Synchronization 4: Deadlock, Misc Lock Issues

Changelog

Changes made in this version not seen in first lecture:

4 October: livelock: move slides earlier (next to abort discussion)

4 October: revocable locks, Linux OOM killer: move slides earlier (next
to steal discussion)

4 Qctober: event-based programming: some single-threaded code: fix
broken slide

4 October: add backup slides on dining philospher ordering/abort

5 October: deadlock detection with variable resources: iterate over
threads with owned/requested resources only; not all threads

last time (1)

monitor intuition:
mutex locked before touching anything
find reasons to wait
condition variable for each
broadcast (or maybe signal) when changing condition

reader /writer lock
many readers at a time
one writer

last time (2)

reader-priority /writer-priotity
want writers to go before readers? count writers
change wait conditions to account for who else is waiting

choosing priorities generally
can track whatever you want, wait while not true
worst case: own queue with boolean + one condition variable/semaphore
per waiter
(probably duplicates internal queue of mutex/cond var)

bounded buffer producer/consumer

pthread_mutex_t lock;
pthread_cond_t data_ready; pthread_cond_t space_ready;
BoundedQueue buffer;

Produce(item) {
pthread_ mutex 1ock(&lock),

while (br= e ' ' — k) }
buffer.e| error last time:
pthread_{ if (buffer.size() == buffer.capacity() - 1)
pthread_ pthread_cond_signal(&space_ready);
¥ what if two waiting producers and
Consume() { |two consumers run right after each other
h
P %l problem: only one woken up

}
item = buffer.dequeue();
pthread_cond_signal (&space_ready);
pthread_mutex_unlock(&lock);
return titem;

pthread_cond_wa1t(&data_readylv&Lock);

potential fixes

unconditionally signal

each consume allows one produce to go
rely on condition variable knowing if no one is waiting

broadcast if buffer changed from full to not-full

every thread waiting because it was full could go buffer it becomes full
again

explicitly count number of waiting producers — buffer not full and
waiter

how could | have avoided this?

question: who might be waiting when condition changes
almost always multiple threads!

if not broadcasting, explain why each waiting thread gets to go

my implicit non-explanation: queue will be full again first
not actually true: can keep consuming before producers go

how could | have avoided this?

question: who might be waiting when condition changes

almost always multiple threads!

if not broadcasting, explain why each waiting thread gets to go

my implicit non-explanation: queue will be full again first
not actually true: can keep consuming before producers go

alternate view: consuming causes what threads to go?

not just when the buffer was full
since if | empty the buffer by consuming...

last week’s quiz

“after one processor finishes updating a value, another processor
could still have an old version of the value cached”

invalid state — can never read it

generally, called “not cached”

from comments, significant number of people did not interpret it
this way

life HW notes

some common ways students seem to get confused

LifeBoard my_copy; ... my_copy = state makesa
copy of state

(even if my_copy is in a struct, etc.)

the simulate function modifies the state reference passed it
you better change that LifeBoard to return the result

the one-way bridge

the one-way bridge

the one-way bridge

the one-way bridge

dining philosophers

five philosophers either think or eat
to eat, grab chopsticks on either side

10

dining philosophers

everyone eats at the same time?
grab left chopstick, then...

10

dining philosophers

everyone eats at the same time?
grab left chopstick, then

try to grab right chopstick, ...
we're at an impasse

10

pipe() deadlock

BROKEN example:

int child_to_parent_pipe[2], parent_to_child_pipe[2];
pipe(child_to_parent_pipe); pipe(parent_to_child_pipe);
if (fork() == 0) {
/* child */
write(child_to_parent_pipe[l], buffer, HUGE_SIZE);
read(parent_to_child_pipe[0], buffer, HUGE_SIZE);
exit(0);
} else {
/* parent */
write(parent_to_child_pipe[l], buffer, HUGE_SIZE);
read(child_to_parent[0], buffer, HUGE_SIZE);
}

This will hang forever (if HUGE_SIZE is big enough).
11

deadlock waiting

child writing to pipe waiting for free buffer space

..which will not be available until parent reads

parent writing to pipe waiting for free buffer space

..which will not be available until child reads

12

circular dependency

waiting for space
to write

pare

A

needs to be i
read by process*
to free space

process

parent to child
pipe buffer

.
.
.

