
Filesystem Reliability + Sockets Intro

1

last time

extents

non-binary trees on disk

extra copies of data
two or more FATs, two or more superblocks
mirroring
erasure coding : redundancy without full copies
examples of RAID 4/5

careful ordering of operations
key idea: don’t store pointers to bad data
file system checking (fsck) — scan disk for inconsistencies

2

anonymous feedback

(paraphrased) the TAs don’t know about using mmap

while I recommend mmap, you are welcome to /will succeed using
seek/read

have given a little tutorial/info for TAs

3

inode-based FS: careful ordering

mark blocks as allocated before referring to them from directories

write data blocks before writing pointers to them from inodes

write inodes before directory entries pointing to it

remove inode from directory before marking inode as free
or decreasing link count, if there’s another hard link

idea: better to waste space than point to bad data

4

inode-based FS: creating a file

allocate data block

write data block

update free block map

update file inode

update directory entry
filename+inode number

update direcotry inode
modification time

normal operation

general rule:
better to waste space
than point to bad data

mark blocks/inodes used before writing block/inode pointers

read all directory entries

scan all inodes

free unused inodes
unused = not in directory

free unused data blocks
unused = not in inode lists

scan directories for missing
update/access times

recovery (fsck)

5

inode-based FS: creating a file

allocate data block

write data block

update free block map

update file inode

update directory entry
filename+inode number

update direcotry inode
modification time

normal operation
general rule:
better to waste space
than point to bad data

mark blocks/inodes used before writing block/inode pointers

read all directory entries

scan all inodes

free unused inodes
unused = not in directory

free unused data blocks
unused = not in inode lists

scan directories for missing
update/access times

recovery (fsck)

5

inode-based FS: creating a file

allocate data block

write data block

update free block map

update file inode

update directory entry
filename+inode number

update direcotry inode
modification time

normal operation

general rule:
better to waste space
than point to bad data

mark blocks/inodes used before writing block/inode pointers

read all directory entries

scan all inodes

free unused inodes
unused = not in directory

free unused data blocks
unused = not in inode lists

scan directories for missing
update/access times

recovery (fsck)

5

inode-based FS: exercise: unlink

what order to remove a hard link (= directory entry) for file?
1. overwrite directroy entry for file
2. decrement link count in inode (but link count still > 1 so don’t remove)

assume not the last hard link

what does recovery operation do?

6

inode-based FS: exercise: unlink

what order to remove a hard link (= directory entry) for file?
1. overwrite directroy entry for file
2. decrement link count in inode (but link count still > 1 so don’t remove)

assume not the last hard link

what does recovery operation do?

6

inode-based FS: exercise: unlink last

what order to remove a hard link (= directory entry) for file?
1. overwrite last directroy entry for file
2. mark inode as free (link count = 0 now)
3. mark inode’s data blocks as free

assume is the last hard link

what does recovery operation do?

7

inode-based FS: exercise: unlink last

what order to remove a hard link (= directory entry) for file?
1. overwrite last directroy entry for file
2. mark inode as free (link count = 0 now)
3. mark inode’s data blocks as free

assume is the last hard link

what does recovery operation do?

7

fsck

Unix typically has an fsck utility

checks for filesystem consistency
is a data block marked as used that no inodes uses?
is a data block referred to by two different inodes?
is a inode marked as used that no directory references?
is the link count for each inode = number of directories referencing it?
…

assuming careful ordering, can fix errors after a crash without loss,
probably

8

fsck costs

my desktop’s filesystem: 2.4M used inodes; 379.9M of 472.4M used
blocks

recall: check for data block marked as used that no inode uses:
read blocks containing all of the 2.4M used inodes
add each block pointer to a list of used blocks
if they have indirect block pointers, read those blocks, too
get list of all used blocks (via direct or indirect pointers)
compare list of used blocks to actual free block bitmap

pretty expensive and slow

9

running fsck automatically

common to have “clean” bit in superblock

last thing written (to set) on shutdown

first thing written (to clear) on startup

on boot: if clean bit clear, run fsck first

10

ordering and disk performance

recall: seek times

would like to order writes based on locations on disk
write many things in one pass of disk head
write many things in cylinder in one rotation

ordering constraints make this hard:

free block map for file (start), then file blocks (middle), then…

file inode (start), then directory (middle), …

11

ordering and disk performance

recall: seek times

would like to order writes based on locations on disk
write many things in one pass of disk head
write many things in cylinder in one rotation

ordering constraints make this hard:

free block map for file (start), then file blocks (middle), then…

file inode (start), then directory (middle), …

11

beyond ordering

recall: updating a sector is atomic
happens entirely or doesn’t

can we make filesystem updates work this way?

