} else {
cond_broadcast(&ok_to_read_cv);

}

while (writers != 0 && waiting_writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

22



simulation of reader/write lock
writer-priority version

W = writers, R = readers, WW = waiting_writers
reader 1 reader 2 writer 1 reader 3 W R WW

0 0 0
ReadLock 0 1 0
(reading) ReadLock 0 2 0
(reading) (reading) WriteLock wait 0 2 1
(reading) (reading) WriteLock wait ReadLock wait 0 2 1
ReadUnlock (reading) WriteLock wait ReadLock wait 0 1 1

ReadUnlock WriteLock wait ReadLock wait 0 0 1
WriteLock ReadLock wait 1 0 0
(read+writing) ReadLock wait 1 0 0
WriteUnlock ReadLock wait 0 0 0

ReadLock 0 1 0

mutex_lock(&lock);
while (writers != 0 && waiting_writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

mutex_lock(&lock);
++waiting_writers;
while (readers + writers != 0) {
cond_wait(&ok_to_write_cv, &lock);

}

mutex_lock(&lock);
--readers;
if (readers == 0)

...

mutex_lock(&lock);
--readers;
if (readers == 0)
cond_signal(&ok_to_write_cv)

mutex_unlock(&lock);

while (readers + writers != 0) {
cond_wait(&ok_to_write_cv, &lock);

}
--waiting_writers; ++writers;
mutex_unlock(&lock);

mutex_lock(&lock);
if (waiting_writers != 0) {

cond_signal(&ok_to_write_cv);
} else {
cond_broadcast(&ok_to_read_cv);

}

while (writers != 0 && waiting_writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

22



simulation of reader/write lock
writer-priority version

W = writers, R = readers, WW = waiting_writers
reader 1 reader 2 writer 1 reader 3 W R WW

0 0 0
ReadLock 0 1 0
(reading) ReadLock 0 2 0
(reading) (reading) WriteLock wait 0 2 1
(reading) (reading) WriteLock wait ReadLock wait 0 2 1
ReadUnlock (reading) WriteLock wait ReadLock wait 0 1 1

ReadUnlock WriteLock wait ReadLock wait 0 0 1
WriteLock ReadLock wait 1 0 0
(read+writing) ReadLock wait 1 0 0
WriteUnlock ReadLock wait 0 0 0

ReadLock 0 1 0

mutex_lock(&lock);
while (writers != 0 && waiting_writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

mutex_lock(&lock);
++waiting_writers;
while (readers + writers != 0) {
cond_wait(&ok_to_write_cv, &lock);

}

mutex_lock(&lock);
--readers;
if (readers == 0)
...

mutex_lock(&lock);
--readers;
if (readers == 0)
cond_signal(&ok_to_write_cv)

mutex_unlock(&lock);

while (readers + writers != 0) {
cond_wait(&ok_to_write_cv, &lock);

}
--waiting_writers; ++writers;
mutex_unlock(&lock);

mutex_lock(&lock);
if (waiting_writers != 0) {

cond_signal(&ok_to_write_cv);
} else {
cond_broadcast(&ok_to_read_cv);

}

while (writers != 0 && waiting_writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

22



simulation of reader/write lock
writer-priority version

W = writers, R = readers, WW = waiting_writers
reader 1 reader 2 writer 1 reader 3 W R WW

0 0 0
ReadLock 0 1 0
(reading) ReadLock 0 2 0
(reading) (reading) WriteLock wait 0 2 1
(reading) (reading) WriteLock wait ReadLock wait 0 2 1
ReadUnlock (reading) WriteLock wait ReadLock wait 0 1 1

ReadUnlock WriteLock wait ReadLock wait 0 0 1
WriteLock ReadLock wait 1 0 0
(read+writing) ReadLock wait 1 0 0
WriteUnlock ReadLock wait 0 0 0

ReadLock 0 1 0

mutex_lock(&lock);
while (writers != 0 && waiting_writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

mutex_lock(&lock);
++waiting_writers;
while (readers + writers != 0) {
cond_wait(&ok_to_write_cv, &lock);

}

mutex_lock(&lock);
--readers;
if (readers == 0)
...