nt

C

‘e
"

child to parent
pipe buffer

process

needs to be
“‘read by process
: to free space

Y

hild

aiting for space
to write

13

moving two files

struct Dir {
mutex_t lock; map<string, DirEntry> entries;

}s

void MoveFile(Dir *from_dir, Dir *to_dir, string filename) {
mutex_lock (&from_dir—>1lock);
mutex_lock (&to_dir—>1lock);

to_dir—>entries[filename] = from_dir—>entries[filename];
from_dir—>entries.erase(filename);

mutex_unlock (&to_dir—>1lock);
mutex_unlock (&from_dir—>1lock) ;
}
Thread 1: MoveFile(A, B, '"foo")
Thread 2: MoveFile(B, A, "bar")

14

moving two files: lucky timeline (1)

Thread 1 Thread 2
MoveFile(A, B, "foo") MoveFile(B, A, "bar")

lock (&A->1ock) ;

lock (&B->1ock) ;

(do move)

unlock (&B->1lock) ;

unlock (&A->1ock) ;
lock (&B->1ock) ;
lock (&A->1ock) ;
(do move)
unlock (&B->1lock) ;
unlock (&A->1ock) ;

15

moving two files: lucky timeline (2)

Thread 1 Thread 2
MoveFile(A, B, "foo") MoveFile(B, A, "bar")

lock (&A->1ock) ;
lock (&B->1lock) ;

(do move)
unlock (&B->1lock) ;
lock (&B->1ock) ;

unlock (&A->1ock) ;
lock (&A->1ock) ;
(do move)
unlock (&A->1lock) ;
unlock (&B->1lock) ;

moving two files: unlucky timeline

Thread 1 Thread 2
MoveFile(A, B, "foo") MoveFile (B, A, "bar")

lock (&A->1ock) ;
lock (&B->1ock) ;

17

moving two files: unlucky timeline

Thread 1 Thread 2
MoveFile(A, B, "foo") MoveFile (B, A, "bar")

lock (&A->1ock) ;

lock (&B->1ock) ;
lock (&B->1ock.. stalled

lock (&A->1ock... stalled

17

moving two files: unlucky timeline

Thread 1
MoveFile(A, B, "foo")

Thread 2
MoveFile (B, A, "bar")

lock (&A->1ock) ;

lock (&B->1ock.. stalled

{do-meve} unreachable
uvrteek{&B—>toek)+ unreachable
uvrteek{&A—>toek) unreachable

lock (&B->1ock) ;

lock (&A->1ock... stalled

{do-meve} unreachable
uvntock{&A—>tock)5 unreachable
vnteek{&B—>toek)s unreachable

17

moving two files: unlucky timeline

Thread 1
MoveFile(A, B, "foo")

Thread 2
MoveFile (B, A, "bar")

lock (&A->1ock) ;

lock (&B->1ock.. stalled

{do-meve} unreachable
uvrteek{&B—>toek)+ unreachable
uvrteek{&A—>toek) unreachable

lock (&B->1ock) ;

lock (&A->1ock... stalled

{do-meve) unreachable
uvntock{&A—>tock)5 unreachable
vnteek{&B—>toek)s unreachable

Thread 1 holds A lock, waiting for Thread 2 to release B lock
Thread 2 holds B lock, waiting for Thread 1 to release A lock 17

moving two files: dependencies

waiting for lock

A

lock held by -

.
e,
",
"
""""
L

directory A ...,
..."x‘|OCk held by
waiting for lock
directory B

18

moving three files: dependencies

waiting for lock

A

lock held by :

directory A

.................... l:ock held by

directory C

waiting for lock

waiting for lock

directory B

‘ """""" lock held by

19

moving three files: unlucky timeline
Thread 1 Thread 2 Thread 3

MoveFile(A, B, "foo") MoveFile(B, C, "bar") MoveFile(C, A, "quux")
lock (&A->1ock); < ----mm oo o m e -

lock (&B->Tock.. stalled”

lock (&A->1ock... stalled- -’

20

deadlock with free space

Thread 1 Thread 2
AllocateOrWaitFor (1 MB) AllocateOrWaitFor (1 MB)
AllocateOrWaitFor (1 MB) AllocateOrWaitFor (1 MB)
(do calculation) (do calculation)