yes — ‘just’ make updating one sector do the update

12

beyond ordering

recall: updating a sector is atomic
happens entirely or doesn’t

can we make filesystem updates work this way?

yes — ‘just’ make updating one sector do the update

12

concept: transaction

transaction: bunch of updates that happen all at once

implementation trick: one update means transaction “commits”
update done — whole transaction happened
update not done — whole transaction did not happen

13

redo logging: file creation

B
E
G
I
N

…(new.txt, 53)…

data blk 17 =
(dir)

…

data blk 34 =
(file)

…
addr[0]=34

inode #53 =
…
1
0
1
…

free map pt 2 = C
O
M
M
I
T

B
E
G
I
N

…

data blk 74 =
(file)

…

super
block log inode array data

write log entries with intended operationswrite commit message to log…and start more transactionslater, start applying results to actual diskwhen everything is written, can overwrite log

14

redo logging: file creation

B
E
G
I
N

…(new.txt, 53)…

data blk 17 =
(dir)

…

data blk 34 =
(file)

…
addr[0]=34

inode #53 =
…
1
0
1
…

free map pt 2 =

C
O
M
M
I
T

B
E
G
I
N

…

data blk 74 =
(file)

…

super
block log inode array data

write log entries with intended operations

write commit message to log…and start more transactionslater, start applying results to actual diskwhen everything is written, can overwrite log

14

redo logging: file creation

B
E
G
I
N

…(new.txt, 53)…

data blk 17 =
(dir)

…

data blk 34 =
(file)

…
addr[0]=34

inode #53 =
…
1
0
1
…

free map pt 2 = C
O
M
M
I
T

B
E
G
I
N

…

data blk 74 =
(file)

…

super
block log inode array data

write log entries with intended operations

write commit message to log

…and start more transactionslater, start applying results to actual diskwhen everything is written, can overwrite log

14

redo logging: file creation

B
E
G
I
N

…(new.txt, 53)…

data blk 17 =
(dir)

…

data blk 34 =
(file)

…
addr[0]=34

inode #53 =
…
1
0
1
…

free map pt 2 = C
O
M
M
I
T

B
E
G
I
N

…

data blk 74 =
(file)

…

super
block log inode array data

write log entries with intended operationswrite commit message to log

…and start more transactions

later, start applying results to actual diskwhen everything is written, can overwrite log

14

redo logging: file creation

B
E
G
I
N

…(new.txt, 53)…

data blk 17 =
(dir)

…

data blk 34 =
(file)

…
addr[0]=34

inode #53 =
…
1
0
1
…

free map pt 2 = C
O
M
M
I
T

B
E
G
I
N

…

data blk 74 =
(file)

…

super
block log inode array data

write log entries with intended operationswrite commit message to log…and start more transactions

later, start applying results to actual disk

when everything is written, can overwrite log

14

redo logging: file creation

B
E
G
I
N

…(new.txt, 53)…

data blk 17 =
(dir)

…

data blk 34 =
(file)

…
addr[0]=34

inode #53 =
…
1
0
1
…

free map pt 2 = C
O
M
M
I
T

B
E
G
I
N

…

data blk 74 =
(file)

…

super
block log inode array data

write log entries with intended operationswrite commit message to log…and start more transactionslater, start applying results to actual disk

when everything is written, can overwrite log

14

redo logging: file creation

B
E
G
I
N

…(new.txt, 53)…

data blk 17 =
(dir)

…

data blk 34 =
(file)

…
addr[0]=34

inode #53 =
…
1
0
1
…

free map pt 2 = C
O
M
M
I
T

B
E
G
I
N

…

data blk 74 =
(file)

…

super
block log inode array data

write log entries with intended operationswrite commit message to log…and start more transactionslater, start applying results to actual disk

when everything is written, can overwrite log

14

redo logging: file creation

write to log transaction steps:
data blocks to create
direcotry entry, inode to write
directory inode (size, time)
update

normal operation

write to log “commit transaction”
in any order:

update file data blocks
update directory entry
update file inode
update directory inode

reclaim space in log
“garbage collection”

crash before commit?
file not created
no partial operation to real data

crash after commit?
file created
promise: will perform logged updates
(after system reboots/recovers)

read log and…

ignore any operation with no
“commit”

redo any operation with
“commit”

already done? — okay, setting
inode twice

reclaim space in log

recovery

15

redo logging: file creation

write to log transaction steps:
data blocks to create
direcotry entry, inode to write
directory inode (size, time)
update

