
Virtual Memory 3 / I/O

1

last time

working set, Zipf usage models

LRU page replacement

approximating LRU by sampling accessed bits or mark invalid
nit: said Linux marked invalid to test — probably not on x86
instead periodic scanning of referenced bits set by processor
(but marking invalid would work/is needed on some platforms)

observation: when LRU fails

3

on the paging assignment

“(and pointing to the the original physical page) (pointing to the
same physical page) Do those two lines mean the same thing?????”

yes — with copy-on-write, the child uses same pages as parent

differences are in how reference count and read-onlyness is
maintained when parent page was already copy-on-write from a
previous fork

4

anonymous feedback (1)

“hi can u stop changing the assignment description. just get it right the first time
because every time you change, it screws with my understanding of what i’m
supposed to do and i’m just super confused.”

I could try to add bullets instead of editing bullets if that’s better…
(and I did make more serious edits if you started before the assignment
wasn’t marked tentative, …)

“also your instructions suck. they don’t make sense.”
okay

5

anonymous feedback (2)

“Super unfair how Grimshaw’s class gets 1 more week than we do
on FAT homework because they don’t have this paging assignment.
While we struggle on this assignment, they get more time to figure
out the next one”’

our FAT assignment is due 16 November
(checkpoint for ours is due 9 November)
theirs is due 8 November
should get some testing code with our version

6

problems with LRU

question: when does LRU perform poorly?

only reading things once

repeated scans of large amounts of data

both common access patterns for files

7

problems with LRU

question: when does LRU perform poorly?

only reading things once

repeated scans of large amounts of data

both common access patterns for files

7

problems with LRU

question: when does LRU perform poorly?

only reading things once

repeated scans of large amounts of data

both common access patterns for files

7

CLOCK-Pro: special casing for one-use pages

by default, Linux tries to handle scanning of files
one read of file data — e.g. play a video, load file into memory

basic idea: don’t consider pages active until the second access

single scans of file won’t “pollute” cache

without this change: reading large files slows down other programs
recently read part of large file steals space from active programs

8

CLOCK-Pro: special casing for one-use pages
active list

inactive list

not ref’d?
referenced?

referenced once?
ignore (next scan)

referenced twice?
to active

evict page at bottom of inactive list
either file page referenced once or
referenced multiple times, but not recently

“new” file pages

initial guess: file pages will be used at most once,
then can be discarded

once pages become active, any reference keeps them activecount two references for inactive pages
be more reluctant

this is current Linux algorithm for file pages

9

CLOCK-Pro: special casing for one-use pages
active list

inactive list

not ref’d?
referenced?

referenced once?
ignore (next scan)

referenced twice?
to active

evict page at bottom of inactive list
either file page referenced once or
referenced multiple times, but not recently

“new” file pages
initial guess: file pages will be used at most once,
then can be discarded

once pages become active, any reference keeps them activecount two references for inactive pages
be more reluctant

this is current Linux algorithm for file pages

9

CLOCK-Pro: special casing for one-use pages
active list

inactive list

not ref’d?
referenced?

referenced once?
ignore (next scan)

referenced twice?
to active

evict page at bottom of inactive list
either file page referenced once or
referenced multiple times, but not recently

“new” file pages

initial guess: file pages will be used at most once,
then can be discarded

once pages become active, any reference keeps them activecount two references for inactive pages
be more reluctant

this is current Linux algorithm for file pages

9

CLOCK-Pro: special casing for one-use pages
active list

inactive list

not ref’d?
referenced?

referenced once?
ignore (next scan)

referenced twice?
to active

evict page at bottom of inactive list
either file page referenced once or
referenced multiple times, but not recently

“new” file pages

initial guess: file pages will be used at most once,
then can be discarded

once pages become active, any reference keeps them active

count two references for inactive pages
be more reluctant

this is current Linux algorithm for file pages

9

CLOCK-Pro: special casing for one-use pages
active list

inactive list

not ref’d?
referenced?

referenced once?
ignore (next scan)

referenced twice?
to active

evict page at bottom of inactive list
either file page referenced once or
referenced multiple times, but not recently

