
1

last time (1)

mmap — process memory as list of mappings

mapping: read/write, private/shared, underlying file if any

memory as cache
cached parts of files (for read or “mapped” into process’s memory)
“anonymous” data (like heap) swapped to disk if needed

forward mapping for hits: page tables (virtual → physical page)

forward mapping for misses: OS data structures
virtual page → file + offset → cached pages/location on disk
virtual page → temporary location on disk

2

last time (2)

memory as cache…
reverse mapping: physical page → page table entries

needed to replace with some other data

Linux solution: data structure per physical page
point to underlying file if any, file points to processes using it
point to list of mappings (page table uses) for non-file data
(“anon_vma”)

data for heap, stack
copied-on-write parts of private mappings (e.g. initialized globals)

space-saving: share lists between related pages (e.g. heap pages after
fork)

started: page replacement goals
3

page replacement

step 1: evict a page to free a physical page

step 2: load new, more important in its place

4

evicting a page

find a ‘victim’ page to evict

remove victim page from page table, etc.
every page table it is referenced by
every list of file pages
…

if needed, save victim page to disk

5

page replacement goals

hit rate: minimize number of misses

throughput: minimize overhead/maximize performance

fairness: every process/user gets its ‘share’ of memory

will start with optimizing hit rate

6

max hit rate ≈ max throughput

optimizing hit rate almost optimizes throughput, but…

cache miss costs are variable
creating zero page versus reading data from slow disk?
write back dirty page before reading a new one or not?
reading multiple pages at a time from disk (faster per page read)?
…

7

max hit rate ≈ max throughput

optimizing hit rate almost optimizes throughput, but…

cache miss costs are variable
creating zero page versus reading data from slow disk?
write back dirty page before reading a new one or not?
reading multiple pages at a time from disk (faster per page read)?
…

7

being proactive?

can avoid misses by “reading ahead”
guess what’s needed — read in ahead of time
wrong guesses can have costs besides more cache misses

we will get back to this later

for now — only access/evict on demand

8

optimizing for hit-rate

assuming:
we only bring in pages on demand (no reading in advance)
we only care about maximizing cache hits

best possible page replacement algorithm: Belady’s MIN

replace the page in memory accessed furthest in the future
(never accessed again = infinitely far in the future)

impossible to implement in practice, but…

9

optimizing for hit-rate

assuming:
we only bring in pages on demand (no reading in advance)
we only care about maximizing cache hits

best possible page replacement algorithm: Belady’s MIN

replace the page in memory accessed furthest in the future
(never accessed again = infinitely far in the future)

impossible to implement in practice, but…

9

Belady’s MIN

A B C A B D A D B C B

1 A C
2 B
3 C D

phys.
page#

referenced (virtual) pages:
time

A next accessed in 1 time unit
B next accessed in 3 time units
C next accessed in 4 time units
choose to replace C

A next accessed in ∞ time units
B next accessed in 1 time units
D next accessed in ∞ time units
choose to replace A or D (equally good)

10

Belady’s MIN

A B C A B D A D B C B

1 A C
2 B
3 C D

phys.
page#

referenced (virtual) pages:
time

A next accessed in 1 time unit
B next accessed in 3 time units
C next accessed in 4 time units
choose to replace C

A next accessed in ∞ time units
B next accessed in 1 time units
D next accessed in ∞ time units
choose to replace A or D (equally good)

10

Belady’s MIN

A B C A B D A D B C B

1 A C
2 B
3 C D

phys.
page#

referenced (virtual) pages:
time

A next accessed in 1 time unit
B next accessed in 3 time units
C next accessed in 4 time units
choose to replace C

A next accessed in ∞ time units
B next accessed in 1 time units
D next accessed in ∞ time units
choose to replace A or D (equally good)

10

Belady’s MIN

A B C A B D A D B C B

1 A C
2 B
3 C D

phys.
page#

referenced (virtual) pages:
time

A next accessed in 1 time unit
B next accessed in 3 time units
C next accessed in 4 time units
choose to replace C

A next accessed in ∞ time units
B next accessed in 1 time units
D next accessed in ∞ time units
choose to replace A or D (equally good)

10

Belady’s MIN

A B C A B D A D B C B

1 A C
2 B
3 C D

phys.
page#

referenced (virtual) pages:
time

A next accessed in 1 time unit
B next accessed in 3 time units
C next accessed in 4 time units
choose to replace C

A next accessed in ∞ time units
B next accessed in 1 time units
D next accessed in ∞ time units
choose to replace A or D (equally good)

10

predicting the future?

can’t really…

look for common patterns

11

the working set model

one common pattern: working sets

at any time, program is using a subset of its memory
set of running functions
their local variables, (parts of) global data structure

subset called its working set

rest of memory is inactive

12

cache size versus miss rate

Bienia et al, “The PARSEC Benchmark Suite: Characterization and Architectural Implications” 13

working sets and running many programs

give each program its working set

…and, to run as much as possible, not much more
inactive — won’t be used

replacemnet policy: identify working sets (how?)

replace anything that’s not in in it

14

working sets and running many programs

give each program its working set

…and, to run as much as possible, not much more
inactive — won’t be used

replacemnet policy: identify working sets (how?)

replace anything that’s not in in it

14

working set model and phases

what happens when a program changes what it’s doing?

e.g. finish parsing input, now process it

phase change — discard one working set, give another

phase changes likely to have spike of cache misses
whatever was cached, not what’s being accessed anymore
maybe along with change in kind of instructions being run

15

evidence of phases (gzip)

Sherwood et al, “Discovering and Exploiting Program Phases” 16

evidence of phases (gcc)

Sherwood et al, “Discovering and Exploiting Program Phases” 17

estimating working sets

working set ≈ what’s been used recently
assuming not in phase change…

so, what a program recently used ≈ working set

can use this idea to estimate working set (from list of memory
accesses)

18

using working set estimates

one idea: split memory into part of working set or not

not enough space for all working sets — stop whole program
maybe a good idea, not done by common consumer/server OSes

allocating new memory: take from least recently used memory
= not in a working set
what most current OS try to do

19

using working set estimates

one idea: split memory into part of working set or not

not enough space for all working sets — stop whole program
maybe a good idea, not done by common consumer/server OSes

allocating new memory: take from least recently used memory
= not in a working set
what most current OS try to do

19

using working set estimates

one idea: split memory into part of working set or not

not enough space for all working sets — stop whole program
maybe a good idea, not done by common consumer/server OSes

allocating new memory: take from least recently used memory
= not in a working set
what most current OS try to do