Free(1 MB) Free(1 MB)
Free(1 MB) Free(1 MB)

2 MB of space — deadlock possible with unlucky order

21

deadlock with free space (unlucky case)

Thread 1 Thread 2
AllocateOrWaitFor (1 MB)

AllocateOrWaitFor (1 MB)
AllocateOrWaitFor (1 MB.. stalled
AllocateOrWaitFor (1 MB.. stalled

22

deadlock with free space (lucky case)

Thread 1 Thread 2
AllocateOrWaitFor (1 MB)

AllocateOrWaitFor (1 MB)
(do calculation)

Free(1 MB);

Free(1 MB);

AllocateOrWaitFor (1 MB)
AllocateOrWaitFor (1 MB)
(do calculation)

Free(1 MB);

Free(1 MB);

23

deadlock

deadlock — circular waiting for resources

resource = something needed by a thread to do work
locks
CPU time
disk space
memory

often non-deterministic in practice

most common example: when acquiring multiple locks

24

deadlock

deadlock — circular waiting for resources

resource = something needed by a thread to do work
locks
CPU time
disk space
memory

often non-deterministic in practice

most common example: when acquiring multiple locks

24

deadlock versus starvation

starvation: one+ unlucky (no progress), one+ lucky (yes progress)
example: low priority threads versus high-priority threads

deadlock: no one involved in deadlock makes progress

25

deadlock versus starvation

starvation: one+ unlucky (no progress), one+ lucky (yes progress)
example: low priority threads versus high-priority threads

deadlock: no one involved in deadlock makes progress

starvation: once starvation happens, taking turns will resolve
low priority thread just needed a chance..

deadlock: once it happens, taking turns won't fix

25

deadlock requirements

mutual exclusion
one thread at a time can use a resource

hold and wait
thread holding a resources waits to acquire another resource

no preemption of resources
resources are only released voluntarily
thread trying to acquire resources can't ‘steal’

circular wait

there exists a set {71, ...,T,} of waiting threads such that
T is waiting for a resource held by T3
T5 is waiting for a resource held by T3

T,, is waiting for a resource held by T}

26

deadlock prevention techniques

infinite resources
or at least enough that never run out

no shared resources

no waiting (e.g. abort and retry)
“busy signal”

acquire resources in consistent order

request all resources at once

no mutual exclusion

no mutual exclusion

no hold and wait/
preemption

no circular wait

no hold and wait

28

deadlock prevention techniques

infinite resources
or at least enough that never run out

no shared resources

no waiting (e.g. abort and retry)
“busy signal”

acquire resources in consistent order

request all resources at once

no mutual exclusion

no mutual exclusion

no hold and wait/
preemption

no circular wait

no hold and wait

29

deadlock prevention techniques

infinite resources
or at least enough that never run out

no shared resources

no waiting (e.g. abort and retry)
“busy signal”

acquire resources in consistent order

request all resources at once

no mutual exclusion

no mutual exclusion

no hold and wait/
preemption

no circular wait

no hold and wait

30

deadlock prevention techniques

infinite resources
or at least enough that never run out

no shared resources

no waiting (e.g. abort and retry)
“busy signal”

acquire resources in consistent order

request all resources at once

no mutual exclusion

no mutual exclusion

no hold and wait/
preemption

no circular wait

no hold and wait

31

AllocateOrFail

Thread 1 Thread 2
AllocateOrFail(1l MB)

AllocateOrFail(1l MB)
AllocateOrFail(1l MB) fails!

AllocateOrFail(1 MB) fails!
Free(1 MB) (cleanup after failure)

Free(1 MB) (cleanup after failure)

okay, now what?
give up?
both try again? — maybe this will keep happening? (called livelock)
try one-at-a-time? — gaurenteed to work, but tricky to implement

32

AllocateOrSteal

Thread 1 Thread 2

AllocateOrSteal (1l MB)
AllocateOrSteal(1l MB)

AllocateOrSteal (1 MB) Thread killed to free 1MB
(do work)

problem: can one actually implement this?

problem: can one kill thread and keep system in consistent state?