“new” file pages

initial guess: file pages will be used at most once,
then can be discarded

once pages become active, any reference keeps them active

count two references for inactive pages
be more reluctant

this is current Linux algorithm for file pages

9

CLOCK-Pro: special casing for one-use pages
active list

inactive list

not ref’d?
referenced?

referenced once?
ignore (next scan)

referenced twice?
to active

evict page at bottom of inactive list
either file page referenced once or
referenced multiple times, but not recently

“new” file pages

initial guess: file pages will be used at most once,
then can be discarded

once pages become active, any reference keeps them activecount two references for inactive pages
be more reluctant

this is current Linux algorithm for file pages

9

CLOCK-Pro: special casing for one-use pages
active list

inactive list

not ref’d?
referenced?

referenced once?
ignore (next scan)

referenced twice?
to active

evict page at bottom of inactive list
either file page referenced once or
referenced multiple times, but not recently

“new” file pages

initial guess: file pages will be used at most once,
then can be discarded

once pages become active, any reference keeps them activecount two references for inactive pages
be more reluctant

this is current Linux algorithm for file pages

9

default Linux page replacement summary

Figure: https://linux-mm.org/PageReplacementDesign 10

https://linux-mm.org/PageReplacementDesign

default Linux page replacement summary

identify inactive pages — guess: not going to be accessed soon
file pages which haven’t been accessed more than once, or
any pages which haven’t been accessed recently

some minimum threshold of inactive pages
add to inactive list in background
detecting references — scan referenced bits
(I thought Linux marked as invalid — but wrong: not on x86)
detect enough references — move to active

oldest inactive page still not used → evict that one
otherwise: give it a second chance

11

being proactive

previous assumption: load on demand

why is something loaded?
page fault
maybe because application starts

can we do better?

12

readahead

program accesses page 4 of a file, page 5, page 6. What’s next?

page 7 — idea: guess this
on page fault, does it look like contiguous accesses?

called readahead

13

readahead

program accesses page 4 of a file, page 5, page 6. What’s next?

page 7 — idea: guess this
on page fault, does it look like contiguous accesses?

called readahead

13

readahead heuristics (1)

exercise: devise an algorithm to detect to do readahead.
when to start reads?
how much to readahead?

want to detect contiguous accesses to mmap’d pages

can mark pages invalid temporarily to detect references to present
pages

can add if statement to detect when new pages are brought in

14

Linux readahead heuristics — how much

how much to readahead?

Linux heuristic: count number of cached pages before

guess we should read about that many more

minimum/maximum to avoid extremes

goal: readahead more when applications are using file more

goal: don’t readahead as much with low memory

15

Linux readahead heuristics — when

track “readahead windows” — pages read because of guess:

|<−−−−− async_size −−−−−−−−−|
|−−−−−−−−−−−−−−−−−−− size −−−−−−−−−−−−−−−−−−−−>|
|==================#===========================|
^start ^page marked with PG_readahead

when async_size pages left, read next chunk

marked page = detect reads to this page

idea: keep up with application, but not too far ahead

16

thrashing

what if there’s just not enough space?
for program data, files currently being accessed

always reading things from disk

causes performance collapse — disk is really slow

known as thrashing

17

‘fair’ page replacement

so far: page replacement about least recently used

what about sharing fairly between users?

18

sharing fairly?

process A
4MB of stack+code, 16MB of heap
shared cached 16MB file X

process B
4MB of stack+code, 16MB of heap
shared cached 16MB file X

process C
4MB of stack+code, 4MB of heap
cached 32MB file Y

process D+E
4MB of stack+code, 64MB of heap
but all heap is shared copy-on-write

19

accounting pages

shared pages make it difficult to count memory usage

Linux cgroups accounting: last touch
count shared file pages for the process that last ‘used’ them
…as detected by page fault for page

20

Linux cgroup limits

Linux “control groups” of processes

can set memory limits for group of proceses:

low limit: don’t ‘steal’ pages when group uses less than this
always take pages someone is using (unless no choice)

high limit: never let group use more than this
replace pages from this group before anything else