19

practically optimizing for hit-rate

recall?: locality assumption

temporal locality: things accessed now will be accessed again soon

(for now: not concerned about spatial locality)

more possible policies: least recently used or least frequently used

20

practically optimizing for hit-rate

recall?: locality assumption

temporal locality: things accessed now will be accessed again soon

(for now: not concerned about spatial locality)

more possible policies: least recently used or least frequently used

20

least recently used (the good case)

A B C A B D A D B C B

1 A C
2 B
3 C D

phys.
page#

referenced (virtual) pages:
time

A last accessed 2 time units ago
B last accessed 1 time unit ago
C last accessed 3 time units ago
choose to replace C

A last accessed in 3 time units ago
B last accessed in 1 time unit ago
D last accessed in 2 time units ago
choose to replace A

21

least recently used (the good case)

A B C A B D A D B C B

1 A C
2 B
3 C D

phys.
page#

referenced (virtual) pages:
time

A last accessed 2 time units ago
B last accessed 1 time unit ago
C last accessed 3 time units ago
choose to replace C

A last accessed in 3 time units ago
B last accessed in 1 time unit ago
D last accessed in 2 time units ago
choose to replace A

21

least recently used (the good case)

A B C A B D A D B C B

1 A C
2 B
3 C D

phys.
page#

referenced (virtual) pages:
time

A last accessed 2 time units ago
B last accessed 1 time unit ago
C last accessed 3 time units ago
choose to replace C

A last accessed in 3 time units ago
B last accessed in 1 time unit ago
D last accessed in 2 time units ago
choose to replace A

21

least recently used (the good case)

A B C A B D A D B C B

1 A C
2 B
3 C D

phys.
page#

referenced (virtual) pages:
time

A last accessed 2 time units ago
B last accessed 1 time unit ago
C last accessed 3 time units ago
choose to replace C

A last accessed in 3 time units ago
B last accessed in 1 time unit ago
D last accessed in 2 time units ago
choose to replace A

21

least recently used (the good case)

A B C A B D A D B C B

1 A C
2 B
3 C D

phys.
page#

referenced (virtual) pages:
time

A last accessed 2 time units ago
B last accessed 1 time unit ago
C last accessed 3 time units ago
choose to replace C

A last accessed in 3 time units ago
B last accessed in 1 time unit ago
D last accessed in 2 time units ago
choose to replace A

21

least recently used (the worst case)

A B C D A B C D A B C

1 A D C B
2 B A D C
3 C B A

phys.
page#

time

1 A B
2 B C
3 C D

8 replacements with LRU
versus 3 replacements with MIN:

22

least recently used (the worst case)

A B C D A B C D A B C

1 A D C B
2 B A D C
3 C B A

phys.
page#

time

1 A B
2 B C
3 C D

8 replacements with LRU
versus 3 replacements with MIN:

22

least recently used (exercise)

A B A D C B D B C D A

1
2
3

23

aside: Zipf model

working set model makes sense for programs

but not the only use of caches

example: Wikipedia — most popular articles

24

Wikipedia page views for 1 hour

100 101 102 103 104 105 106

Rank

100

101

102

103

104

105

Vi

ew
s

NOTE: log-log-scale 25

Zipf distribution

Zipf distribution: straight line on log-log graph of rank v. count

a few items a much more popular than others
most caching benefit here

long tail: lots of items accessed a very small number of times
more cache less efficient — but does something
not like working set model, where there’s just not more

26

good caching strategy for Zipf

keep the most recently popular things

up till what you have room for
still benefit to caching things used 100 times/hour versus 1000

LRU is okay — popular things always recently used
seems to be what Wikipedia’s caches do?

27

good caching strategy for Zipf

keep the most recently popular things

up till what you have room for
still benefit to caching things used 100 times/hour versus 1000

LRU is okay — popular things always recently used
seems to be what Wikipedia’s caches do?

27

alternative policies for Zipf

least frequently used
very simple policy
if pure Zipf distribution — what you want
practical problem: what about changes in popularity?

least frequently used + adjustments for ‘recentness’

more?

28

pure LRU implementation

implementing LRU in software

maintain doubly-linked list of all physical pages

whenever a page is accessed:
remove page from linked list, then
add page to head of list

whenever a page needs to replaced:
remove a page from the tail of the linked list, then
evict that page from all page tables (and anything else)
and use that page for whatever needs to be loaded

need to run code on every access
mechanism: make every access page fault
which will make everything really slow

29

pure LRU implementation

implementing LRU in software

maintain doubly-linked list of all physical pages

whenever a page is accessed:
remove page from linked list, then
add page to head of list

whenever a page needs to replaced:
remove a page from the tail of the linked list, then
evict that page from all page tables (and anything else)
and use that page for whatever needs to be loaded

need to run code on every access
mechanism: make every access page fault
which will make everything really slow

29

page fault for every access?

want every access to page fault? make every page invalid
…but want access to happen eventually
…which requires marking page as valid
…which makes future accesses not fault

one solution: use debugging support to run one instruction
x86: “TF flag”

…then reset pages as invalid

okay, so I took something really slow and made it slower

30

page fault for every access?

want every access to page fault? make every page invalid
…but want access to happen eventually
…which requires marking page as valid
…which makes future accesses not fault

one solution: use debugging support to run one instruction
x86: “TF flag”

…then reset pages as invalid

okay, so I took something really slow and made it slower

30

page fault for every access?

want every access to page fault? make every page invalid
…but want access to happen eventually
…which requires marking page as valid
…which makes future accesses not fault

one solution: use debugging support to run one instruction
x86: “TF flag”

…then reset pages as invalid

okay, so I took something really slow and made it slower
30

so, what’s practical

probably won’t implement LRU — too slow

what can we practically do?

31

tools for tracking accesses

approximating LRU = “was this accessed recently”?

don’t need to detect all accesses, only one recent one

ways to detect accesses:
mark page invalid, if page fault happens make valid and record ‘accessed’
‘accessed’ or ‘referenced’ bit set by HW

usage: start detecting accesses,
if no access at all a little later — not recently accesssed

32

tools for tracking accesses

approximating LRU = “was this accessed recently”?

don’t need to detect all accesses, only one recent one

ways to detect accesses:
mark page invalid, if page fault happens make valid and record ‘accessed’
‘accessed’ or ‘referenced’ bit set by HW

usage: start detecting accesses,
if no access at all a little later — not recently accesssed

32

tools for tracking accesses

approximating LRU = “was this accessed recently”?

don’t need to detect all accesses, only one recent one

ways to detect accesses:
mark page invalid, if page fault happens make valid and record ‘accessed’
‘accessed’ or ‘referenced’ bit set by HW

usage: start detecting accesses,
if no access at all a little later — not recently accesssed

32

tools for tracking accesses

approximating LRU = “was this accessed recently”?

don’t need to detect all accesses, only one recent one

ways to detect accesses:
mark page invalid, if page fault happens make valid and record ‘accessed’
‘accessed’ or ‘referenced’ bit set by HW

usage: start detecting accesses,
if no access at all a little later — not recently accesssed

32

approximating LRU: second chance
ordered list

of physical pages

‘referenced’ bit set?