normal operation

write to log “commit transaction”
in any order:

update file data blocks
update directory entry
update file inode
update directory inode

reclaim space in log
“garbage collection”

crash before commit?
file not created
no partial operation to real data

crash after commit?
file created
promise: will perform logged updates
(after system reboots/recovers)

read log and…

ignore any operation with no
“commit”

redo any operation with
“commit”

already done? — okay, setting
inode twice

reclaim space in log

recovery

15

redo logging: file creation

write to log transaction steps:
data blocks to create
direcotry entry, inode to write
directory inode (size, time)
update

normal operation

write to log “commit transaction”
in any order:

update file data blocks
update directory entry
update file inode
update directory inode

reclaim space in log
“garbage collection”

crash before commit?
file not created
no partial operation to real data

crash after commit?
file created
promise: will perform logged updates
(after system reboots/recovers)

read log and…

ignore any operation with no
“commit”

redo any operation with
“commit”

already done? — okay, setting
inode twice

reclaim space in log

recovery

15

redo logging: file creation

write to log transaction steps:
data blocks to create
direcotry entry, inode to write
directory inode (size, time)
update

normal operation

write to log “commit transaction”
in any order:

update file data blocks
update directory entry
update file inode
update directory inode

reclaim space in log
“garbage collection”

crash before commit?
file not created
no partial operation to real data

crash after commit?
file created
promise: will perform logged updates
(after system reboots/recovers)

read log and…

ignore any operation with no
“commit”

redo any operation with
“commit”

already done? — okay, setting
inode twice

reclaim space in log

recovery

15

redo logging: file creation

write to log transaction steps:
data blocks to create
direcotry entry, inode to write
directory inode (size, time)
update

normal operation

write to log “commit transaction”
in any order:

update file data blocks
update directory entry
update file inode
update directory inode

reclaim space in log
“garbage collection”

crash before commit?
file not created
no partial operation to real data

crash after commit?
file created
promise: will perform logged updates
(after system reboots/recovers)

read log and…

ignore any operation with no
“commit”

redo any operation with
“commit”

already done? — okay, setting
inode twice

reclaim space in log

recovery

15

idempotency

logged operations should be okay to do twice = idempotent

good example: set inode link count to 4

bad example: increment inode link count

good example: overwrite inode with new inode value
as long as last committed inode value in log is right…

good example: overwrite data block with new value

16

redo logging summary

write intended operation to the log
before ever touching ‘real’ data
in format that’s safe to do twice

write marker to commit to the log
if exists, the operation will be done eventually

actually update the real data

17

redo logging and filesystems

filesystems that do redo logging are called journalling filesystems

18

the xv6 journal

number of blocks
location for first block
location for second block…
first block (log copy)

second block (log copy)

…
…
non-log block

non-log block
…

xv6 log (one transaction)

log header
(one sector)

data of
transaction

non-0: committed
otherwise: not committed or
no transaction
start: num blocks = 0

1 write changed blocks

2 write log header
(commits transaction)

3 write data
redone on recovery
(if number of blocks 6= 0)

4 clear log header
ready for next transaction

19

the xv6 journal

number of blocks
location for first block
location for second block…
first block (log copy)

second block (log copy)

…
…
non-log block

non-log block
…

xv6 log (one transaction)

log header
(one sector)

data of
transaction

non-0: committed
otherwise: not committed or
no transaction

start: num blocks = 0

1 write changed blocks

2 write log header
(commits transaction)

3 write data
redone on recovery
(if number of blocks 6= 0)

4 clear log header
ready for next transaction

19

the xv6 journal

number of blocks = 0
location for first block
location for second block…
first block (log copy)

second block (log copy)

…
…
non-log block

non-log block
…

xv6 log (one transaction)

log header
(one sector)

data of
transaction

non-0: committed
otherwise: not committed or
no transaction

start: num blocks = 0

1 write changed blocks

2 write log header
(commits transaction)

3 write data
redone on recovery
(if number of blocks 6= 0)

4 clear log header
ready for next transaction

19

the xv6 journal

number of blocks = 0
location for first block
location for second block…
first block (log copy)

second block (log copy)

…
…
non-log block

non-log block
…

xv6 log (one transaction)

log header
(one sector)

data of
transaction

non-0: committed
otherwise: not committed or
no transaction
start: num blocks = 0

1 write changed blocks

2 write log header
(commits transaction)

3 write data
redone on recovery
(if number of blocks 6= 0)

4 clear log header
ready for next transaction

19

the xv6 journal

number of blocks = N
location for first block
location for second block…
first block (log copy)

second block (log copy)