…

21

Linux cgroups

Linux mechanism: seperate processes into groups:

webserver webapp …
cgroup website

bash (shell) ls …

cgroup login

can set memory and CPU and …shares for each group

22

Linux cgroup memory limits

m
em

or
y

us
ag

e

low limit

high limit

max

0 GB

memory capacity
actively deallocate pages cgroup is using

if other processes need memory,
take from this group

do not take from this group
for other groups
(even if pages not recently used)

23

recall: kernel buffering (reads)

program

operating system

keyboard disk

keypress happens, read

buffer: keyboard input
waiting for program

read char
from terminal …via buffer read char

from file

read block of data from disk

buffer: recently read
data from disk

…via buffer

24

recall: kernel buffering (reads)

program

operating system

keyboard disk

keypress happens, read

buffer: keyboard input
waiting for program

read char
from terminal …via buffer read char

from file

read block of data from disk

buffer: recently read
data from disk

…via buffer

24

recall: kernel buffering (reads)

program

operating system

keyboard disk

keypress happens, read

buffer: keyboard input
waiting for program

read char
from terminal …via buffer

read char
from file

read block of data from disk

buffer: recently read
data from disk

…via buffer

24

recall: kernel buffering (reads)

program

operating system

keyboard disk

keypress happens, read

buffer: keyboard input
waiting for program

read char
from terminal …via buffer read char

from file

read block of data from disk

buffer: recently read
data from disk

…via buffer

24

recall: kernel buffering (reads)

program

operating system

keyboard disk

keypress happens, read

buffer: keyboard input
waiting for program

read char
from terminal …via buffer read char

from file

read block of data from disk

buffer: recently read
data from disk

…via buffer

24

recall: kernel buffering (writes)

program

operating system

network disk

(when ready)
send data

buffer: output
waiting for network

print char
to remote machine

write char
to file

(when ready)
write block of data from disk

buffer: data waiting
to be written on disk

25

recall: kernel buffering (writes)

program

operating system

network disk

(when ready)
send data

buffer: output
waiting for network

print char
to remote machine

write char
to file

(when ready)
write block of data from disk

buffer: data waiting
to be written on disk

25

recall: kernel buffering (writes)

program

operating system

network disk

(when ready)
send data

buffer: output
waiting for network

print char
to remote machine

write char
to file

(when ready)
write block of data from disk

buffer: data waiting
to be written on disk

25

recall: kernel buffering (writes)

program

operating system

network disk

(when ready)
send data

buffer: output
waiting for network

print char
to remote machine

write char
to file

(when ready)
write block of data from disk

buffer: data waiting
to be written on disk

25

recall: kernel buffering (writes)

program

operating system

network disk

(when ready)
send data

buffer: output
waiting for network

print char
to remote machine

write char
to file

(when ready)
write block of data from disk

buffer: data waiting
to be written on disk

25

recall: layering

application

standard library

system calls

kernel’s file interface

device drivers

hardware interfaces

kernel’s buffers

read/write

cout/printf — and their own buffers

26

ways to talk to I/O devices
user program

read/write/mmap/etc. file interface
regular files

filesystems
device files

device drivers

27

devices as files

talking to device? open/read/write/close

typically similar interface within the kernel

device driver implements the file interface

28

example device files from a Linux desktop

/dev/snd/pcmC0D0p — audio playback
configure, then write audio data

/dev/sda, /dev/sdb — SATA-based SSD and hard drive
usually access via filesystem, but can mmap/read/write directly

/dev/input/event3, /dev/input/event10 — mouse and
keyboard

can read list of keypress/mouse movement/etc. events

/dev/dri/renderD128 — builtin graphics
DRI = direct rendering infrastructure

29

devices: extra operations?

read/write/mmap not enough
audio output device — set format of audio?
terminal — whether to echo back what user types?
CD/DVD — open the disk tray? is a disk present?
…

POSIX: ioctl (general I/O control), tcget/setaddr (for terminal
settings), …

30

Linux example: file operations

(selected subset — table of pointers to functions)
struct file_operations {

...
ssize_t (*read) (struct file *, char __user *, size_t, loff_t *);
ssize_t (*write) (struct file *, const char __user *,x

size_t, loff_t *);
...
long (*unlocked_ioctl) (struct file *, unsigned int, unsigned long);
...
int (*mmap) (struct file *, struct vm_area_struct *);
unsigned long mmap_supported_flags;
int (*open) (struct inode *, struct file *);
...
int (*release) (struct inode *, struct file *);
...