33

fail /steal with locks

pthreads provides pthread_mutex_trylock — “lock or fail”

some databases implement revocable locks

do equivalent of throwing exception in thread to ‘steal’ lock
need to carefully arrange for operation to be cleaned up

34

livelock

abort-and-retry

how many times will you retry?

35

moving two files: abort-and-retry

struct Dir {
mutex_t lock; map<string, DirEntry> entries;
+s
void MoveFile(Dir *from_dir, Dir *to_dir, string filename) {
while (mutex_trylock(&from_dir—>lock) == LOCKED) {
if (mutex_trylock(&to_dir—>lock) == LOCKED) break;
mutex_unlock (&from_dir—>lock) ;

}

to_dir—>entries[filename] = from_dir—>entries[filename];
from_dir—>entries.erase(filename);

mutex_unlock (&to_dir—>1lock);
mutex_unlock (&from_dir—>lock) ;

}

Thread 1: MoveFile(A, B, '"foo")
Thread 2: MoveFile(B, A, "bar")

36

moving two files: lots of bad luck?

Thread 1
MoveFile(A, B, "foo")

Thread 2
MoveFile(B, A, "bar")

trylock (&A->1ock) — LOCKED
trylock(&B->1lock) — FAILED
unlock (&A->1ock)

trylock (&A->1lock) — LOCKED
trylock (&B->1lock) — FAILED

unlock (&A->1ock)

trylock (&B->1lock) — LOCKED
trylock (&A->1lock) — FAILED
unlock (&B->1ock)

trylock (&B->1lock) — LOCKED
trylock (&A->1lock) — FAILED

unlock (&B->1ock)

37

livelock

like deadlock — no one's making progress
potentially forever

unlike deadlock — threads are trying

..but keep aborting and retrying

38

preventing livelock

make schedule random — e.g. random waiting after abort
make threads run one-at-a-time if lots of aborting

other ideas?

39

stealing locks???

how do we make stealing locks possible

40

revokable locks

try {
AcquireLock();
use shared data
} catch (LockRevokedException le) {
undo operation hopefully?
} finally {
Releaselock();

}

41

Linux out-of-memory Kkiller

Linux by default overcommits memory

tell processes they have more memory than is available
(some recommend disabling this feature)

problem: what if wrong?

could wait for program to finish, free memory...
but could be waiting forever because of deadlock

solution: kill a process
(and try to choose one that's not important)

42

database transactions

databases operations organized into transactions
happens all at once or not at all

until transaction is committed, not finalized

code to undo transaction in case it's not okay

database deadlock solution: invoke undo transaction code

..then rerun transaction later

43

deadlock prevention techniques

infinite resources
or at least enough that never run out

no shared resources

no waiting (e.g. abort and retry)
“busy signal”

acquire resources in consistent order

request all resources at once

no mutual exclusion

no mutual exclusion

no hold and wait/
preemption

no circular wait

no hold and wait

44

acquiring locks in consistent order (1)

MoveFile(Dir* from_dir, Dir* to_dir, string filename) {
if (from_dir—>path < to_dir—>path) {
lock (&from_dir—>1lock) ;
lock (&to_dir—>lock);
} else {
lock (&to_dir—>lock);
lock(&from_dir—>1lock);
}

45

acquiring locks in consistent order (1)

MoveFile(Dir* from_dir, Dir* to_dir, string filename) {
if (from_dir—>path < to_dir—>path) {
lock (&from_dir—>1lock) ;
lock (&to_dir—>lock);
} else {
lock (&to_dir—>lock);
lock(&from_dir—>1lock);
}

any ordering will do
e.g. compare pointers

acquiring locks in consistent order (2)

often by convention, e.g. Linux kernel comments:

/*
* o o o
* Lock order:
x contex. ldt_usr_sem
* mmap_sem
x context. lock
*/
/*
* o o
* lock order:
* 1. slab_mutex (Global Mutex)
* 2. node->list_lock
* 3. slab_lock(page) (Only on some arches and for debugging)
*
*/..

46

deadlock prevention techniques

infinite resources
or at least enough that never run out

no shared resources

no waiting (e.g. abort and retry)
“busy signal”

acquire resources in consistent order

request all resources at once

no mutual exclusion

no mutual exclusion

no hold and wait/
preemption

no circular wait

no hold and wait

47

allocating all at once?

for resources like disk space, memory

figure out maximum allocation when starting thread
“only” need conservative estimate

only start thread if those resources are available

okay solution for embedded systems?