“new” pages start at top of list

yes, reset referenced bit
and put back on list

no, evict this page

page made it to the bottom
was it referenced in that time?
yes — give a second chance

page made it to the bottom
was it referenced in that time?
no — good choice to evict

33

approximating LRU: second chance
ordered list

of physical pages

‘referenced’ bit set?

“new” pages start at top of list

yes, reset referenced bit
and put back on list

no, evict this page

page made it to the bottom
was it referenced in that time?
yes — give a second chance

page made it to the bottom
was it referenced in that time?
no — good choice to evict

33

approximating LRU: second chance
ordered list

of physical pages

‘referenced’ bit set?

“new” pages start at top of list

yes, reset referenced bit
and put back on list

no, evict this page

page made it to the bottom
was it referenced in that time?
yes — give a second chance

page made it to the bottom
was it referenced in that time?
no — good choice to evict

33

second chance example

A B C D — — — B A — C —

1 A D
2 B C
3 C C A

page list
last added *1R *2R *3R 1NR 2NR 3NR *1R 1R 2NR *3R 1NR *2R

— 3NR 1R 2R 3R 1NR 2NR 3NR 3NR 1R 2NR 3R 1NR

end of list 2NR 3NR 1R 2R 3R 1NR 2NR *2R 3NR 1R 2NR 3R

page 2 was at bottom of list
is not referenced
okay to use

page 1 was at bottom of list
reference — give second chance
moves to top of list
clear referenced bit

eventually page 1 gets to bottom of list again
but now not referenced — useB referenced — flips referenced bit

34

second chance example

A B C D — — — B A — C —

1 A D
2 B C
3 C C A

page list
last added *1R *2R *3R 1NR 2NR 3NR *1R 1R 2NR *3R 1NR *2R

— 3NR 1R 2R 3R 1NR 2NR 3NR 3NR 1R 2NR 3R 1NR

end of list 2NR 3NR 1R 2R 3R 1NR 2NR *2R 3NR 1R 2NR 3R

page 2 was at bottom of list
is not referenced
okay to use

page 1 was at bottom of list
reference — give second chance
moves to top of list
clear referenced bit

eventually page 1 gets to bottom of list again
but now not referenced — useB referenced — flips referenced bit

34

second chance example

A B C D — — — B A — C —

1 A D
2 B C
3 C C A

page list
last added *1R *2R *3R 1NR 2NR 3NR *1R 1R 2NR *3R 1NR *2R

— 3NR 1R 2R 3R 1NR 2NR 3NR 3NR 1R 2NR 3R 1NR

end of list 2NR 3NR 1R 2R 3R 1NR 2NR *2R 3NR 1R 2NR 3R

page 2 was at bottom of list
is not referenced
okay to use

page 1 was at bottom of list
reference — give second chance
moves to top of list
clear referenced bit

eventually page 1 gets to bottom of list again
but now not referenced — useB referenced — flips referenced bit

34

second chance example

A B C D — — — B A — C —

1 A D
2 B C
3 C C A

page list
last added *1R *2R *3R 1NR 2NR 3NR *1R 1R 2NR *3R 1NR *2R

— 3NR 1R 2R 3R 1NR 2NR 3NR 3NR 1R 2NR 3R 1NR

end of list 2NR 3NR 1R 2R 3R 1NR 2NR *2R 3NR 1R 2NR 3R

page 2 was at bottom of list
is not referenced
okay to use

page 1 was at bottom of list
reference — give second chance
moves to top of list
clear referenced bit

eventually page 1 gets to bottom of list again
but now not referenced — useB referenced — flips referenced bit

34

second chance example

A B C D — — — B A — C —

1 A D
2 B C
3 C C A

page list
last added *1R *2R *3R 1NR 2NR 3NR *1R 1R 2NR *3R 1NR *2R

— 3NR 1R 2R 3R 1NR 2NR 3NR 3NR 1R 2NR 3R 1NR

end of list 2NR 3NR 1R 2R 3R 1NR 2NR *2R 3NR 1R 2NR 3R

page 2 was at bottom of list
is not referenced
okay to use

page 1 was at bottom of list
reference — give second chance
moves to top of list
clear referenced bit

eventually page 1 gets to bottom of list again
but now not referenced — use

B referenced — flips referenced bit

34

second chance example

A B C D — — — B A — C —

1 A D
2 B C
3 C C A

page list
last added *1R *2R *3R 1NR 2NR 3NR *1R 1R 2NR *3R 1NR *2R

— 3NR 1R 2R 3R 1NR 2NR 3NR 3NR 1R 2NR 3R 1NR

end of list 2NR 3NR 1R 2R 3R 1NR 2NR *2R 3NR 1R 2NR 3R

page 2 was at bottom of list
is not referenced
okay to use

page 1 was at bottom of list
reference — give second chance
moves to top of list
clear referenced bit

eventually page 1 gets to bottom of list again
but now not referenced — use

B referenced — flips referenced bit

34

second chance example

A B C D — — — B A — C —

1 A D
2 B C
3 C C A

page list
last added *1R *2R *3R 1NR 2NR 3NR *1R 1R 2NR *3R 1NR *2R

— 3NR 1R 2R 3R 1NR 2NR 3NR 3NR 1R 2NR 3R 1NR

end of list 2NR 3NR 1R 2R 3R 1NR 2NR *2R 3NR 1R 2NR 3R

page 2 was at bottom of list
is not referenced
okay to use

page 1 was at bottom of list
reference — give second chance
moves to top of list
clear referenced bit

eventually page 1 gets to bottom of list again
but now not referenced — useB referenced — flips referenced bit

34

approximating LRU: SEQ

active list

inactive list
guess: oldest active page
is really inactive page

inactive page referenced?
not really inactive
move to active list

evict page at bottom of inactive list
know: not referenced ‘recently’

“new” pages start in active list

detecting references?
inactive pages marked as invalid

this is current Linux algorithm for non-file pages
extra details needed: how big is the inactive list?

35

approximating LRU: SEQ

active list

inactive list
guess: oldest active page
is really inactive page

inactive page referenced?
not really inactive
move to active list

evict page at bottom of inactive list
know: not referenced ‘recently’

“new” pages start in active list

detecting references?
inactive pages marked as invalid

this is current Linux algorithm for non-file pages
extra details needed: how big is the inactive list?

35

approximating LRU: SEQ

active list

inactive list
guess: oldest active page
is really inactive page

inactive page referenced?
not really inactive
move to active list

evict page at bottom of inactive list
know: not referenced ‘recently’

“new” pages start in active list

detecting references?
inactive pages marked as invalid

this is current Linux algorithm for non-file pages
extra details needed: how big is the inactive list?