};

31

special case: block devices

devices like disks often have a different interface

unlike normal file interface, works in terms of ‘blocks’
instead of bytes

used by filesystems — store directories on devices
filesystems are specialized to know disks aren’t byte-based

want to work with page cache — bytes not convenient
read/write page at a time
implement read/write to use page cache, not direct

common code to translate from working with bytes to blocks
32

Linux example: block device operations

struct block_device_operations {
int (*open) (struct block_device *, fmode_t);
void (*release) (struct gendisk *, fmode_t);
int (*rw_page)(struct block_device *,

sector_t, struct page *, bool);
int (*ioctl) (struct block_device *, fmode_t, unsigned, unsigned long);
...

};

read/write a page for a sector number (= block number)

33

device driver flow

thread making read/write/etc. “top half”

get I/O request
read/write/… system call or
page cache miss/eviction…

check if satisfied from buffers
(e.g. previous keypresses to keyboard)

send or queue I/O operation
put thread to sleep (if needed)

get interrupt from device

update buffers
wake up thread (if needed)
send more to device (if needed)

store and return request result

device hardware

trap handler “bottom half”

34

device driver flow
thread making read/write/etc. “top half”

get I/O request
read/write/… system call or
page cache miss/eviction…

check if satisfied from buffers
(e.g. previous keypresses to keyboard)

send or queue I/O operation
put thread to sleep (if needed)

get interrupt from device

update buffers
wake up thread (if needed)
send more to device (if needed)

store and return request result

device hardware

trap handler “bottom half”

34

device driver flow
thread making read/write/etc. “top half”

get I/O request
read/write/… system call or
page cache miss/eviction…

check if satisfied from buffers
(e.g. previous keypresses to keyboard)

send or queue I/O operation
put thread to sleep (if needed)

get interrupt from device

update buffers
wake up thread (if needed)
send more to device (if needed)

store and return request result

device hardware

trap handler “bottom half”

34

xv6: device files

struct devsw {
int (*read)(struct inode*, char*, int);
int (*write)(struct inode*, char*, int);

};

extern struct devsw devsw[];
table of devices
device file uses entry in devsw array

filesystem stores name to index lookup

similar scheme used on ‘real’ Unix/Linux
files referencing major/minor device number
table of device numbers in kernel

35

xv6: console devsw

code run at boot:
devsw[CONSOLE].write = consolewrite;
devsw[CONSOLE].read = consoleread;

CONSOLE is a constant

consoleread/consolewrite: run when you read/write console

36

xv6: console devsw

code run at boot:
devsw[CONSOLE].write = consolewrite;
devsw[CONSOLE].read = consoleread;

CONSOLE is a constant

consoleread/consolewrite: run when you read/write console

36

device driver flow

thread making read/write/etc. “top half”

get I/O request
read/write/… system call or
page cache miss/eviction…

check if satisfied from buffers
(e.g. previous keypresses to keyboard)

send or queue I/O operation
put thread to sleep (if needed)

get interrupt from device

update buffers
wake up thread (if needed)
send more to device (if needed)

store and return request result

device hardware

trap handler “bottom half”

37

xv6: console top half (read)

int
consoleread(struct inode *ip, char *dst, int n)
{
...
target = n;
acquire(&cons.lock);
while(n > 0){
while(input.r == input.w){

if(myproc()−>killed){
...
return −1;

}
sleep(&input.r, &cons.lock);

}
...

}
release(&cons.lock)
...