48

deadlock detection

idea: search for cyclic dependencies

49

detecting deadlocks on locks

let's say | want to detect deadlocks that only involve mutexes
goal: help programmers debug deadlocks

..by modifying my threading library:

struct Thread {
... /* stuff for implementing thread */
/* what extra fields go here? */

}s3
struct Mutex {

... /% stuff for implementing mutex */
/* what extra fields go here? */

s

50

deadlock detection

idea: search for cyclic dependencies

need:
list of all contended resources
what thread is waiting for what?
what thread ‘owns’ what?

51

aside: deadlock detection in reality

instrument all contended resources?

add tracking of who locked what
modify every lock implementation — no simple spinlocks?
some tricky cases: e.g. what about counting semaphores?

doing something useful on deadlock?
want way to “undo” partially done operations

..but done for some applications

common example: for locks in a database

database typically has customized locking code
“undo” exists as side-effect of code for handling power/disk failures

52

resource allocation graphs

nodes: resources or threads

edge thread—resource: thread waiting for resource

edge resource—thread: resource is “owned” by thread
holds lock on
will be deallocated by

53

resource allocate graphs

waiting on

resource A

A

owned by

k.
L
.
.....
.
.
.
-
.
.

~owned by

Y

waiting on

ey
.
",
.
......
“ay
o

resource B

54

searching for cycles

cycle — deadlock happened!

finding cycles: recall 2150 topological sort (maybe??7)

55

divided resources

what about resources like memory?

allocating 1IMB of memory:

thread ‘owns’ the 1IMB, but..
another thread can use can use any other IMB

want to track all of memory together

“partial ownership”
locked half the memory

56

dividable/interchangeable resources

waiting on

two units resource A — 3 units

waiting on
one unit

‘.
.
",

57

deadlock detection

cycle-finding not enough

new idea: try to simulate progress

anything not waiting releases resources (as it finishes)
anything waiting on only free resources no one else wants takes resources

see if everything gets resources eventually

58

deadlock detection (with variable resources)
(pseudocode)

class Resources { map<ResourceType, int> amounts; ... };
Resources free_resources;

map<Thread, Resources> requested;

map<Thread, Resources> owned;

59

deadlock detection (with variable resources)

(pseudocode)

class Resources { map<ResourceType, int> amounts; ... };
Resources free_resources;

map<Thread, Resources> requested;

map<Thread, Resources> owned;

do { done = true;
for (Thread t : all threads with owned or requested resources) {

// 1f everything requested is free, finish

if (requested[t] <= free_resources) {
requested[t] = no_resources;
free_resources += owned[t];
owned[t] = no_resources;
done = false;

}

}
} while (!done);
if (owned.size() > 0) { DeadlockDetected() }
59

deadlock detection (with variable resources)

(pseudocode)

class Resources { map<ResourceType, int> amounts; ... };
Resources free_resources;

map<Thread, Resources> requested;

map<Thread, Posouccas Auiaacle

< — free resources include everything being requested
do { done = | (enough memory, disk, each lock requested, etc.)
for (Threal note: not requesting anything right now7 — always true

(/ 1f eVie—yorrermg—rogoresreco—eo—mmeog——creo
if (requested[t] <= free_resources) {
requested[t] = no_resources;

free_resources += owned[t];
owned[t] = no_resources;
done = false;

}

}
} while (!done);
if (owned.size() > 0) { DeadlockDetected() }

deadlock detection (with variable resources)

(pseudocode)

class Resources { map<ResourceType, int> amounts; ... };
Resources free_resources;

map<Thread, Resources> requested;

map<Thread, Resources> owned;

do { done = true; assume requested resources taken
for (Thread t : all jthen everything taken released resources) {
// 1f everything ritgocoscco—co—rroocy—rcrreor

if (requested[t] <= free_resources) {
requested[t] = no_resources;
free_resources += owned[t];
owned[t] = no_resources;
done = false;

}

}
} while (!done);
if (owned.size() > 0) { DeadlockDetected() }
59

deadlock detection (with variable resources)