mutex_lock(&lock);
--readers;
if (readers == 0)
cond_signal(&ok_to_write_cv)

mutex_unlock(&lock);

while (readers + writers != 0) {
cond_wait(&ok_to_write_cv, &lock);

}
--waiting_writers; ++writers;
mutex_unlock(&lock);

mutex_lock(&lock);
if (waiting_writers != 0) {

cond_signal(&ok_to_write_cv);
} else {
cond_broadcast(&ok_to_read_cv);

}

while (writers != 0 && waiting_writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

22



simulation of reader/write lock
writer-priority version

W = writers, R = readers, WW = waiting_writers
reader 1 reader 2 writer 1 reader 3 W R WW

0 0 0
ReadLock 0 1 0
(reading) ReadLock 0 2 0
(reading) (reading) WriteLock wait 0 2 1
(reading) (reading) WriteLock wait ReadLock wait 0 2 1
ReadUnlock (reading) WriteLock wait ReadLock wait 0 1 1

ReadUnlock WriteLock wait ReadLock wait 0 0 1
WriteLock ReadLock wait 1 0 0
(read+writing) ReadLock wait 1 0 0
WriteUnlock ReadLock wait 0 0 0

ReadLock 0 1 0

mutex_lock(&lock);
while (writers != 0 && waiting_writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

mutex_lock(&lock);
++waiting_writers;
while (readers + writers != 0) {
cond_wait(&ok_to_write_cv, &lock);

}

mutex_lock(&lock);
--readers;
if (readers == 0)
...

mutex_lock(&lock);
--readers;
if (readers == 0)
cond_signal(&ok_to_write_cv)

mutex_unlock(&lock);

while (readers + writers != 0) {
cond_wait(&ok_to_write_cv, &lock);

}
--waiting_writers; ++writers;
mutex_unlock(&lock);

mutex_lock(&lock);
if (waiting_writers != 0) {

cond_signal(&ok_to_write_cv);
} else {
cond_broadcast(&ok_to_read_cv);

}

while (writers != 0 && waiting_writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

22



simulation of reader/write lock
writer-priority version

W = writers, R = readers, WW = waiting_writers
reader 1 reader 2 writer 1 reader 3 W R WW

0 0 0
ReadLock 0 1 0
(reading) ReadLock 0 2 0
(reading) (reading) WriteLock wait 0 2 1
(reading) (reading) WriteLock wait ReadLock wait 0 2 1
ReadUnlock (reading) WriteLock wait ReadLock wait 0 1 1

ReadUnlock WriteLock wait ReadLock wait 0 0 1
WriteLock ReadLock wait 1 0 0
(read+writing) ReadLock wait 1 0 0
WriteUnlock ReadLock wait 0 0 0

ReadLock 0 1 0

mutex_lock(&lock);
while (writers != 0 && waiting_writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

mutex_lock(&lock);
++waiting_writers;
while (readers + writers != 0) {
cond_wait(&ok_to_write_cv, &lock);

}

mutex_lock(&lock);
--readers;
if (readers == 0)
...

mutex_lock(&lock);
--readers;
if (readers == 0)
cond_signal(&ok_to_write_cv)

mutex_unlock(&lock);

while (readers + writers != 0) {
cond_wait(&ok_to_write_cv, &lock);

}
--waiting_writers; ++writers;
mutex_unlock(&lock);

mutex_lock(&lock);
if (waiting_writers != 0) {
cond_signal(&ok_to_write_cv);

} else {
cond_broadcast(&ok_to_read_cv);

}

while (writers != 0 && waiting_writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

22



simulation of reader/write lock
writer-priority version

W = writers, R = readers, WW = waiting_writers
reader 1 reader 2 writer 1 reader 3 W R WW

0 0 0
ReadLock 0 1 0
(reading) ReadLock 0 2 0
(reading) (reading) WriteLock wait 0 2 1
(reading) (reading) WriteLock wait ReadLock wait 0 2 1
ReadUnlock (reading) WriteLock wait ReadLock wait 0 1 1

ReadUnlock WriteLock wait ReadLock wait 0 0 1
WriteLock ReadLock wait 1 0 0
(read+writing) ReadLock wait 1 0 0
WriteUnlock ReadLock wait 0 0 0

