
Filesystems: efficiency con’t / reliability

1



Changelog

Changes made in this version not seen in first lecture:
8 November: correct several formatting errors on RAID slides
8 November: extra last time slide re: inode, block groups

1



last time

hard disks: adjacent accesses are fast
sector numbers: closeby numbers = closeby sectors
disk or OS: want to schedule accesses by location on disk

hard disks: error detection/correction
redundancy to catch/correct some errors
bad sector = tell OS usually (not give it bad data)
relocate sectors to deal with broken parts of disk

SSDs: erasure blocks and wear leveling
can only overwrite in big blocks
can only overwrite so many times
solution: controller moves blocks around “wear leveling”

3



last time (2)

inodes:
store file information in one place
creation/modification times, blocks in file, etc.
directory entries point to inode

inodes and direct/indirect blocks
direct block pointers: point to data
indirect block pointers: point to pointers to data
Nth pointer to data = pointer to block N

sparse files: represent strings of 0s via NULL block pointers
block groups:

each group has set of inodes + data blocks
typically (but not always) directory and its files contained without block
group

4



correction re: symbolic links

I implied symbolic links: kept in directory entry

not true: usually they have their own inode

usually store string (name of referenced file) in inode

5



xv6 filesystem performance issues

inode, block map stored far away from file data
long seek times for reading files

unintelligent choice of file/directory data blocks
xv6 finds first free block/inode
result: files/directory entries scattered about

blocks are pretty small — needs lots of space for metadata
could change size? but waste space for small files
large files have giant lists of blocks

linear searches of directory entries to resolve paths

6



empirical file sizes

Roselli et al, “A Comparison of Filesystem Workloads”, in FAST 2000 7



typical file sizes

most files are small
sometimes 50+% less than 1kbyte
often 5-20% less than 10kbyte

doens’t mean large files are unimportant
still take up most of the space
biggest performance problems

8



fragments

FFS: a file’s last block can be a fragment — only part of a block

each block split into approx. 4 fragments
each fragment has its own index

extra field in inode indicates that last block is fragment

allows one block to store data for several small files

9



non-FFS changes

now some techniques beyond FFS

some of these supported by current filesystems, like
Microsoft’s NTFS
Linux’s ext4 (successor to ext2)

10



xv6 filesystem performance issues

inode, block map stored far away from file data
long seek times for reading files

unintelligent choice of file/directory data blocks
xv6 finds first free block/inode
result: files/directory entries scattered about

blocks are pretty small — needs lots of space for metadata
could change size? but waste space for small files
large files have giant lists of blocks

linear searches of directory entries to resolve paths

11



extents

large file? lists of many thousands of blocks is awkward

solution: store extents: (start disk block, size)
replaces or supplements block list

Linux’s ext4 and NTFS both use this

12



allocating extents

challenge: finding contiguous set of free blocks

FFS’s strategy “first in block group” doesn’t work well
first several blocks likely to be ‘holes’ from deleted files

NTFS: scan block map for “best fit”
big enough chunk of free blocks
smallest among all the candidates:

13



efficient seeking with extents

suppose a file has long list of extents

how to seek to byte X?

solution: store a tree
ext4: each node stores minimum file index it covers
ext4: each node has pointer (disk block) to its children

14



efficient seeking with extents

suppose a file has long list of extents

how to seek to byte X?

solution: store a tree
ext4: each node stores minimum file index it covers
ext4: each node has pointer (disk block) to its children

14



non-binary search trees
7 16

1 2 5 6 9 12 13 18 21

each node can be one block on disk
choose number of entries in node based on block size

avoid large or random accesses to disk and linear searches
can do binary search within a node

algorithms for adding to tree while keeping it balanced
similar idea to AVL trees

15



non-binary search trees
7 16

1 2 5 6 9 12 13 18 21

each node can be one block on disk
choose number of entries in node based on block size

avoid large or random accesses to disk and linear searches
can do binary search within a node

algorithms for adding to tree while keeping it balanced
similar idea to AVL trees

15



non-binary search trees
7 16

1 2 5 6 9 12 13 18 21

each node can be one block on disk
choose number of entries in node based on block size

avoid large or random accesses to disk and linear searches
can do binary search within a node

algorithms for adding to tree while keeping it balanced
similar idea to AVL trees

15



using trees on disk

linear search to find extent at offset X
store index by offset of extent within file

linear search to find file in directory?
index by filename

both problems — solved with non-binary tree on disk

16



filesystem reliability

a crash happens — what’s the state of my filesystem?