(pseudocode)

class Resources { map<ResourceType, int> amounts; ... };
Resources free_resources;

map<Thread, Resources> requested;

map<Thread, Resources> owned;

do { done = true;
for (Thread t : all threads with owned or requested resources) {
// 1f everything requested is free, finish
if (requested[t] <= free_resources) {
reaiiestedlt+1] = no re<conlirces:

keep going until nothing changes

UWITCO [©] TTU _T CovUur ©cTo)

done = false;

}

}
} while (!done);
if (owned.size() > 0) { DeadlockDetected() }

59

using deadlock detection for prevention

suppose you know the maximum resources a process could request

make decision when starting process (“admission control)

60

using deadlock detection for prevention

suppose you know the maximum resources a process could request

make decision when starting process (“admission control)

ask “what if every process was waiting for maximum resources”
including the one we're starting

would it cause deadlock? then don’t let it start

called Baker's algorithm

60

recovering from deadlock?

what if it's too late?

kill a thread involved in the deadlock?
hopefully won't mess things up???

tell owner to release a resource
need code written to do this?7?

same concept as locks you can steal

61

additional threading topics (if time)

queuing spinlocks: ticket spinlocks?
Linux kernel support for user locks: futexes?

fast synchronization for read-mostly data: read-copy-update?

62

threads are hard

get synchronization wrong? weird things happen
..and only sometimes

are there better ways to handle the same problems?

concurrency — multiple things at once
parallelism — same thing, use more cores/etc.

63

beyond threads: event based programming

writing server that servers multiple clients?
e.g. multiple web browsers at a time

maybe don't really need multiple processors/cores
one network, not that fast

idea: one thread handles multiple connections

64

beyond threads: event based programming

writing server that servers multiple clients?
e.g. multiple web browsers at a time

maybe don't really need multiple processors/cores
one network, not that fast

idea: one thread handles multiple connections

issue: read from /write to multiple streams at once?

64

event loops

while (true) {

event = WaitForNextEvent();

switch (event.type) {

case NEW_CONNECTION:
handleNewConnection(event); break;

case CAN_READ_DATA_WITHOUT_WAITING:
connection = LookupConnection(event.fd);
handleRead (connection);
break;

case CAN_WRITE_DATA_WITHOUT_WAITING:
connection = LookupConnection(event.fd);
handleWrite(connection);
break;

65

some single-threaded processing code

void ProcessRequest(int fd) {
while (true) {
char command[1024] = {};
size_t comamnd_length = 0;
do {
ssize_t read_result =
read(fd, command + con

sizeof (command) -

class Connection {
int fd;
char command[1024];
size_t command_length;
char response[1024];
size_t total_written;

};...

if (read_result <= 0) handle_error();
command_length += read_result;
} while (command[command_length — 1] != '\n');
if (IsExitCommand(command)) { return; }

char response[1024];

computeResponse (response, commmand) ;

size_t total_written = 0;

while (total_written < sizeof(response)) {

}

66

some single-threaded processing code

void ProcessRequest(int fd) {
while (true) {
char command[1024] = {};
size_t comamnd_length = 0;
do {
ssize_t read_result =
read(fd, command + con

sizeof (command) -

class Connection {
int fd;
char command[1024];
size_t command_length;
char response[1024];
size_t total_written;

};...

if (read_result <= 0) handle_error();
command_length += read_result;
} while (command[command_length — 1] != '\n');
if (IsExitCommand(command)) { return; }

char response[1024];

computeResponse (response, commmand) ;

size_t total_written = 0;

while (total_written < sizeof(response)) {

}

66

as event code

handleRead (Connection *c) {
ssize_t read_result =
read(fd, c—>command + command_length,
sizeof (command) — c—>command_length);
if (read_result <= 0) handle_error();
c—>command_length += read_result;

if (c—>command[c—>command_length — 1] == '"\n') {
computeResponse(c—>response, c—>command) ;
if (IsExitCommand(command)) {
FinishConnection(c);
}
StopWaitingToRead(c—>fd) ;
StartWaitingToWrite(c—>fd);