} 38

device driver flow

thread making read/write/etc. “top half”

get I/O request
read/write/… system call or
page cache miss/eviction…

check if satisfied from buffers
(e.g. previous keypresses to keyboard)

send or queue I/O operation
put thread to sleep (if needed)

get interrupt from device

update buffers
wake up thread (if needed)
send more to device (if needed)

store and return request result

device hardware

trap handler “bottom half”

39

xv6: console top half (read)

int
consoleread(struct inode *ip, char *dst, int n)
{
...
target = n;
acquire(&cons.lock);
while(n > 0){
...
c = input.buf[input.r++ % INPUT_BUF];
...
*dst++ = c;
−−n;
if (c == '\n')

break;
}
release(&cons.lock)
...
return target − n;

} 40

xv6: console top half (read)

int
consoleread(struct inode *ip, char *dst, int n)
{
...
target = n;
acquire(&cons.lock);
while(n > 0){
...
c = input.buf[input.r++ % INPUT_BUF];
...
*dst++ = c;
−−n;
if (c == '\n')

break;
}
release(&cons.lock)
...
return target − n;

} 40

xv6: console top half

wait for buffer to fill
no special work to request data — keyboard input always sent

copy from buffer

check if done (newline or enough chars), if not repeat

41

device driver flow

thread making read/write/etc. “top half”

get I/O request
read/write/… system call or
page cache miss/eviction…

check if satisfied from buffers
(e.g. previous keypresses to keyboard)

send or queue I/O operation
put thread to sleep (if needed)

get interrupt from device

update buffers
wake up thread (if needed)
send more to device (if needed)

store and return request result

device hardware

trap handler “bottom half”

42

xv6: console interrupt (one case)

void
trap(struct trapframe *tf) {
...
switch(tf−>trapno) {
...

case T_IRQ0 + IRQ_KBD:
kbdintr();
lapcieoi();
break;
...

}
...

}

kbdintr: atually read from keyboard device
lapcieoi: tell CPU “I’m done with this interrupt”

43

xv6: console interrupt (one case)

void
trap(struct trapframe *tf) {
...
switch(tf−>trapno) {
...

case T_IRQ0 + IRQ_KBD:
kbdintr();
lapcieoi();
break;
...

}
...

}

kbdintr: atually read from keyboard device
lapcieoi: tell CPU “I’m done with this interrupt”

43

device driver flow

thread making read/write/etc. “top half”

get I/O request
read/write/… system call or
page cache miss/eviction…

check if satisfied from buffers
(e.g. previous keypresses to keyboard)

send or queue I/O operation
put thread to sleep (if needed)

get interrupt from device

update buffers
wake up thread (if needed)
send more to device (if needed)

store and return request result

device hardware

trap handler “bottom half”

44

xv6: console interrupt reading

kbdintr fuction actually reads from device

adds data to buffer (if room)

wakes up sleeping thread (if any)

45

connecting devices

processor
interrupt
controller

memory bus

other processors… actual memory

other devicesdevice controller
status
read?
write?…

control registers buffers/queues

external hardware?

0x80004800:
0x80004808:
0x80004810:

…:

control registers have memory addresses
looks like write to memory

actually changes value in device controller

control registers might not really be registers
e.g. maybe writing to write? “control register”

actually just sends the value the external hardware

buffers/queues will also have memory addresses
way to send “please interrupt” signal

component of processor decides when to handle
(deals with ordering, interrupt disabling,

which of several processors handles it, …, etc.)

46

connecting devices

processor
interrupt
controller

memory bus

other processors… actual memory

other devicesdevice controller
status
read?
write?…

control registers buffers/queues

external hardware?

0x80004800:
0x80004808:
0x80004810:

…:

control registers have memory addresses
looks like write to memory

actually changes value in device controller

control registers might not really be registers
e.g. maybe writing to write? “control register”

actually just sends the value the external hardware

buffers/queues will also have memory addresses
way to send “please interrupt” signal

component of processor decides when to handle
(deals with ordering, interrupt disabling,

which of several processors handles it, …, etc.)

46

connecting devices

processor
interrupt
controller

memory bus

other processors… actual memory

other devicesdevice controller
status
read?
write?…

control registers buffers/queues

external hardware?

0x80004800:
0x80004808:
0x80004810:

…:

control registers have memory addresses
looks like write to memory

actually changes value in device controller

control registers might not really be registers
e.g. maybe writing to write? “control register”

actually just sends the value the external hardware

buffers/queues will also have memory addresses
way to send “please interrupt” signal

component of processor decides when to handle
(deals with ordering, interrupt disabling,

which of several processors handles it, …, etc.)