…
…
non-log block

non-log block
…

xv6 log (one transaction)

log header
(one sector)

data of
transaction

non-0: committed
otherwise: not committed or
no transaction
start: num blocks = 0

1 write changed blocks

2 write log header
(commits transaction)

3 write data
redone on recovery
(if number of blocks 6= 0)

4 clear log header
ready for next transaction

19

the xv6 journal

number of blocks = N
location for first block
location for second block…
first block (log copy)

second block (log copy)

…
…
non-log block

non-log block
…

xv6 log (one transaction)

log header
(one sector)

data of
transaction

non-0: committed
otherwise: not committed or
no transaction
start: num blocks = 0

1 write changed blocks

2 write log header
(commits transaction)

3 write data
redone on recovery
(if number of blocks 6= 0)

4 clear log header
ready for next transaction

19

the xv6 journal

number of blocks = N= 0
location for first block
location for second block…
first block (log copy)

second block (log copy)

…
…
non-log block

non-log block
…

xv6 log (one transaction)

log header
(one sector)

data of
transaction

non-0: committed
otherwise: not committed or
no transaction
start: num blocks = 0

1 write changed blocks

2 write log header
(commits transaction)

3 write data
redone on recovery
(if number of blocks 6= 0)

4 clear log header
ready for next transaction

19

what is a transaction?

so far: each file update?

faster to do batch of updates together
one log write finishes lots of things
don’t wait to write

xv6 solution: combine lots of updates into one transaction

only commit when…
no active file operation, or
not enough room left in log for more operations

20

what is a transaction?

so far: each file update?

faster to do batch of updates together
one log write finishes lots of things
don’t wait to write

xv6 solution: combine lots of updates into one transaction

only commit when…
no active file operation, or
not enough room left in log for more operations

20

redo logging problems

doesn’t the log get infinitely big?

writing everything twice?

21

redo logging problems

doesn’t the log get infinitely big?

writing everything twice?

22

limiting log size

once transaction is written to real data, can discard

sometimes called “garbage collecting” the log

may sometimes need to block to free up log space
perform logged updates before adding more to log

hope: usually log cleanup happens “in the background”

23

redo logging problems

doesn’t the log get infinitely big?

writing everything twice?

24

lots of writing?

entire log can be written sequentially
ideal for hard disk performance
also pretty good for SSDs

multiple updates can be done in any order
can reorder to minimize seek time/rotational latency/etc.
can interleave updates that make up multiple transactions

no waiting for ‘real’ updates
application can proceed while updates are happening
files will be updated even if system crashes

often better for performance!
25

lots of writing?

updating 1000 files?
with redo logging — 2 big seeks

write all updates to log in order
write all updates to file/inode/directory data in order

careful ordering — lots of seeks?
write to free block map
seek + write to inode
seek + write to directory entry
repeat 1000x

maybe could combine file updates with careful ordering??
but sure starts to get complicated to track order requirements
redo logging is probably simpler

26

lots of writing?

updating 1000 files?
with redo logging — 2 big seeks

write all updates to log in order
write all updates to file/inode/directory data in order

careful ordering — lots of seeks?
write to free block map
seek + write to inode
seek + write to directory entry
repeat 1000x

maybe could combine file updates with careful ordering??
but sure starts to get complicated to track order requirements
redo logging is probably simpler

26

degrees of durability

not all journalling filesystem use redo logging for everything

some use it only for metadata operations

some use it for both metadata and user data

only metadata: avoids lots of duplicate writing

metadata+user data: integrity of user data guaranteed

27

snapshots

filesystem snapshots

idea: filesystem keeps old versions of files around
accidental deletion? old version stil there
eventually discard some old versions

can access snapshot of files at prior time

mechanism: copy-on-write

changing file makes new copy of filesystem

common parts shared between versions

28

snapshots

filesystem snapshots

idea: filesystem keeps old versions of files around
accidental deletion? old version stil there
eventually discard some old versions

can access snapshot of files at prior time

mechanism: copy-on-write

changing file makes new copy of filesystem

common parts shared between versions
28

inode and copy-on-write

inode

indirect blocks

…

…

file data

…

new inode

update: new data blocks
+ new indirect blocks
+ new inode

both old+new inode valid

unchanged parts of file sharedchallenge: FFS/xv6/ext2 design
has big array of inodes

don’t want to write new copy
of entire inode array

29

inode and copy-on-write

old
inode

indirect blocks

…

…

file data

…

new inode

update: new data blocks
+ new indirect blocks
+ new inode

both old+new inode valid

unchanged parts of file sharedchallenge: FFS/xv6/ext2 design
has big array of inodes