17



hard disk atomicity

interrupt a hard drive write?

write whole disk sector or corrupt it

hard drive stores checksum for each sector

write interrupted? — checksum mismatch
hard drive returns read error

18



reliability issues

is the data there?
can we find the file, etc.?

is the filesystem in a consistent state?
do we know what blocks are free?

19



multiple copies

FAT: multiple copies of file allocation table and header

in inode-based filesystems: often multiple superblocks

if part of disk’s data is lost, have an extra copy
always update both copies
hope: disk failure to small group of sectors

hope: enough to recover most files on disk failure

20



mirroring whole disks

alternate strategy: write everything to two disks
always write to both

read from either
(or different parts of both – faster!)

21



mirroring whole disks

alternate strategy: write everything to two disks
always write to both

read from either
(or different parts of both – faster!)

21



mirroring whole disks

alternate strategy: write everything to two disks
always write to both

read from either
(or different parts of both – faster!)

21



RAID 4 parity

disk 1 disk 2 disk 3
A1: sector 0 A2: sector 1 Ap: A1 ⊕ A2
B1: sector 2 B2: sector 3 Bp: B1 ⊕ B2
… … …

⊕ — bitwise xor

Ap = A1 ⊕ A2
A1 = Ap ⊕ A2
A2 = A1 ⊕ Ap

can compute contents of any disk!

exercise: how to replace sector 3 (B2)with new value?
how many writes? how many reads?

22



RAID 4 parity

disk 1 disk 2 disk 3
A1: sector 0 A2: sector 1 Ap: A1 ⊕ A2
B1: sector 2 B2: sector 3 Bp: B1 ⊕ B2
… … …

⊕ — bitwise xor

Ap = A1 ⊕ A2
A1 = Ap ⊕ A2
A2 = A1 ⊕ Ap

can compute contents of any disk!

exercise: how to replace sector 3 (B2)with new value?
how many writes? how many reads?

22



RAID 4 parity

disk 1 disk 2 disk 3
A1: sector 0 A2: sector 1 Ap: A1 ⊕ A2
B1: sector 2 B2: sector 3 Bp: B1 ⊕ B2
… … …

⊕ — bitwise xor

Ap = A1 ⊕ A2
A1 = Ap ⊕ A2
A2 = A1 ⊕ Ap

can compute contents of any disk!

exercise: how to replace sector 3 (B2)with new value?
how many writes? how many reads?

22



RAID 4 parity (more disks)

disk 1 disk 2 disk 3 disk 4
A1: sector 0 A2: sector 1 A3 sector 2 Ap: A1⊕A2⊕A3
B1: sector 3 B2: sector 4 B3: sector 5 Bp: B1⊕B2⊕B3
… … …

Ap = A1 ⊕ A2 ⊕ A3
A1 = Ap ⊕ A2 ⊕ A3
A2 = A1 ⊕ Ap ⊕ A3
A3 = A1 ⊕ A2 ⊕ Ap

can still compute contents of any disk!

exercise: how to replace sector 3 (B1) with new value now?
how many writes? how many reads?

23



RAID 4 parity (more disks)

disk 1 disk 2 disk 3 disk 4
A1: sector 0 A2: sector 1 A3 sector 2 Ap: A1⊕A2⊕A3
B1: sector 3 B2: sector 4 B3: sector 5 Bp: B1⊕B2⊕B3
… … …

Ap = A1 ⊕ A2 ⊕ A3
A1 = Ap ⊕ A2 ⊕ A3
A2 = A1 ⊕ Ap ⊕ A3
A3 = A1 ⊕ A2 ⊕ Ap

can still compute contents of any disk!

exercise: how to replace sector 3 (B1) with new value now?
how many writes? how many reads?