46

connecting devices

processor
interrupt
controller

memory bus

other processors… actual memory

other devicesdevice controller
status
read?
write?…

control registers buffers/queues

external hardware?

0x80004800:
0x80004808:
0x80004810:

…:

control registers have memory addresses
looks like write to memory

actually changes value in device controller

control registers might not really be registers
e.g. maybe writing to write? “control register”

actually just sends the value the external hardware

buffers/queues will also have memory addresses

way to send “please interrupt” signal
component of processor decides when to handle

(deals with ordering, interrupt disabling,
which of several processors handles it, …, etc.)

46

connecting devices

processor
interrupt
controller

memory bus

other processors… actual memory

other devicesdevice controller
status
read?
write?…

control registers buffers/queues

external hardware?

0x80004800:
0x80004808:
0x80004810:

…:

control registers have memory addresses
looks like write to memory

actually changes value in device controller

control registers might not really be registers
e.g. maybe writing to write? “control register”

actually just sends the value the external hardware

buffers/queues will also have memory addresses

way to send “please interrupt” signal
component of processor decides when to handle

(deals with ordering, interrupt disabling,
which of several processors handles it, …, etc.)

46

bus adaptors

processor
interrupt
controller

memory bus

other processors… actual memory

other devices
or

other bus adaptors

bus adaptor

other devices

device controller
status
read?
write?…

control registers buffers/queues

external hardware?

different bus

47

devices as magic memory (1)

devices expose memory locations to read/write

use read/write instructions to manipulate device

example: keyboard controller

read from magic memory location — get last keypress/release

reading location clears buffer for next keypress/release

get interrupt whenever new keypress/release you haven’t read

48

devices as magic memory (1)

devices expose memory locations to read/write

use read/write instructions to manipulate device

example: keyboard controller

read from magic memory location — get last keypress/release

reading location clears buffer for next keypress/release

get interrupt whenever new keypress/release you haven’t read

48

devices as magic memory (1)

devices expose memory locations to read/write

use read/write instructions to manipulate device

example: keyboard controller

read from magic memory location — get last keypress/release

reading location clears buffer for next keypress/release

get interrupt whenever new keypress/release you haven’t read

48

device as magic memory (2)

example: display controller

write to pixels to magic memory location — displayed on screen

other memory locations control format/screen size

example: network interface

write to buffers

write “send now” signal to magic memory location — send data

read from “status” location, buffers to receive
49

what about caching?

caching “last keypress/release”?

I press ‘h’, OS reads ‘h’, does that get cached?

…I press ‘e’, OS reads what?

solution: OS can mark memory uncachable

x86: bit in page table entry can say “no caching”

50

what about caching?

caching “last keypress/release”?

I press ‘h’, OS reads ‘h’, does that get cached?

…I press ‘e’, OS reads what?

solution: OS can mark memory uncachable

x86: bit in page table entry can say “no caching”

50

what about caching?

caching “last keypress/release”?

I press ‘h’, OS reads ‘h’, does that get cached?

…I press ‘e’, OS reads what?

solution: OS can mark memory uncachable

x86: bit in page table entry can say “no caching”

50

aside: I/O space

x86 has a “I/O addresses”

like memory addresses, but accessed with different instruction
in and out instructions

historically: separate I/O bus

more recent processors/devices would just use memory addresses
no need for more instructions, buses
other reasons to have devices and memory close (later)

51

xv6 keyboard access

two control registers:
KBSTATP: status register (I/O address 0x64)
KBDATAP: data buffer (I/O address 0x60)

st = inb(KBSTATP); // in instruction: read from I/O address
if ((st & KBS_DIB) == 0) // bit KBS_DIB indicates data in buffer?
return −1;

data = inb(KBDATAP); // read from data --- *clears* buffer

/* interpret data to learn what kind of keypress/release */

52

programmed I/O

“programmed I/O”: write to or read from device buffers directly

OS runs loop to transfer data to or from device

might still be triggered by interrupt
know/what for “is device ready”

53

approximating LRU: SEQ

active list

inactive list
guess: oldest active page
is really inactive page

inactive page referenced?
not really inactive
move to active list

evict page at bottom of inactive list
know: not referenced ‘recently’

“new” pages start in active list

detecting references?
scan reference bits
or mark invalid + get fault

this is current Linux algorithm for non-file pages
extra details needed: how big is the inactive list?