don’t want to write new copy
of entire inode array

29

inode and copy-on-write

old
inode

indirect blocks

…

…

file data

…

new inode

update: new data blocks
+ new indirect blocks
+ new inode

both old+new inode valid

unchanged parts of file shared

challenge: FFS/xv6/ext2 design
has big array of inodes

don’t want to write new copy
of entire inode array

29

inode and copy-on-write

old
inode

indirect blocks

…

…

file data

…

new inode

update: new data blocks
+ new indirect blocks
+ new inode

both old+new inode valid

unchanged parts of file shared

challenge: FFS/xv6/ext2 design
has big array of inodes

don’t want to write new copy
of entire inode array

29

extra indirection for inode array

root inode
indirect blocks

…

arrays of inodes
split into pieces

…

old
inode

update one inode?

create new root inode
+ pointers

unchanged parts of
inode array
shared between versions

multiple snapshots?
array of root inodes

30

extra indirection for inode array

root inode
indirect blocks

…

arrays of inodes
split into pieces

…

old
inode

update one inode?

create new root inode
+ pointers

unchanged parts of
inode array
shared between versions

multiple snapshots?
array of root inodes

30

extra indirection for inode array

root inode
indirect blocks

…

arrays of inodes
split into pieces

…

old
inode

update one inode?

create new root inode
+ pointers

unchanged parts of
inode array
shared between versions

multiple snapshots?
array of root inodes

30

extra indirection for inode array

root inode
indirect blocks

…

arrays of inodes
split into pieces

…

old
inode

update one inode?

create new root inode
+ pointers

unchanged parts of
inode array
shared between versions

multiple snapshots?
array of root inodes

30

extra indirection for inode array

root inode
indirect blocks

…

arrays of inodes
split into pieces

…

old
inode

update one inode?

create new root inode
+ pointers

unchanged parts of
inode array
shared between versions

multiple snapshots?
array of root inodes

30

copy-on-write indirection

file update = replace with new version

array of versions of entire filesystem

only copy modified parts
keep reference counts, like for paging assignment

lots of pointers — only change pointers where modifications happen

31

snapshots in practice

ZFS (used on department machines) implements this

example: .zfs/snapshots/11.11.18-06 pseudo-directory

contains contents of files at 11 November 2018 6AM

32

mounting filesystems

Unix-like system

root filesystem appears as /

other filesystems appear as directory
e.g. lab machines: my home dir is in filesystem at /net/zf15

directories that are filesystems look like normal directories
/net/zf15/.. is /net (even though in different filesystems)

33

mounts on a dept. machine

/dev/sda1 on / type ext4 (rw,errors=remount−ro)
proc on /proc type proc (rw,noexec,nosuid,nodev)
...
udev on /dev type devtmpfs (rw,mode=0755)
devpts on /dev/pts type devpts (rw,noexec,nosuid,gid=5,mode=0620)
tmpfs on /run type tmpfs (rw,noexec,nosuid,size=10%,mode=0755)
...
/dev/sda3 on /localtmp type ext4 (rw)
...
zfs1:/zf2 on /net/zf2 type nfs (rw,hard,intr,proto=udp,nfsvers=3,

noacl,sloppy,addr=128.143.136.9)
zfs3:/zf19 on /net/zf19 type nfs (rw,hard,intr,proto=udp,nfsvers=3,

noacl,sloppy,addr=128.143.67.236)
zfs4:/sw on /net/sw type nfs (rw,hard,intr,proto=udp,nfsvers=3,

noacl,sloppy,addr=128.143.136.9)
zfs3:/zf14 on /net/zf14 type nfs (rw,hard,intr,proto=udp,nfsvers=3,

noacl,sloppy,addr=128.143.67.236)
...

34

kernel FS abstractions

Linux: virtual file system API

object-oriented, based on FFS-style filesystem

to implement a filesystem, create object types for:
superblock (represents “header”)
inode (represents file)
dentry (represents cached directory entry)
file (represents open file)

common code handles directory traversal
and caches directory traversals

common code handles file descriptors, etc.
35

linux VFS operations

superblock: write_inodez, sync_fs, …

inode: create, link, unlink, mkdir, open …
most just for inodes which are directories

dentry: compare, delete …
more commonly argument to inode operation
can be created for non-yet-existing files