ReadLock 0 1 0

mutex_lock(&lock);
while (writers != 0 && waiting_writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

mutex_lock(&lock);
++waiting_writers;
while (readers + writers != 0) {
cond_wait(&ok_to_write_cv, &lock);

}

mutex_lock(&lock);
--readers;
if (readers == 0)
...

mutex_lock(&lock);
--readers;
if (readers == 0)
cond_signal(&ok_to_write_cv)

mutex_unlock(&lock);

while (readers + writers != 0) {
cond_wait(&ok_to_write_cv, &lock);

}
--waiting_writers; ++writers;
mutex_unlock(&lock);

mutex_lock(&lock);
if (waiting_writers != 0) {

cond_signal(&ok_to_write_cv);
} else {
cond_broadcast(&ok_to_read_cv);

}

while (writers != 0 && waiting_writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

22



simulation of reader/write lock
writer-priority version

W = writers, R = readers, WW = waiting_writers
reader 1 reader 2 writer 1 reader 3 W R WW

0 0 0
ReadLock 0 1 0
(reading) ReadLock 0 2 0
(reading) (reading) WriteLock wait 0 2 1
(reading) (reading) WriteLock wait ReadLock wait 0 2 1
ReadUnlock (reading) WriteLock wait ReadLock wait 0 1 1

ReadUnlock WriteLock wait ReadLock wait 0 0 1
WriteLock ReadLock wait 1 0 0
(read+writing) ReadLock wait 1 0 0
WriteUnlock ReadLock wait 0 0 0

ReadLock 0 1 0

mutex_lock(&lock);
while (writers != 0 && waiting_writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

mutex_lock(&lock);
++waiting_writers;
while (readers + writers != 0) {
cond_wait(&ok_to_write_cv, &lock);

}

mutex_lock(&lock);
--readers;
if (readers == 0)
...

mutex_lock(&lock);
--readers;
if (readers == 0)
cond_signal(&ok_to_write_cv)

mutex_unlock(&lock);

while (readers + writers != 0) {
cond_wait(&ok_to_write_cv, &lock);

}
--waiting_writers; ++writers;
mutex_unlock(&lock);

mutex_lock(&lock);
if (waiting_writers != 0) {

cond_signal(&ok_to_write_cv);
} else {
cond_broadcast(&ok_to_read_cv);

}

while (writers != 0 && waiting_writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

22



rwlock exercise

suppose there are multiple waiting writers

which one gets waken up first?
whichever gets signal’d or gets lock first

could instead keep in order they started waiting

exercise: what extra information should we track?
hint: we might need an array

mutex_t lock; cond_t ok_to_read_cv, ok_to_write_cv;
int readers, writers, waiting_writers;

23



rwlock exercise solution?

list of waiting writes?
struct WaitingWriter {

cond_t cv;
bool ready;

};
Queue<WaitingWriter*> waiting_writers;

WriteLock(...) {
...
if (need to wait) {
WaitingWriter self;
self.ready = false;
...
while(!self.ready) {

pthread_cond_wait(&self.cv, &lock);
}

}
...

}
24



rwlock exercise solution?

dedicated writing thread with queue
(DoWrite∼Produce; WritingThread∼Consume)

ThreadSafeQueue<WritingTask*> waiting_writes;
WritingThread() {

while (true) {
WritingTask* task = waiting_writer.Dequeue();
WriteLock();
DoWriteTask(task);
task.done = true;
cond_broadcast(&task.cv);

}
}
DoWrite(task) {

// instead of WriteLock(); DoWriteTask(...); WriteUnlock()
WritingTask task = ...;
waiting_writes.Enqueue(&task);
while (!task.done) { cond_wait(&task.cv); }

} 25



the one-way bridge

26



the one-way bridge

26



the one-way bridge

26



the one-way bridge

26


	monitors continued
	previously: unbounded producer/consumer
	bounded producer/consumer with monitors
	general monitor pattern

	monitor exercise
	relating monitors and semaphores
	implementing semaphores with monitors
	implementing monitors with semaphores

	reader-writer
	reader/writer problem
	reader/writer locks
	implementing rwlocks with monitors
	reader/writer lock walkthrough
	reader/writer lock extensions???

	deadlock examples
	a one-way bridge