23



RAID 4 parity (more disks)

disk 1 disk 2 disk 3 disk 4
A1: sector 0 A2: sector 1 A3 sector 2 Ap: A1⊕A2⊕A3
B1: sector 3 B2: sector 4 B3: sector 5 Bp: B1⊕B2⊕B3
… … …

Ap = A1 ⊕ A2 ⊕ A3
A1 = Ap ⊕ A2 ⊕ A3
A2 = A1 ⊕ Ap ⊕ A3
A3 = A1 ⊕ A2 ⊕ Ap

can still compute contents of any disk!

exercise: how to replace sector 3 (B1) with new value now?
how many writes? how many reads?

23



RAID 5 parity

disk 1 disk 2 disk 3 disk 4
A1: sector 0 A2: sector 1 A3: sector 2 Ap: A1⊕A2⊕A3
B1: sector 3 B2: sector 4 Bp: B1⊕B2⊕B3 B3:sector 5
C1: sector 6 Cp: C1⊕C2⊕C3 C2: sector 7 C3: sector 8
… … …

spread out parity updates across disks
so each disk has about same amount of work

24



RAID 5 parity

disk 1 disk 2 disk 3 disk 4
A1: sector 0 A2: sector 1 A3: sector 2 Ap: A1⊕A2⊕A3
B1: sector 3 B2: sector 4 Bp: B1⊕B2⊕B3 B3:sector 5
C1: sector 6 Cp: C1⊕C2⊕C3 C2: sector 7 C3: sector 8
… … …

spread out parity updates across disks
so each disk has about same amount of work

24



more general schemes

RAID 6: tolerate loss of any two disks

can generalize to 3 or more failures
justification: takes days/weeks to replace data on missing disk
…giving time for more disks to fail

probably more in CS 4434?

but none of this addresses consistency

25



RAID-like redundancy

usually appears to filesystem as ‘more reliable disk’
hardware or software layers to implement extra copies/parity

some filesystems (e.g. ZFS) implement this themselves
more flexibility — e.g. change redundancy file-by-file
ZFS combines with its own checksums — don’t trust disks!

26



recall: FAT: file creation (1)

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

clu
st

er
nu

m
be

r

the disk
entry value index
… …
20 18
0 (free) 19
-1 (end mark) 20
0 (free) 22 21
0 (free) 24 22
-1 (end) 23
0 (free) -1 (end) 24
35 25
48 26
0 (free) 27
… …

file allocation table

27



recall: FAT: file creation (2)

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

clu
st

er
nu

m
be

r

the disk
entry value index
… …
20 18
0 (free) 19
-1 (end mark) 20
0 (free) 22 21
0 (free) 24 22
-1 (end) 23
0 (free) -1 (end) 24
35 25
48 26
0 (free) 27
… …

file allocation table

directory of new file

“foo.txt”, cluster 11, size …, created …
…
“quux.txt”, cluster 104, size …, created …

“new.txt”, cluster 21, size …, created …
unused entry
unused entry
unused entry
…

28



exercise: FAT file creation

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

clu
st

er
nu

m
be

r

the disk
1 FAT entries for directory + file
2
3 new directory cluster

4
5 new file clusters
6

6 clusters to write
on loss of power: only some completed

exercise: what happens if only 1, 2 complete?
everything but 3?

29



exercise: FAT file creation

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

clu
st

er
nu

m
be

r

the disk
1 FAT entries for directory + file
2
3 new directory cluster

4
5 new file clusters
6

6 clusters to write
on loss of power: only some completed
exercise: what happens if only 1, 2 complete?
everything but 3?