file: read, write, …

36

linux VFS operations example

struct inode_operations {
struct dentry * (*lookup) (struct inode *,struct dentry *, unsigned int);
...
int (*create) (struct inode *,struct dentry *, umode_t, bool);
int (*link) (struct dentry *,struct inode *,struct dentry *);
int (*unlink) (struct inode *,struct dentry *);
int (*symlink) (struct inode *,struct dentry *,const char *);
int (*mkdir) (struct inode *,struct dentry *,umode_t);
int (*rmdir) (struct inode *,struct dentry *);
int (*mknod) (struct inode *,struct dentry *,umode_t,dev_t);
int (*rename) (struct inode *, struct dentry *,

struct inode *, struct dentry *, unsigned int);
...
int (*update_time)(struct inode *, struct timespec64 *, int);
int (*atomic_open)(struct inode *, struct dentry *,

struct file *, unsigned open_flag,
umode_t create_mode);

..
} 37

FS abstractions and awkward FSes

example: inode object for FAT?
fake it: point to directory entry?

38

distributed systems

multiple machines working together to perform a single task

called a distributed system

39

some distibuted systems models

client/server

server

client
1

client
2

client
N-1

client
N

…

node
1

node
2 node

3node
4

node
5

node
6

node
7

peer-to-peer

40

client/server model

serverclient

GET /index.html

index.html’s contents are …

client: “sometimes on”

sends requests to server

needs to know
how to contact server

server: “always on”

responds to client requests
never initiaties contact
with a client

41

client/server model

serverclient

GET /index.html

index.html’s contents are …

client: “sometimes on”

sends requests to server

needs to know
how to contact server

server: “always on”

responds to client requests
never initiaties contact
with a client

41

client/server model

serverclient

GET /index.html

index.html’s contents are …

client: “sometimes on”

sends requests to server

needs to know
how to contact server

server: “always on”

responds to client requests
never initiaties contact
with a client

41

peer-to-peer

no always-on server everyone knows about
hopefully, no one bottleneck — “scalability”

any machine can contact any other machine
every machine plays an approx. equal role?

set of machines may change over time

42

distributed system reasons

functional reasons:

multiple people collaborating
delegating responsiblities to another person/company

“the cloud”

performance/reliability/cost reasons:

combine many cheap machines to replace expensive machine

easier to add incrementally

redundancy — one machine can fail and others still work?

43

distributed system reasons

functional reasons:

multiple people collaborating
delegating responsiblities to another person/company

“the cloud”

performance/reliability/cost reasons:

combine many cheap machines to replace expensive machine

easier to add incrementally

redundancy — one machine can fail and others still work?
43

transparency goal

common goal of distributed systems is transparency

normal user doesn’t notice that it’s distributed
except because of the extra features that provides

hopefully acts like better single-node system

hope: user can rely on system to
figure out which machines to use
handle failures
…

44

transparency goal

common goal of distributed systems is transparency

normal user doesn’t notice that it’s distributed
except because of the extra features that provides

hopefully acts like better single-node system

hope: user can rely on system to
figure out which machines to use
handle failures
…

44

mailbox model

mailbox abstraction: send/receive messages

machine
A the network machine

B
B: “Hello”

Send(B, “Hello”)
B: “Hello”

Recv() = “Hello”

network knows how to get message to Bqueue of messages
from sending program
waiting to be sent

queue of messages
not yet received by
receiving program

45

mailbox model

mailbox abstraction: send/receive messages

machine
A the network machine

B
B: “Hello”

Send(B, “Hello”)
B: “Hello”

Recv() = “Hello”

network knows how to get message to B

queue of messages
from sending program
waiting to be sent

queue of messages
not yet received by
receiving program

45

mailbox model

mailbox abstraction: send/receive messages

machine
A the network machine

B
B: “Hello”

Send(B, “Hello”)
B: “Hello”

Recv() = “Hello”

network knows how to get message to B

queue of messages
from sending program
waiting to be sent

queue of messages
not yet received by
receiving program

45

mailbox model

mailbox abstraction: send/receive messages

machine
A the network machine

B
B: “Hello”

Send(B, “Hello”)
B: “Hello”

Recv() = “Hello”

network knows how to get message to Bqueue of messages
from sending program
waiting to be sent

queue of messages
not yet received by
receiving program

45

what about servers?

client/server model: server wants to reply to clients

might want to send/receive multiple messages

can build this with mailbox idea
send a ‘return address’
need to track related messages

common abstraction that does this: the connection

46

what about servers?

client/server model: server wants to reply to clients

might want to send/receive multiple messages

can build this with mailbox idea
send a ‘return address’
need to track related messages

common abstraction that does this: the connection

46

extension: conections

connections: two-way channel for messages
extra operations: connect, accept

machine
A

machine
B

B: open connection to A?