35

approximating LRU: SEQ

active list

inactive list
guess: oldest active page
is really inactive page

inactive page referenced?
not really inactive
move to active list

evict page at bottom of inactive list
know: not referenced ‘recently’

“new” pages start in active list

detecting references?
inactive pages marked as invalid

this is current Linux algorithm for non-file pages
extra details needed: how big is the inactive list?

35

approximating LRU: SEQ

active list

inactive list
guess: oldest active page
is really inactive page

inactive page referenced?
not really inactive
move to active list

evict page at bottom of inactive list
know: not referenced ‘recently’

“new” pages start in active list

detecting references?
inactive pages marked as invalid

this is current Linux algorithm for non-file pages
extra details needed: how big is the inactive list?

35

approximating LRU: SEQ

active list

inactive list
guess: oldest active page
is really inactive page

inactive page referenced?
not really inactive
move to active list

evict page at bottom of inactive list
know: not referenced ‘recently’

“new” pages start in active list

detecting references?
inactive pages marked as invalid

this is current Linux algorithm for non-file pages
extra details needed: how big is the inactive list?

35

approximating LRU: SEQ

active list

inactive list
guess: oldest active page
is really inactive page

inactive page referenced?
not really inactive
move to active list

evict page at bottom of inactive list
know: not referenced ‘recently’

“new” pages start in active list

detecting references?
inactive pages marked as invalid

this is current Linux algorithm for non-file pages
extra details needed: how big is the inactive list?

35

tracking usage: CLOCK (view 1)

page #4: last referenced bits: Y Y Y…
page #5: last referenced bits: N N N…
page #6: last referenced bits: N Y Y…
page #7: last referenced bits: Y N Y…
page #8: last referenced bits: Y Y N…
page #1: last referenced bits: Y Y Y…
page #2: last referenced bits: N N N…
page #3: last referenced bits: Y Y N…

ordered list
of physical pages

periodically:
take page from bottom of list
record current referenced bit
clear reference bit for next pass
add to top of list

36

tracking usage: CLOCK (view 2)

page #1:
last ref. bits: Y Y Y…

page #2:
last ref. bits: N N N…

page #3:
last ref. bits: N Y Y…

page #4:
last ref. bits: Y N Y…

page #5:
last ref. bits: Y Y N…

page #6:
last ref. bits: Y Y Y…

page #7:
last ref. bits: N N N…

page #8:
last ref. bits: Y Y N…

37

lazy replacement?

so far: don’t do anything special until memory is full

only then is there a reason to writeback pages or evict pages

but real OSes are more proactive

38

lazy replacement?

so far: don’t do anything special until memory is full

only then is there a reason to writeback pages or evict pages

but real OSes are more proactive

38

non-lazy writeback

what happens when a computer loses power

how much data can you lose?

if we neve run out of memory…all of it?
no changed data written back

solution: scan for dirty bits periodicially and writeback

39

non-lazy eviction

so far — allocating memory involves evicting pages

hopefully pages that haven’t been used a long time anyways

could evict earlier “in the background” — means faster allocations
probably wasn’t using the CPU anyways

common strategy: maintain a small number of available pages
might also make sure they start out pre-zeroed, etc.

40

problems with LRU

question: when does LRU perform poorly?

only reading things once

repeated scans of large amounts of data

both common access patterns for files

41

problems with LRU

question: when does LRU perform poorly?

only reading things once

repeated scans of large amounts of data

both common access patterns for files

41

problems with LRU

question: when does LRU perform poorly?

only reading things once

repeated scans of large amounts of data

both common access patterns for files

41

CLOCK-Pro: special casing for one-use pages

by default, Linux tries to handle these patterns for file pages

basic idea: don’t consider pages active until the second access

single scans of file won’t “pollute” cache

without this change: reading large files slows down other programs
recently read part of large file steals space from active programs

42

CLOCK-Pro: special casing for one-use pages
active list

inactive list

not ref’d?
referenced?

referenced once?
ignore

referenced twice?
to active

evict page at bottom of inactive list
either file page referenced once or
referenced multiple times, but not recently

“new” file pages

initial guess: file pages will be used at most once,
then can be discarded

once pages become active, any reference keeps them activecount two references for inactive pages
be more reluctant

this is current Linux algorithm for file pages

43

CLOCK-Pro: special casing for one-use pages
active list

inactive list

not ref’d?
referenced?

referenced once?
ignore

referenced twice?
to active

evict page at bottom of inactive list
either file page referenced once or
referenced multiple times, but not recently

“new” file pages
initial guess: file pages will be used at most once,
then can be discarded

once pages become active, any reference keeps them activecount two references for inactive pages
be more reluctant

this is current Linux algorithm for file pages

43

CLOCK-Pro: special casing for one-use pages
active list

inactive list

not ref’d?
referenced?

referenced once?
ignore

referenced twice?
to active

evict page at bottom of inactive list
either file page referenced once or
referenced multiple times, but not recently

“new” file pages

initial guess: file pages will be used at most once,
then can be discarded

once pages become active, any reference keeps them activecount two references for inactive pages
be more reluctant

this is current Linux algorithm for file pages

43

CLOCK-Pro: special casing for one-use pages
active list

inactive list

not ref’d?
referenced?

referenced once?
ignore

referenced twice?
to active

evict page at bottom of inactive list
either file page referenced once or
referenced multiple times, but not recently

“new” file pages

initial guess: file pages will be used at most once,
then can be discarded

once pages become active, any reference keeps them active

count two references for inactive pages
be more reluctant

this is current Linux algorithm for file pages

43

CLOCK-Pro: special casing for one-use pages
active list

inactive list

not ref’d?
referenced?

referenced once?
ignore

referenced twice?
to active

evict page at bottom of inactive list
either file page referenced once or
referenced multiple times, but not recently

“new” file pages

initial guess: file pages will be used at most once,
then can be discarded

once pages become active, any reference keeps them active

count two references for inactive pages
be more reluctant

this is current Linux algorithm for file pages

43

CLOCK-Pro: special casing for one-use pages
active list

inactive list

not ref’d?
referenced?

referenced once?
ignore

referenced twice?
to active

evict page at bottom of inactive list
either file page referenced once or
referenced multiple times, but not recently

“new” file pages

initial guess: file pages will be used at most once,
then can be discarded

once pages become active, any reference keeps them activecount two references for inactive pages
be more reluctant

this is current Linux algorithm for file pages

43

CLOCK-Pro: special casing for one-use pages
active list

inactive list

not ref’d?
referenced?

referenced once?
ignore

referenced twice?
to active

evict page at bottom of inactive list
either file page referenced once or
referenced multiple times, but not recently