54

approximating LRU: SEQ

active list

inactive list
guess: oldest active page
is really inactive page

inactive page referenced?
not really inactive
move to active list

evict page at bottom of inactive list
know: not referenced ‘recently’

“new” pages start in active list

detecting references?
scan reference bits
or mark invalid + get fault

this is current Linux algorithm for non-file pages
extra details needed: how big is the inactive list?

54

approximating LRU: SEQ

active list

inactive list
guess: oldest active page
is really inactive page

inactive page referenced?
not really inactive
move to active list

evict page at bottom of inactive list
know: not referenced ‘recently’

“new” pages start in active list

detecting references?
scan reference bits
or mark invalid + get fault

this is current Linux algorithm for non-file pages
extra details needed: how big is the inactive list?

54

approximating LRU: SEQ

active list

inactive list
guess: oldest active page
is really inactive page

inactive page referenced?
not really inactive
move to active list

evict page at bottom of inactive list
know: not referenced ‘recently’

“new” pages start in active list

detecting references?
scan reference bits
or mark invalid + get fault

this is current Linux algorithm for non-file pages
extra details needed: how big is the inactive list?

54

approximating LRU: SEQ

active list

inactive list
guess: oldest active page
is really inactive page

inactive page referenced?
not really inactive
move to active list

evict page at bottom of inactive list
know: not referenced ‘recently’

“new” pages start in active list

detecting references?
scan reference bits
or mark invalid + get fault

this is current Linux algorithm for non-file pages
extra details needed: how big is the inactive list?

54

approximating LRU: SEQ

active list

inactive list
guess: oldest active page
is really inactive page

inactive page referenced?
not really inactive
move to active list

evict page at bottom of inactive list
know: not referenced ‘recently’

“new” pages start in active list

detecting references?
scan reference bits
or mark invalid + get fault

this is current Linux algorithm for non-file pages
extra details needed: how big is the inactive list?

54

approximating LRU: SEQ

active list

inactive list
guess: oldest active page
is really inactive page

inactive page referenced?
not really inactive
move to active list

evict page at bottom of inactive list
know: not referenced ‘recently’

“new” pages start in active list

detecting references?
scan reference bits
or mark invalid + get fault

this is current Linux algorithm for non-file pages
extra details needed: how big is the inactive list?

54

swapping timeline

…

program A pages

…

program B pages

program A

page fault

OS

start read

evicte
d

loaded

interrupt

OS needs to choose page to replace
hopefully copy on disk is already up-to-date?

first step of replacement:
mark evicted page invalid in each page table

this example: only process B
real case: possibly many page tables

other processes can run while reading page
OS will get interrupt when disk is done

process A’s page table updated
and restarted from point of fault

55

swapping timeline

…

program A pages

…

program B pages

program A

page fault

OS

start read

evicte
d

loaded

interrupt

OS needs to choose page to replace
hopefully copy on disk is already up-to-date?

first step of replacement:
mark evicted page invalid in each page table

this example: only process B
real case: possibly many page tables

other processes can run while reading page
OS will get interrupt when disk is done

process A’s page table updated
and restarted from point of fault

55

swapping timeline

…

program A pages

…

program B pages

program A

page fault

OS

start read

evicte
d

loaded

interrupt

OS needs to choose page to replace
hopefully copy on disk is already up-to-date?

first step of replacement:
mark evicted page invalid in each page table

this example: only process B
real case: possibly many page tables

other processes can run while reading page
OS will get interrupt when disk is done

process A’s page table updated
and restarted from point of fault

55

swapping timeline

…

program A pages

…

program B pages

program A

page fault

OS

start read

evicte
d

loaded

interrupt

OS needs to choose page to replace
hopefully copy on disk is already up-to-date?