Conn = Connect(B)

A: connection to B OK!
Conn = Accept()

B: (A, “2 + 2 = ?”)

Send(Conn, “2 + 2 = ?”) “2 + 2 = ?” = Recv(Conn)
A: (B, “4”)

Send(Conn, “4”)“4” = Recv(Conn)
47

connections over mailboxes

real Internet: mailbox-style communication

connections implemented on top this
including handling errors, transmitting more data than fits in message, …

full details: take networking

48

connections versus pipes

connections look kinda like two-direction pipes

in fact, in POSIX will have the same API:

each end gets file descriptor representing connection

can use read() and write()

49

connection missing pieces?

how to specify the machine?

multiple programs on one machine? who gets the message?

51

names and addresses
name address
logical identifier location/how to locate
hostname www.virginia.edu IPv4 address 128.143.22.36
hostname mail.google.com IPv4 address 216.58.217.69
hostname mail.google.com IPv6 address 2607:f8b0:4004:80b::2005

filename /home/cr4bd/NOTES.txt inode# 120800873
and device 0x2eh/0x46d

variable counter memory address 0x7FFF9430

service name https port number 443

52

hostnames

typically use domain name system (DNS) to find machine names

maps logical names like www.virginia.edu
chosen for humans
hierarchy of names

…to addresses the network can use to move messages
numbers
ranges of numbers assigned to different parts of the network
network routers knows “send this range of numbers goes this way”

53

DNS: distributed database

my
machine

ISP’s
DNS server

address sent to my machine
when it connected to network

root
DNS server

.edu
DNS server

virginia.edu
DNS server

cs.virginia.edu
DNS server

address for
www.cs.virginia.edu?

www.cs.virginia.edu =
128.143.67.11

www.cs.virginia.edu?
try .edu server at …

.edu server doesn’t change much
optimization: cache its address

check for updated version once in a while

54

DNS: distributed database

my
machine

ISP’s
DNS server

address sent to my machine
when it connected to network

root
DNS server

.edu
DNS server

virginia.edu
DNS server

cs.virginia.edu
DNS server

address for
www.cs.virginia.edu?

www.cs.virginia.edu =
128.143.67.11

www.cs.virginia.edu?
try .edu server at …

.edu server doesn’t change much
optimization: cache its address

check for updated version once in a while

54

DNS: distributed database

my
machine

ISP’s
DNS server

address sent to my machine
when it connected to network

root
DNS server

.edu
DNS server

virginia.edu
DNS server

cs.virginia.edu
DNS server

address for
www.cs.virginia.edu?

www.cs.virginia.edu =
128.143.67.11

www.cs.virginia.edu?
try .edu server at …

.edu server doesn’t change much
optimization: cache its address

check for updated version once in a while

54

DNS: distributed database

my
machine

ISP’s
DNS server

address sent to my machine
when it connected to network

root
DNS server

.edu
DNS server

virginia.edu
DNS server

cs.virginia.edu
DNS server

address for
www.cs.virginia.edu?

www.cs.virginia.edu =
128.143.67.11

www.cs.virginia.edu?
try .edu server at …

.edu server doesn’t change much
optimization: cache its address

check for updated version once in a while

54

DNS: distributed database

my
machine

ISP’s
DNS server

address sent to my machine
when it connected to network

root
DNS server

.edu
DNS server

virginia.edu
DNS server

cs.virginia.edu
DNS server

address for
www.cs.virginia.edu?

www.cs.virginia.edu =
128.143.67.11

www.cs.virginia.edu?
try .edu server at …

.edu server doesn’t change much
optimization: cache its address

check for updated version once in a while

54

IPv4 addresses

32-bit numbers

typically written like 128.143.67.11
four 8-bit decimal values separated by dots
first part is most significant
same as 128 · 2563 + 143 · 2562 + 67 · 256 + 11 = 2 156 782 459

organizations get blocks of IPs
e.g. UVa has 128.143.0.0–128.143.255.255
e.g. Google has 216.58.192.0–216.58.223.255 and
74.125.0.0–74.125.255.255 and 35.192.0.0–35.207.255.255

55

IPv4 addresses and routing tables

router
network 1 network 2

network 3

if I receive data for… send it to…
128.143.0.0—128.143.255.255 network 1
192.107.102.0–192.107.102.255 network 1
… …
4.0.0.0–7.255.255.255 network 2
64.8.0.0–64.15.255.255 network 2
… …
anything else network 3