67

as event code

handleRead (Connection *c) {
ssize_t read_result =
read(fd, c—>command + command_length,
sizeof (command) — c—>command_length);
if (read_result <= 0) handle_error();
c—>command_length += read_result;

if (c—>command[c—>command_length — 1] == '"\n') {
computeResponse(c—>response, c—>command) ;
if (IsExitCommand(command)) {
FinishConnection(c);
}
StopWaitingToRead (c—>fd) ;
StartWaitingToWrite(c—>fd);

67

POSIX support for event loops

select and poll functions
take list(s) of file descriptors to read and to write
wait for them to be read/writeable without waiting
(or for new connections associated with them, etc.)

many OS-specific extensions/improvements/alternatives:
examples: Linux epoll, Windows IO completion ports
better ways of managing list of file descriptors
do read/write when ready instead of just returning when reading/writing
is okay

68

message passing

instead of having variables, locks between threads...

send messages between threads/processes

what you need anyways between machines
big ‘supercomputers’ = really many machines together

arguably an easier model to program
can't have locking issues

69

message passing API

core functions: Send(told, data)/Recv(fromld, data)

simplest version: functions wait for other processes/threads
extensions: send/recv at same time, multiple messages at once, don't
wait, etc.

if (thread_id == 0) {
for (int i = 1; i < MAX_THREAD; ++1i) {
Send (i, getWorkForThread(i));
}

for (int i = 1; i < MAX_THREAD; ++i) {
WorkResult result;
Recv (i, &result);
handleResultForThread(i, result);

+

} else {

WorkInfo work;

Recv (0, &work);

Send (0. CombputeResultFor (work))

70

message passing game of life

process 2

process 3

process 4

divide grid
like you would for normal threads

each process stores cells
in that part of grid

(no shared memory!)

71

message passing game of life

process 2

process 3

process 4

process 3 only needs values
of cells around its area
(values of cells adjacent to
the ones it computes)

71

message passing game of life

process 2

process 3

process 4

small slivers of
other process’s cells needed

solution: process 2, 4
send messages with cells every iteras

71

message passing game of life

process 2

process 3

process 4

some of process 3's cells
also needed by process 2/4

so process 3 also sends messages

71

message passing game of life

process 2

!

process 3

f

process 4

one possible pseudocode:

all even processes send messages
(while odd receives), then

all odd processes send messages
(while even receives)

71

message passing game of life

process 2

f

process 3

'

process 4

one possible pseudocode:

all even processes send messages
(while odd receives), then

all odd processes send messages
(while even receives)

71

backup slides

72

fairer spinlocks

so far — everything on spinlocks
mutexes, condition variables — built with spinlocks

spinlocks are pretty ‘unfair’
where fair = get lock if waiting longest

last CPU that held spinlock more likely to get it again
already has the lock in its cache..

but there are many other ways to spinlocks...

73

ticket spinlocks

unsigned int serving_number;
unsigned int next_number;

Lock() {
// "take a number"
unsigned int my_number = atomic_read_and_increme
// wait until "now serving'" that number
while (atomic_read(&serving_number) != my_number
/* do nothing */
+

// MISSING: code to prevent reordering reads/wri
}

.- - 1.7\ e 74

ticket spinlocks and cache contention

still have contention to write next_number

..but no retrying writes!
should limit ‘ping-ponging'?

threads loop performing a read repeatedly while waiting
value will be broadcasted to all processors
‘free’ if using a bus
not-so-free if another way of connecting CPUs

75

beyond ticket spinlocks

Linux kernel used to use ticket spinlocks

now uses variant of MCS spinlocks — locks have linked-list queue!
careful use of atomic operations to modify queue

still try

goal: even less contention

unlocking value doesn’t require broadcasting to all CPUs
each processor waits on its own cache block

76

Linux futexes

futex — fast userspace mutex
goal: implement waiting like ‘proper’ mutexes, but..

don’t enter kernel mode most of the time

challenge: can't acquire lock to call scheduler from user mode

7

futex operations

futex (&lock_value, FUTEX_WAIT, expected_value, ...);

check if lock_value is expected_value
if not — return immediately
otherwise, sleep until it futex (.., FUTEX_WAKE is called

futex (&lock_value, FUTEX_WAKE, num_processes);

wakeup up to num_processes which called FUTEX_WAIT

78

mutexes with futexes

int lock_value; // UNLOCKED or LOCKED_NO_WAITERS or LOCKED_WAITERS
Lock() {

retry:
if (CompareAndSwap (&lock_value, UNLOCKED, LOCKED_NO_WAITERS) ==
/* acquired lock */
return;