first step of replacement:
mark evicted page invalid in each page table

this example: only process B
real case: possibly many page tables

other processes can run while reading page
OS will get interrupt when disk is done

process A’s page table updated
and restarted from point of fault

55

swapping timeline

…

program A pages

…

program B pages

program A

page fault

OS

start read

evicte
d

loaded

interrupt

OS needs to choose page to replace
hopefully copy on disk is already up-to-date?

first step of replacement:
mark evicted page invalid in each page table

this example: only process B
real case: possibly many page tables

other processes can run while reading page
OS will get interrupt when disk is done

process A’s page table updated
and restarted from point of fault

55

POSIX: everything is a file

the file: one interface for
devices (terminals, printers, …)
regular files on disk
networking (sockets)
local interprocess communication (pipes, sockets)

basic operations: open(), read(), write(), close()

56

the file interface

open before use
setup, access control happens here

byte-oriented
real device isn’t? operating system needs to hide that

explicit close

57

the file interface

open before use
setup, access control happens here

byte-oriented
real device isn’t? operating system needs to hide that

explicit close

57

kernel buffering (reads)

program

operating system

keyboard disk

keypress happens, read

buffer: keyboard input
waiting for program

read char
from terminal …via buffer read char

from file

read block of data from disk

buffer: recently read
data from disk

…via buffer

58

kernel buffering (reads)

program

operating system

keyboard disk

keypress happens, read

buffer: keyboard input
waiting for program

read char
from terminal …via buffer read char

from file

read block of data from disk

buffer: recently read
data from disk

…via buffer

58

kernel buffering (reads)

program

operating system

keyboard disk

keypress happens, read

buffer: keyboard input
waiting for program

read char
from terminal …via buffer

read char
from file

read block of data from disk

buffer: recently read
data from disk

…via buffer

58

kernel buffering (reads)

program

operating system

keyboard disk

keypress happens, read

buffer: keyboard input
waiting for program

read char
from terminal …via buffer read char

from file

read block of data from disk

buffer: recently read
data from disk

…via buffer

58

kernel buffering (reads)

program

operating system

keyboard disk

keypress happens, read

buffer: keyboard input
waiting for program

read char
from terminal …via buffer read char

from file

read block of data from disk

buffer: recently read
data from disk

…via buffer

58

kernel buffering (writes)

program

operating system

network disk

(when ready)
send data

buffer: output
waiting for network

print char
to remote machine

write char
to file

(when ready)
write block of data from disk

buffer: data waiting
to be written on disk

59

kernel buffering (writes)

program

operating system

network disk

(when ready)
send data

buffer: output
waiting for network

print char
to remote machine

write char
to file

(when ready)
write block of data from disk

buffer: data waiting
to be written on disk

59

kernel buffering (writes)

program

operating system

network disk

(when ready)
send data

buffer: output
waiting for network

print char
to remote machine

write char
to file

(when ready)
write block of data from disk

buffer: data waiting
to be written on disk

59

kernel buffering (writes)

program

operating system

network disk

(when ready)
send data

buffer: output
waiting for network

print char
to remote machine

write char
to file

(when ready)
write block of data from disk

buffer: data waiting
to be written on disk

59

kernel buffering (writes)

program

operating system

network disk

(when ready)
send data

buffer: output
waiting for network

print char
to remote machine

write char
to file

(when ready)
write block of data from disk

buffer: data waiting
to be written on disk

59

read/write operations

read/write: move data into/out of buffer

block (make process wait) if buffer is empty (read)/full (write)
(default behavior, possibly changeable)

actual I/O operations — wait for device to be ready
trigger process to stop waiting if needed

60

layering

application

standard library

system calls

kernel’s file interface

device drivers

hardware interfaces

kernel’s buffers

read/write

cout/printf — and their own buffers

61

	non-LRU patterns
	read once patterns
	readahead

	thrashing
	`fair' page replacement
	device driver interfaces
	review: everything is a file

	devices as files
	device driver flow chart
	example top/bottom half

	device interfaces generally
	backup slides
	SEQ
	swapping timeline
	everything is a file (full)