29



exercise: FAT ordering

(creating a file that needs new cluster of direntries)
1. FAT entry for extra directory cluster
2. FAT entry for new file clusters
3. file clusters
4. file’s directory entry (in new directory cluster)

what ordering is best if a crash happens in the middle?
A. 1, 2, 3, 4
B. 4, 3, 1, 2
C. 1, 3, 4, 2
D. 3, 4, 2, 1
E. 3, 1, 4, 2

30



exercise: xv6 FS ordering

(creating a file that neeeds new block of direntries)
1. free block map for new directory block
2. free block map for new file block
3. directory inode
4. new file inode
5. new directory entry for file (in new directory block)
6. file data blocks

what ordering is best if a crash happens in the middle?
A. 1, 2, 3, 4, 5, 6
B. 6, 5, 4, 3, 2, 1
C. 1, 2, 6, 5, 4, 3
D. 2, 6, 4, 1, 5, 3
E. 3, 4, 1, 2, 5, 6

ignoring journalling for now — we’ll talk about it later
31



inode-based FS: careful ordering

mark blocks as allocated before referring to them from directories

write data blocks before writing pointers to them from inodes

write inodes before directory entries pointing to it

remove inode from directory before marking inode as free
or decreasing link count, if there’s another hard link

idea: better to waste space than point to bad data

32



inode-based FS: creating a file

allocate data block

write data block

update free block map

update file inode

update directory entry
filename+inode number

update direcotry inode
modification time

normal operation

general rule:
better to waste space
than point to bad data

mark blocks/inodes used before writing block/inode pointers

read all directory entries

scan all inodes

free unused inodes
unused = not in directory

free unused data blocks
unused = not in inode lists

scan directories for missing
update/access times

recovery (fsck)

33



inode-based FS: creating a file

allocate data block

write data block

update free block map

update file inode

update directory entry
filename+inode number

update direcotry inode
modification time

normal operation
general rule:
better to waste space
than point to bad data

mark blocks/inodes used before writing block/inode pointers

read all directory entries

scan all inodes

free unused inodes
unused = not in directory

free unused data blocks
unused = not in inode lists

scan directories for missing
update/access times

recovery (fsck)

33



inode-based FS: creating a file

allocate data block

write data block

update free block map

update file inode

update directory entry
filename+inode number

update direcotry inode
modification time

normal operation

general rule:
better to waste space
than point to bad data

mark blocks/inodes used before writing block/inode pointers

read all directory entries

scan all inodes

free unused inodes
unused = not in directory

free unused data blocks
unused = not in inode lists

scan directories for missing
update/access times

recovery (fsck)

33



inode-based FS: exercise: unlink

what order to remove a hard link (= directory entry) for file?
1. overwrite directroy entry for file
2. decrement link count in inode (but link count still > 1 so don’t remove)

assume not the last hard link

what does recovery operation do?

34



inode-based FS: exercise: unlink

what order to remove a hard link (= directory entry) for file?
1. overwrite directroy entry for file
2. decrement link count in inode (but link count still > 1 so don’t remove)

assume not the last hard link

what does recovery operation do?

34



inode-based FS: exercise: unlink last

what order to remove a hard link (= directory entry) for file?
1. overwrite last directroy entry for file
2. mark inode as free (link count = 0 now)
3. mark inode’s data blocks as free

assume is the last hard link

what does recovery operation do?

35



inode-based FS: exercise: unlink last

what order to remove a hard link (= directory entry) for file?
1. overwrite last directroy entry for file
2. mark inode as free (link count = 0 now)
3. mark inode’s data blocks as free

assume is the last hard link

what does recovery operation do?