“new” file pages

initial guess: file pages will be used at most once,
then can be discarded

once pages become active, any reference keeps them activecount two references for inactive pages
be more reluctant

this is current Linux algorithm for file pages

43

default Linux page replacement summary

Figure: https://linux-mm.org/PageReplacementDesign 44

https://linux-mm.org/PageReplacementDesign

default Linux page replacement summary

identify inactive pages — guess: not going to be accessed soon
file pages which haven’t been accessed more than once, or
any pages which haven’t been accessed recently

some minimum threshold of inactive pages
add to inactive list in background
mark inactive pages as invalid to detect use quickly

oldest inactive page still not used → evict that one
otherwise: give it a second chance

45

backup slides

46

swapping decisions

write policy

replacement policy

47

swapping decisions

write policy

replacement policy

48

swapping is writeback

implementing write-through is hard
when fault happens — physical page not written
when OS resumes process — no chance to forward write
HW itself doesn’t know how to write to disk

write-through would also be really slow
HDD/SSD perform best if one writes at least a whole page at a time

49

implementing writeback

need a dirty bit per page (“was page modified”)

x86: kept in the page table!

option 1 (most common): hardware sets dirty bit in page table
entry (on write)

bit means “physical page was modified using this PTE”

option 2: OS sets page read-only, flips read-only+dirty bit on fault

50

swapping decisions

write policy

replacement policy

51

replacement policies really matter

huge cost for “miss” on swapping (milliseconds!)

replacement policy implemented in software
a lot more room for fancy policies

usualy goal: least-recently-used approximation

52

LRU replacement?

problem: need to identify when pages are used
ideally every single time

not practical to do this exactly
HW would need to keep a list of when each page was accessed, or
SW would need to force every access to trigger a fault

53

second chance example

A B C D — — — B A — C —

1 A D
2 B C
3 C C A

page list
last added *1R *2R *3R 1NR 2NR 3NR *1R 1R 2NR *3R 1NR *2R

— 3NR 1R 2R 3R 1NR 2NR 3NR 3NR 1R 2NR 3R 1NR

end of list 2NR 3NR 1R 2R 3R 1NR 2NR *2R 3NR 1R 2NR 3R

page 2 was at bottom of list
is not referenced
okay to use

page 1 was at bottom of list
reference — give second chance
moves to top of list
clear referenced bit

eventually page 1 gets to bottom of list again
but now not referenced — useB referenced — flips referenced bit

54

second chance example

A B C D — — — B A — C —

1 A D
2 B C
3 C C A

page list
last added *1R *2R *3R 1NR 2NR 3NR *1R 1R 2NR *3R 1NR *2R

— 3NR 1R 2R 3R 1NR 2NR 3NR 3NR 1R 2NR 3R 1NR

end of list 2NR 3NR 1R 2R 3R 1NR 2NR *2R 3NR 1R 2NR 3R

page 2 was at bottom of list
is not referenced
okay to use

page 1 was at bottom of list
reference — give second chance
moves to top of list
clear referenced bit

eventually page 1 gets to bottom of list again
but now not referenced — useB referenced — flips referenced bit

54

second chance example

A B C D — — — B A — C —

1 A D
2 B C
3 C C A

page list
last added *1R *2R *3R 1NR 2NR 3NR *1R 1R 2NR *3R 1NR *2R

— 3NR 1R 2R 3R 1NR 2NR 3NR 3NR 1R 2NR 3R 1NR

end of list 2NR 3NR 1R 2R 3R 1NR 2NR *2R 3NR 1R 2NR 3R

page 2 was at bottom of list
is not referenced
okay to use

page 1 was at bottom of list
reference — give second chance
moves to top of list
clear referenced bit

eventually page 1 gets to bottom of list again
but now not referenced — useB referenced — flips referenced bit

54

second chance example

A B C D — — — B A — C —

1 A D
2 B C
3 C C A

page list
last added *1R *2R *3R 1NR 2NR 3NR *1R 1R 2NR *3R 1NR *2R

— 3NR 1R 2R 3R 1NR 2NR 3NR 3NR 1R 2NR 3R 1NR

end of list 2NR 3NR 1R 2R 3R 1NR 2NR *2R 3NR 1R 2NR 3R

page 2 was at bottom of list
is not referenced
okay to use

page 1 was at bottom of list
reference — give second chance
moves to top of list
clear referenced bit

eventually page 1 gets to bottom of list again
but now not referenced — useB referenced — flips referenced bit

54

second chance example

A B C D — — — B A — C —

1 A D
2 B C
3 C C A

page list
last added *1R *2R *3R 1NR 2NR 3NR *1R 1R 2NR *3R 1NR *2R

— 3NR 1R 2R 3R 1NR 2NR 3NR 3NR 1R 2NR 3R 1NR

end of list 2NR 3NR 1R 2R 3R 1NR 2NR *2R 3NR 1R 2NR 3R

page 2 was at bottom of list
is not referenced
okay to use

page 1 was at bottom of list
reference — give second chance
moves to top of list
clear referenced bit

eventually page 1 gets to bottom of list again
but now not referenced — use

B referenced — flips referenced bit

54

second chance example

A B C D — — — B A — C —

1 A D
2 B C
3 C C A

page list
last added *1R *2R *3R 1NR 2NR 3NR *1R 1R 2NR *3R 1NR *2R

— 3NR 1R 2R 3R 1NR 2NR 3NR 3NR 1R 2NR 3R 1NR

end of list 2NR 3NR 1R 2R 3R 1NR 2NR *2R 3NR 1R 2NR 3R

page 2 was at bottom of list
is not referenced
okay to use

page 1 was at bottom of list
reference — give second chance
moves to top of list
clear referenced bit

eventually page 1 gets to bottom of list again
but now not referenced — use

B referenced — flips referenced bit

54

second chance example

A B C D — — — B A — C —

1 A D
2 B C
3 C C A

page list
last added *1R *2R *3R 1NR 2NR 3NR *1R 1R 2NR *3R 1NR *2R

— 3NR 1R 2R 3R 1NR 2NR 3NR 3NR 1R 2NR 3R 1NR

end of list 2NR 3NR 1R 2R 3R 1NR 2NR *2R 3NR 1R 2NR 3R

page 2 was at bottom of list
is not referenced
okay to use

page 1 was at bottom of list
reference — give second chance
moves to top of list
clear referenced bit

eventually page 1 gets to bottom of list again
but now not referenced — useB referenced — flips referenced bit

54

toy program memory

code

data/heap

empty/more heap?