} else if (CompareAndSwap(&lock_value, LOCKED_NO_WAITERS, LOCKEI
futex(&lock_value, FUTEX_WAIT, LOCKED_WAITERS, ...);

+
goto retry;
}
Unlock() {
if (CompareAndSwap (&lock_value, LOCKED_NO_WAITERS, UNLOCKED) ==
return;
} else {
lock_value = UNLOCKED;
futex (&lock_value, FUTEX_WAKE, 1, ...);
}

79

implementing futex__wait
hashtable: address — queue of waiting threads

use hashtable to look-up queue

lock queue

check value hasn't changed
if so abort, releasing lock

add thread to queue
set thread as WAITING (not runnable)
unlock queue

call scheduler

80

read-copy-update (high-level overview)

idea: read-mostly data structure

when reading:
read normally via shared pointer

when writing:
make a copy
atomically update the shared pointer
delete the old version eventually

tricky part: when is it safe to delete old version
implementation: scheduler integration

81

RCU operations

read lock — record: “l am reading now"
read unlock — record: “l am done reading now”
publish — atomically update pointer

after publish: wait until

all threads currently running have context switched
..and none of them set the “lI am reading now" bit

82

dining philosophers — ordering

mark some chopsticks places
rule: grab from marked place first
only grab other chopstick after that

83

dining philosophers — ordering

mark some chopsticks places
rule: grab from marked place first
only grab other chopstick after that

83

dining philosophers — ordering

mark some chopsticks places
rule: grab from marked place first
only grab other chopstick after that

83

dining philosophers — ordering

mark some chopsticks places
rule: grab from marked place first
only grab other chopstick after that

avoids circular dependency,
means everyone else
eventually gets a turn

83

dining philosophers — ordering

mark some chopsticks places
rule: grab from marked place first
only grab other chopstick after that

avoids circular dependency,
means everyone else
eventually gets a turn

83

dining philosophers — ordering

mark some chopsticks places
rule: grab from marked place first
only grab other chopstick after that

avoids circular dependency,
means everyone else
eventually gets a turn

83

dining philosophers — ordering

mark some chopsticks places
rule: grab from marked place first
only grab other chopstick after that

avoids circular dependency,
means everyone else
eventually gets a turn

83

dining philosophers — ordering

mark some chopsticks places
rule: grab from marked place first
only grab other chopstick after that

avoids circular dependency,
means everyone else
eventually gets a turn

83

dining philosophers — aborting

dining philosopher
what if someone’s impatient
just gives up instead of waiting

@, . L~
4 1]
‘\ '] 1
-7 ”
~
-~ <; i
N
3 1
@\~—'

84

dining philosophers — aborting

dining philosopher
— what if someone’s impatient

©‘, \, om just gives up instead of waiting

’

84

dining philosophers — aborting

now everyone else can eat

84

dining philosophers — aborting

now everyone else can eat

84

dining philosophers — aborting

now everyone else can eat

84

dining philosophers — aborting

now everyone else can eat

84

dining philosophers — aborting

now everyone else can eat

84

dining philosophers — aborting

now everyone else can eat

84

dining philosophers — aborting

now everyone else can eat

84

dining philosophers — aborting

now everyone else can eat

84

dining philosophers — aborting

and person who gave up
might succeed later

84

	producer/consumer error
	quiz note
	life HW notes
	deadlock examples
	a one-way bridge
	dining philosophers
	with pipes
	with locks
	with memory

	definition
	short intuition
	conditions for deadlock

	deadlock prevention
	techniques overview
	example: no waiting
	livelock
	revocable locks
	example: consistent order
	pre-requesting maximum resources

	deadlock detection
	resource allocation graphs
	…and resources with quantities
	for deadlock prevention

	deadlock recovery
	threads kinda suck
	event-based programming
	message passing
	ticket spinlock
	Linux futexes
	RCU
	extra dining philosophers examples
	dining philosophers and ordering
	dining philosophers and abort