35



fsck

Unix typically has an fsck utility

checks for filesystem consistency
is a data block marked as used that no inodes uses?
is a data block referred to by two different inodes?
is a inode marked as used that no directory references?
is the link count for each inode = number of directories referencing it?
…

assuming careful ordering, can fix errors after a crash without loss,
probably

36



fsck costs

my desktop’s filesystem: 2.4M used inodes; 379.9M of 472.4M used
blocks

recall: check for data block marked as used that no inode uses:
read blocks containing all of the 2.4M used inodes
add each block pointer to a list of used blocks
if they have indirect block pointers, read those blocks, too
get list of all used blocks (via direct or indirect pointers)
compare list of used blocks to actual free block bitmap

pretty expensive and slow

37



running fsck automatically

common to have “clean” bit in superblock

last thing written (to set) on shutdown

first thing written (to clear) on startup

on boot: if clean bit clear, run fsck first

38



ordering and disk performance

recall: seek times

would like to order writes based on locations on disk
write many things in one pass of disk head
write many things in cylinder in one rotation

ordering constraints make this hard:

free block map for file (start), then file blocks (middle), then…

file inode (start), then directory (middle), …

39



ordering and disk performance

recall: seek times

would like to order writes based on locations on disk
write many things in one pass of disk head
write many things in cylinder in one rotation

ordering constraints make this hard:

free block map for file (start), then file blocks (middle), then…

file inode (start), then directory (middle), …

39



40



modern windows: NTFS

typical modern windows FS is NTFS or variants

uses extents, as mentioned

also has some neat tricks in high-level organization
it’s not inodes

41



NTFS: Master File Table

MFT

std info filename data

MFT entry is a list of attributes
including filename, data, standard data
each attribute in MFT entry has type, length
(therefore, any order)

attribute:
(type, length, resident=yes, data for attribute)
(type, length, resident=no, pointer to data for attribute)

data is a type of attribute
small files: in the MFT entry
larger files: pointer to extent of actual data

special “attribute list” attribute can point to extra MFT entry
solution for not enough space

42



NTFS: Master File Table

MFT

std info filename data

MFT entry is a list of attributes
including filename, data, standard data
each attribute in MFT entry has type, length
(therefore, any order)

attribute:
(type, length, resident=yes, data for attribute)
(type, length, resident=no, pointer to data for attribute)

data is a type of attribute
small files: in the MFT entry
larger files: pointer to extent of actual data

special “attribute list” attribute can point to extra MFT entry
solution for not enough space

42



NTFS: Master File Table

MFT

std info filename data

MFT entry is a list of attributes
including filename, data, standard data
each attribute in MFT entry has type, length
(therefore, any order)

attribute:
(type, length, resident=yes, data for attribute)
(type, length, resident=no, pointer to data for attribute)

data is a type of attribute
small files: in the MFT entry
larger files: pointer to extent of actual data

special “attribute list” attribute can point to extra MFT entry
solution for not enough space

42



NTFS: Master File Table

MFT

std info filename data

MFT entry is a list of attributes
including filename, data, standard data
each attribute in MFT entry has type, length
(therefore, any order)

attribute:
(type, length, resident=yes, data for attribute)
(type, length, resident=no, pointer to data for attribute)

data is a type of attribute
small files: in the MFT entry
larger files: pointer to extent of actual data

special “attribute list” attribute can point to extra MFT entry
solution for not enough space

42



NTFS: Master File Table

MFT

std info filename data

MFT entry is a list of attributes
including filename, data, standard data
each attribute in MFT entry has type, length
(therefore, any order)

attribute:
(type, length, resident=yes, data for attribute)
(type, length, resident=no, pointer to data for attribute)

data is a type of attribute
small files: in the MFT entry
larger files: pointer to extent of actual data

special “attribute list” attribute can point to extra MFT entry
solution for not enough space

42



NTFS file:

MFT

MFT Record 
(part 2)

Std. Info. (free)Data (nonresident)

MFT Record 
(part 1)

Std. Info. Attr.list Data (nonresident)File Name

D
ata Extent

D
ata Extent

D
ata Extent

D
ata Extent

D
ata Extent

Anderson and Dahlin, Operating Systems: Principles and Practice, Section Edition, Figure 13.17 43



NTFS metadata

NTFS (current Windows FS) doesn’t use inodes

has a Master File Table (MFT) containing file information

each 1KB entry: key-value pairs of info about file

too much info for 1KB — pointers to other entries
e.g. file stored as many, fragmented extents