stack

00 0000 0000 = 0x000

01 0000 0000 = 0x100

10 0000 0000 = 0x200

11 0000 0000 = 0x300

11 1111 1111 = 0x3FF

virtual page# 0

virtual page# 1

virtual page# 2

virtual page# 3

divide memory into pages (28 bytes in this case)
“virtual” = addresses the program sees

page number is upper bits of address
(because page size is power of two)rest of address is called page offset

55

toy program memory

code

data/heap

empty/more heap?

stack

00 0000 0000 = 0x000

01 0000 0000 = 0x100

10 0000 0000 = 0x200

11 0000 0000 = 0x300

11 1111 1111 = 0x3FF

virtual page# 0

virtual page# 1

virtual page# 2

virtual page# 3

divide memory into pages (28 bytes in this case)
“virtual” = addresses the program sees

page number is upper bits of address
(because page size is power of two)rest of address is called page offset

55

toy program memory

code

data/heap

empty/more heap?

stack

00 0000 0000 = 0x000

01 0000 0000 = 0x100

10 0000 0000 = 0x200

11 0000 0000 = 0x300

11 1111 1111 = 0x3FF

virtual page# 0

virtual page# 1

virtual page# 2

virtual page# 3

divide memory into pages (28 bytes in this case)
“virtual” = addresses the program sees

page number is upper bits of address
(because page size is power of two)rest of address is called page offset

55

toy program memory

code

data/heap

empty/more heap?

stack

00 0000 0000 = 0x000

01 0000 0000 = 0x100

10 0000 0000 = 0x200

11 0000 0000 = 0x300

11 1111 1111 = 0x3FF

virtual page# 0

virtual page# 1

virtual page# 2

virtual page# 3

divide memory into pages (28 bytes in this case)
“virtual” = addresses the program sees

page number is upper bits of address
(because page size is power of two)

rest of address is called page offset

55

toy program memory

code

data/heap

empty/more heap?

stack

00 0000 0000 = 0x000

01 0000 0000 = 0x100

10 0000 0000 = 0x200

11 0000 0000 = 0x300

11 1111 1111 = 0x3FF

virtual page# 0

virtual page# 1

virtual page# 2

virtual page# 3

divide memory into pages (28 bytes in this case)
“virtual” = addresses the program sees

page number is upper bits of address
(because page size is power of two)

rest of address is called page offset

55

toy physical memory

program memory
virtual addresses

00 0000 0000 to
00 1111 1111

01 0000 0000 to
01 1111 1111

10 0000 0000 to
10 1111 1111

11 0000 0000 to
11 1111 1111

real memory
physical addresses

000 0000 0000 to
000 1111 1111

001 0000 0000 to
001 1111 1111

111 0000 0000 to
111 1111 1111

physical page 0
physical page 1

physical page 7

virtual
page #

physical
page #

00 010 (2)
01 111 (7)
10 none
11 000 (0)

page table!

56

toy physical memory

program memory
virtual addresses

00 0000 0000 to
00 1111 1111

01 0000 0000 to
01 1111 1111

10 0000 0000 to
10 1111 1111

11 0000 0000 to
11 1111 1111

real memory
physical addresses

000 0000 0000 to
000 1111 1111

001 0000 0000 to
001 1111 1111

111 0000 0000 to
111 1111 1111

physical page 0
physical page 1

physical page 7

virtual
page #

physical
page #

00 010 (2)
01 111 (7)
10 none
11 000 (0)

page table!

56

toy physical memory

program memory
virtual addresses

00 0000 0000 to
00 1111 1111

01 0000 0000 to
01 1111 1111

10 0000 0000 to
10 1111 1111

11 0000 0000 to
11 1111 1111

real memory
physical addresses

000 0000 0000 to
000 1111 1111

001 0000 0000 to
001 1111 1111

111 0000 0000 to
111 1111 1111

physical page 0
physical page 1

physical page 7

virtual
page #

physical
page #

00 010 (2)
01 111 (7)
10 none
11 000 (0)

page table!

56

toy physical memory

program memory
virtual addresses

00 0000 0000 to
00 1111 1111

01 0000 0000 to
01 1111 1111

10 0000 0000 to
10 1111 1111

11 0000 0000 to
11 1111 1111

real memory
physical addresses

000 0000 0000 to
000 1111 1111

001 0000 0000 to
001 1111 1111

111 0000 0000 to
111 1111 1111

physical page 0
physical page 1

physical page 7

virtual
page #

physical
page #

00 010 (2)
01 111 (7)
10 none
11 000 (0)

page table!

56

toy physical memory

program memory
virtual addresses

00 0000 0000 to
00 1111 1111

01 0000 0000 to
01 1111 1111

10 0000 0000 to
10 1111 1111

11 0000 0000 to
11 1111 1111

real memory
physical addresses

000 0000 0000 to
000 1111 1111

001 0000 0000 to
001 1111 1111

111 0000 0000 to
111 1111 1111

physical page 0
physical page 1

physical page 7

virtual
page #

physical
page #

00 010 (2)
01 111 (7)
10 none
11 000 (0)

page table!

56

toy page table lookup

virtual
page #valid? physical page # read

OK?
write
OK?

00 1 010 (2, code) 1 0
01 1 111 (7, data) 1 1
10 0 ??? (ignored) 0 0
11 1 000 (0, stack) 1 1

01 1101 0010 — address from CPU

trigger exception if 0?

111 1101 0010

to cache (data or instruction)

“page
table
entry”

“virtual page number”

“physical page number”“page offset”

“page offset”

57

toy page table lookup

virtual
page #valid? physical page # read

OK?
write
OK?

00 1 010 (2, code) 1 0
01 1 111 (7, data) 1 1
10 0 ??? (ignored) 0 0
11 1 000 (0, stack) 1 1

01 1101 0010 — address from CPU

trigger exception if 0?

111 1101 0010

to cache (data or instruction)

“page
table
entry”

“virtual page number”

“physical page number”“page offset”

“page offset”

57

toy page table lookup

virtual
page #valid? physical page # read

OK?
write
OK?

00 1 010 (2, code) 1 0
01 1 111 (7, data) 1 1
10 0 ??? (ignored) 0 0
11 1 000 (0, stack) 1 1

01 1101 0010 — address from CPU

trigger exception if 0?

111 1101 0010

to cache (data or instruction)

“page
table
entry”

“virtual page number”

“physical page number”“page offset”

“page offset”

57

toy page table lookup

virtual
page #valid? physical page # read

OK?
write
OK?

00 1 010 (2, code) 1 0
01 1 111 (7, data) 1 1
10 0 ??? (ignored) 0 0
11 1 000 (0, stack) 1 1

01 1101 0010 — address from CPU

trigger exception if 0?

111 1101 0010

to cache (data or instruction)

“page
table
entry”

“virtual page number”

“physical page number”“page offset”

“page offset”

57

toy page table lookup

virtual
page #valid? physical page # read

OK?
write
OK?

00 1 010 (2, code) 1 0
01 1 111 (7, data) 1 1
10 0 ??? (ignored) 0 0
11 1 000 (0, stack) 1 1

01 1101 0010 — address from CPU

trigger exception if 0?

111 1101 0010

to cache (data or instruction)

“page
table
entry”

“virtual page number”

“physical page number”

“page offset”

“page offset”

57

toy page table lookup

virtual
page #valid? physical page # read

OK?
write
OK?

00 1 010 (2, code) 1 0
01 1 111 (7, data) 1 1
10 0 ??? (ignored) 0 0
11 1 000 (0, stack) 1 1

01 1101 0010 — address from CPU

trigger exception if 0?

111 1101 0010

to cache (data or instruction)

“page
table
entry”

“virtual page number”

“physical page number”

“page offset”

“page offset”

57

two-level page tables

for VPN 0x0-0x3FF
for VPN 0x400-0x7FF
for VPN 0x800-0xBFF
for VPN 0xC00-0xFFF

…
for VPN 0xFF800-0xFFBFF
for VPN 0xFFC00-0xFFFFF

first-level page table

two-level page table; 220 pages total; 210 entries per table

PTE for VPN 0x000
PTE for VPN 0x001
PTE for VPN 0x002
PTE for VPN 0x003

…
PTE for VPN 0x3FF

second-level page tables
actual data
(if PTE valid)

PTE for VPN 0xC00
PTE for VPN 0xC01
PTE for VPN 0xC02
PTE for VPN 0xC03

…
PTE for VPN 0xFFF

invalid entries represent big holes

VPN range valid user? write?
physical page #
(of next page table)

0x0-0x3FF 1 1 1 0x22343
0x400-0x7FF 0 0 1 0x00000
0x800-0xBFF 0 0 0 0x00000
0xC00-0xFFF 1 1 0 0x33454
0x1000-0x13FF 1 1 0 0xFF043
… … … … …
0xFFC00-0xFFFFF 1 1 0 0xFF045

first-level page table

VPN valid user? write?
physical page #
(of data)

0xC00 1 1 0 0x42443
0xC01 1 1 0 0x4A9DE
0xC02 1 1 0 0x5C001
0xC03 0 0 0 0x00000
0xC04 1 1 0 0x6C223
… … … … …
0xFFF 0 0 0 0x00000

a second-level page table

58

two-level page tables

for VPN 0x0-0x3FF
for VPN 0x400-0x7FF
for VPN 0x800-0xBFF
for VPN 0xC00-0xFFF

…
for VPN 0xFF800-0xFFBFF
for VPN 0xFFC00-0xFFFFF

first-level page table

two-level page table; 220 pages total; 210 entries per table

PTE for VPN 0x000
PTE for VPN 0x001
PTE for VPN 0x002
PTE for VPN 0x003

…
PTE for VPN 0x3FF

second-level page tables
actual data
(if PTE valid)

PTE for VPN 0xC00
PTE for VPN 0xC01
PTE for VPN 0xC02
PTE for VPN 0xC03

…
PTE for VPN 0xFFF

invalid entries represent big holes

VPN range valid user? write?
physical page #
(of next page table)

0x0-0x3FF 1 1 1 0x22343
0x400-0x7FF 0 0 1 0x00000
0x800-0xBFF 0 0 0 0x00000
0xC00-0xFFF 1 1 0 0x33454
0x1000-0x13FF 1 1 0 0xFF043
… … … … …
0xFFC00-0xFFFFF 1 1 0 0xFF045

first-level page table

VPN valid user? write?
physical page #
(of data)

0xC00 1 1 0 0x42443
0xC01 1 1 0 0x4A9DE
0xC02 1 1 0 0x5C001
0xC03 0 0 0 0x00000
0xC04 1 1 0 0x6C223
… … … … …
0xFFF 0 0 0 0x00000

a second-level page table

58

two-level page tables

for VPN 0x0-0x3FF
for VPN 0x400-0x7FF
for VPN 0x800-0xBFF
for VPN 0xC00-0xFFF

…
for VPN 0xFF800-0xFFBFF
for VPN 0xFFC00-0xFFFFF

first-level page table

two-level page table; 220 pages total; 210 entries per table

PTE for VPN 0x000
PTE for VPN 0x001
PTE for VPN 0x002
PTE for VPN 0x003

…
PTE for VPN 0x3FF

second-level page tables
actual data
(if PTE valid)

PTE for VPN 0xC00
PTE for VPN 0xC01
PTE for VPN 0xC02
PTE for VPN 0xC03

…
PTE for VPN 0xFFF

invalid entries represent big holes

VPN range valid user? write?
physical page #
(of next page table)

0x0-0x3FF 1 1 1 0x22343
0x400-0x7FF 0 0 1 0x00000
0x800-0xBFF 0 0 0 0x00000
0xC00-0xFFF 1 1 0 0x33454
0x1000-0x13FF 1 1 0 0xFF043
… … … … …
0xFFC00-0xFFFFF 1 1 0 0xFF045

first-level page table

VPN valid user? write?
physical page #
(of data)

0xC00 1 1 0 0x42443
0xC01 1 1 0 0x4A9DE
0xC02 1 1 0 0x5C001
0xC03 0 0 0 0x00000
0xC04 1 1 0 0x6C223
… … … … …
0xFFF 0 0 0 0x00000

a second-level page table

58

two-level page tables

for VPN 0x0-0x3FF
for VPN 0x400-0x7FF
for VPN 0x800-0xBFF
for VPN 0xC00-0xFFF

…
for VPN 0xFF800-0xFFBFF
for VPN 0xFFC00-0xFFFFF

first-level page table

two-level page table; 220 pages total; 210 entries per table

PTE for VPN 0x000
PTE for VPN 0x001
PTE for VPN 0x002
PTE for VPN 0x003

…
PTE for VPN 0x3FF

second-level page tables
actual data
(if PTE valid)

PTE for VPN 0xC00
PTE for VPN 0xC01
PTE for VPN 0xC02
PTE for VPN 0xC03

…
PTE for VPN 0xFFF

invalid entries represent big holes

VPN range valid user? write?
physical page #
(of next page table)

0x0-0x3FF 1 1 1 0x22343
0x400-0x7FF 0 0 1 0x00000
0x800-0xBFF 0 0 0 0x00000
0xC00-0xFFF 1 1 0 0x33454
0x1000-0x13FF 1 1 0 0xFF043
… … … … …
0xFFC00-0xFFFFF 1 1 0 0xFF045

first-level page table

VPN valid user? write?
physical page #
(of data)