44



NTFS metadata

NTFS (current Windows FS) doesn’t use inodes

has a Master File Table (MFT) containing file information

each 1KB entry: key-value pairs of info about file

too much info for 1KB — pointers to other entries
e.g. file stored as many, fragmented extents

44



NTFS tricks

metadata stored in normal files
e.g. file for free block map

master file table is a file
disk header has location of master file table
master file table itself is always first file
can change size of the master file table

small files — can store data in MFT entries

45



solid state disk architecture

controller
(includes CPU)

RAM

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

46



flash

no moving parts
no seek time, rotational latency

can read in sector-like sizes (“pages”) (e.g. 4KB or 16KB)

write once between erasures

erasure only in large erasure blocks (often 256KB to megabytes!)

can only rewrite blocks order tens of thousands of times
afte that, flash fails

47



SSDs: flash as disk

SSDs: implement hard disk interface for NAND flash
read/write sectors at a time
read/write with use sector numbers, not addresses
queue of read/writes

need to hide erasure blocks
trick: block remapping — move where sectors are in flash

need to hide limit on number of erases
trick: wear levening — spread writes out

48



block remapping

being written

Flash
Translation

Layer

logical physical
0 93
1 260
… …
31 74
32 75
… …

remapping table

pages 0–63

pages 64–127

pages 128–191

pages 192-255

pages 256-319

pages 320-383

pages 128–191

pages 192–255

pages 256–319
erased block

can only erase
whole “erasure block”

“garbage collection”
(free up new space)

copied from erased

active data
erased + ready-to-write

unused (rewritten elsewhere)

read sector 31write sector 32

49



block remapping

being written

Flash
Translation

Layer

logical physical
0 93
1 260
… …
31 74
32 75
… …

remapping table

pages 0–63

pages 64–127

pages 128–191

pages 192-255

pages 256-319

pages 320-383

pages 128–191

pages 192–255

pages 256–319
erased block

can only erase
whole “erasure block”

“garbage collection”
(free up new space)

copied from erased

active data
erased + ready-to-write

unused (rewritten elsewhere)

read sector 31

write sector 32

49



block remapping

being written

Flash
Translation

Layer

logical physical
0 93
1 260
… …
31 74
32 75 163
… …

remapping table

pages 0–63

pages 64–127

pages 128–191

pages 192-255

pages 256-319

pages 320-383

pages 128–191

pages 192–255

pages 256–319
erased block

can only erase
whole “erasure block”

“garbage collection”
(free up new space)

copied from erased

active data
erased + ready-to-write

unused (rewritten elsewhere)

read sector 31

write sector 32

49



block remapping

being written

Flash
Translation

Layer

logical physical
0 93
1 260 187
… …
31 74
32 75 163
… …

remapping table

pages 0–63

pages 64–127

pages 128–191

pages 192-255

pages 256-319

pages 320-383

pages 128–191

pages 192–255

pages 256–319
erased block

can only erase
whole “erasure block”

“garbage collection”
(free up new space)

copied from erased

active data
erased + ready-to-write

unused (rewritten elsewhere)

read sector 31write sector 32

49



block remapping

controller contains mapping: sector → location in flash

on write: write sector to new location

eventually do garbage collection of sectors
if erasure block contains some replaced sectors and some current sectors…
copy current blocks to new locationt to reclaim space from replaced
sectors

doing this efficiently is very complicated

SSDs sometimes have a ‘real’ processor for this purpose

50



SSD performance

reads/writes: sub-millisecond

contiguous blocks don’t really matter

can depend a lot on the controller
faster/slower ways to handle block remapping

writing can be slower, especially when almost full
controller may need to move data around to free up erasure blocks
erasing an erasure block is pretty slow (milliseconds?)

51


	file sizes
	empirical file sizes
	fragments

	things FFS doesn't do
	extents
	trees on disk

	introduction to reliability / careful ordering
	redundancy
	RAID / erasure coding

	FAT update ordering and crashes
	xv6 FS update ordering and crashes
	ordering rules
	aside: ordering and disk performance

	backup slides
	NTFS
	SSD architecture