0xC00 1 1 0 0x42443
0xC01 1 1 0 0x4A9DE
0xC02 1 1 0 0x5C001
0xC03 0 0 0 0x00000
0xC04 1 1 0 0x6C223
… … … … …
0xFFF 0 0 0 0x00000

a second-level page table

58

two-level page tables

for VPN 0x0-0x3FF
for VPN 0x400-0x7FF
for VPN 0x800-0xBFF
for VPN 0xC00-0xFFF

…
for VPN 0xFF800-0xFFBFF
for VPN 0xFFC00-0xFFFFF

first-level page table

two-level page table; 220 pages total; 210 entries per table

PTE for VPN 0x000
PTE for VPN 0x001
PTE for VPN 0x002
PTE for VPN 0x003

…
PTE for VPN 0x3FF

second-level page tables
actual data
(if PTE valid)

PTE for VPN 0xC00
PTE for VPN 0xC01
PTE for VPN 0xC02
PTE for VPN 0xC03

…
PTE for VPN 0xFFF

invalid entries represent big holes

VPN range valid user? write?
physical page #
(of next page table)

0x0-0x3FF 1 1 1 0x22343
0x400-0x7FF 0 0 1 0x00000
0x800-0xBFF 0 0 0 0x00000
0xC00-0xFFF 1 1 0 0x33454
0x1000-0x13FF 1 1 0 0xFF043
… … … … …
0xFFC00-0xFFFFF 1 1 0 0xFF045

first-level page table

VPN valid user? write?
physical page #
(of data)

0xC00 1 1 0 0x42443
0xC01 1 1 0 0x4A9DE
0xC02 1 1 0 0x5C001
0xC03 0 0 0 0x00000
0xC04 1 1 0 0x6C223
… … … … …
0xFFF 0 0 0 0x00000

a second-level page table

58

two-level page tables

for VPN 0x0-0x3FF
for VPN 0x400-0x7FF
for VPN 0x800-0xBFF
for VPN 0xC00-0xFFF

…
for VPN 0xFF800-0xFFBFF
for VPN 0xFFC00-0xFFFFF

first-level page table

two-level page table; 220 pages total; 210 entries per table

PTE for VPN 0x000
PTE for VPN 0x001
PTE for VPN 0x002
PTE for VPN 0x003

…
PTE for VPN 0x3FF

second-level page tables
actual data
(if PTE valid)

PTE for VPN 0xC00
PTE for VPN 0xC01
PTE for VPN 0xC02
PTE for VPN 0xC03

…
PTE for VPN 0xFFF

invalid entries represent big holes

VPN range valid user? write?
physical page #
(of next page table)

0x0-0x3FF 1 1 1 0x22343
0x400-0x7FF 0 0 1 0x00000
0x800-0xBFF 0 0 0 0x00000
0xC00-0xFFF 1 1 0 0x33454
0x1000-0x13FF 1 1 0 0xFF043
… … … … …
0xFFC00-0xFFFFF 1 1 0 0xFF045

first-level page table

VPN valid user? write?
physical page #
(of data)

0xC00 1 1 0 0x42443
0xC01 1 1 0 0x4A9DE
0xC02 1 1 0 0x5C001
0xC03 0 0 0 0x00000
0xC04 1 1 0 0x6C223
… … … … …
0xFFF 0 0 0 0x00000

a second-level page table

58

two-level page tables

for VPN 0x0-0x3FF
for VPN 0x400-0x7FF
for VPN 0x800-0xBFF
for VPN 0xC00-0xFFF

…
for VPN 0xFF800-0xFFBFF
for VPN 0xFFC00-0xFFFFF

first-level page table

two-level page table; 220 pages total; 210 entries per table

PTE for VPN 0x000
PTE for VPN 0x001
PTE for VPN 0x002
PTE for VPN 0x003

…
PTE for VPN 0x3FF

second-level page tables
actual data
(if PTE valid)

PTE for VPN 0xC00
PTE for VPN 0xC01
PTE for VPN 0xC02
PTE for VPN 0xC03

…
PTE for VPN 0xFFF

invalid entries represent big holes

VPN range valid user? write?
physical page #
(of next page table)

0x0-0x3FF 1 1 1 0x22343
0x400-0x7FF 0 0 1 0x00000
0x800-0xBFF 0 0 0 0x00000
0xC00-0xFFF 1 1 0 0x33454
0x1000-0x13FF 1 1 0 0xFF043
… … … … …
0xFFC00-0xFFFFF 1 1 0 0xFF045

first-level page table

VPN valid user? write?
physical page #
(of data)

0xC00 1 1 0 0x42443
0xC01 1 1 0 0x4A9DE
0xC02 1 1 0 0x5C001
0xC03 0 0 0 0x00000
0xC04 1 1 0 0x6C223
… … … … …
0xFFF 0 0 0 0x00000

a second-level page table

58

two-level page tables

for VPN 0x0-0x3FF
for VPN 0x400-0x7FF
for VPN 0x800-0xBFF
for VPN 0xC00-0xFFF

…
for VPN 0xFF800-0xFFBFF
for VPN 0xFFC00-0xFFFFF

first-level page table

two-level page table; 220 pages total; 210 entries per table

PTE for VPN 0x000
PTE for VPN 0x001
PTE for VPN 0x002
PTE for VPN 0x003

…
PTE for VPN 0x3FF

second-level page tables
actual data
(if PTE valid)

PTE for VPN 0xC00
PTE for VPN 0xC01
PTE for VPN 0xC02
PTE for VPN 0xC03

…
PTE for VPN 0xFFF

invalid entries represent big holes

VPN range valid user? write?
physical page #
(of next page table)

0x0-0x3FF 1 1 1 0x22343
0x400-0x7FF 0 0 1 0x00000
0x800-0xBFF 0 0 0 0x00000
0xC00-0xFFF 1 1 0 0x33454
0x1000-0x13FF 1 1 0 0xFF043
… … … … …
0xFFC00-0xFFFFF 1 1 0 0xFF045

first-level page table

VPN valid user? write?
physical page #
(of data)

0xC00 1 1 0 0x42443
0xC01 1 1 0 0x4A9DE
0xC02 1 1 0 0x5C001
0xC03 0 0 0 0x00000
0xC04 1 1 0 0x6C223
… … … … …
0xFFF 0 0 0 0x00000

a second-level page table

58

	handling evictions
	on page replacement choices
	page replacement policy goals
	Belady's MIN
	the working set model
	LRU
	aside: Zipf model
	implementing pure LRU

	implementing LRU-like page replacement
	tracking accesses
	approximating LRU: second-chance
	approximating LRU: SEQ
	approximating LRU: CLOCK

	faster allocation: dirty writeback and free lists
	non-LRU patterns
	read once patterns

	backup slides
	cache decisions
	longer section chance example
	full walkthroguh of toy page table
	multilevel table