56

selected special IPv4 addresses

127.0.0.0 — 127.255.255.255 — localhost
AKA loopback
the machine we’re on
typically only 127.0.0.1 is used

192.168.0.0–192.168.255.255 and
10.0.0.0–10.255.255.255 and
172.16.0.0–172.31.255.255

“private” IP addresses
not used on the Internet
commonly connected to Internet with network address translation
also 100.64.0.0–100.127.255.255 (but with restrictions)

169.254.0.0-169.254.255.255
link-local addresses — ‘never’ forwarded by routers

57

network address translation

IPv4 addresses are kinda scarce

solution: convert many private addrs. to one public addr.

locally: use private IP addresses for machines

outside: private IP addresses become a single public one

commonly how home networks work (and some ISPs)

58

IPv6 addresses

IPv6 like IPv4, but with 128-bit numbers

written in hex, 16-bit parts, seperated by colons (:)

strings of 0s represented by double-colons (::)

typically given to users in blocks of 280 or 264 addresses
no need for address translation?

2607:f8b0:400d:c00::6a =
2607:f8b0:400d:0c00:0000:0000:0000:006a

2607f8b0400d0c0000000000000006aSIXTEEN

59

selected special IPv6 addresses

::1 = localhost

anything starting with fe80 = link-local addresses
never forwarded by routers

60

port numbers

we run multiple programs on a machine
IP addresses identifying machine — not enough

so, add 16-bit port numbers

think: multiple PO boxes at address

0–49151: typically assigned for particular services
80 = http, 443 = https, 22 = ssh, …

49152–65535: allocated on demand
default “return address” for client connecting to server

61

port numbers

we run multiple programs on a machine
IP addresses identifying machine — not enough

so, add 16-bit port numbers
think: multiple PO boxes at address

0–49151: typically assigned for particular services
80 = http, 443 = https, 22 = ssh, …

49152–65535: allocated on demand
default “return address” for client connecting to server

61

port numbers

we run multiple programs on a machine
IP addresses identifying machine — not enough

so, add 16-bit port numbers
think: multiple PO boxes at address

0–49151: typically assigned for particular services
80 = http, 443 = https, 22 = ssh, …

49152–65535: allocated on demand
default “return address” for client connecting to server

61

protocols

protocol = agreement on how to comunicate

sytnax (format of messages, etc.)

semantics (meaning of messages — actions to take, etc.)

62

human protocol: telephone
caller: pick up phone
caller: check for service
caller: dial
caller: wait for ringing

callee: “Hello?”
caller: “Hi, it’s Casey…”

callee: “Hi, so how about …”
caller: “Sure, …”
… …

callee: “Bye!”
caller: “Bye!”
hang up hang up

63

layered protocols

IP: protocol for sending data by IP addresses
mailbox model
limited message size

UDP: send datagrams built on IP
still mailbox model, but with port numbers

TCP: reliable connections built on IP
adds port numbers
adds resending data if error occurs
splits big amounts of data into many messages

HTTP: protocol for sending files, etc. built on TCP

64

other notable protocols (transport layer)

TLS: Transport Layer Security — built on TCP
like TCP, but adds encryption + authentication

SSH: secure shell (remote login) — built on TCP

SCP/SFTP: secure copy/secure file transfer — built on SSH

HTTPS: HTTP, but over TLS instead of TCP

FTP: file transfer protocol

…

65

other notable protocols (transport layer)

TLS: Transport Layer Security — built on TCP
like TCP, but adds encryption + authentication

SSH: secure shell (remote login) — built on TCP

SCP/SFTP: secure copy/secure file transfer — built on SSH

HTTPS: HTTP, but over TLS instead of TCP

FTP: file transfer protocol

…

65

sockets

socket: POSIX abstraction of network I/O queue
any kind of network
can also be used between processes on same machine

a kind of file descriptor

66

connected sockets

sockets can represent a connection

act like bidirectional pipe
client server

(setup connection / get fds)
write(fd, buffer, size)

read(fd, buffer, size)

write(fd, buffer, size)

read(fd, buffer, size)

67

echo client/server

void client_for_connection(int socket_fd) {
int n; char send_buf[MAX_SIZE]; char recv_buf[MAX_SIZE];
while (prompt_for_input(send_buf, MAX_SIZE)) {

n = write(socket_fd, send_buf, strlen(send_buf));
if (n != strlen(send_buf)) {...error?...}
n = read(socket_fd, recv_buf, MAX_SIZE);
if (n <= 0) return; // error or EOF
write(STDOUT_FILENO, recv_buf, n);

}
}

void server_for_connection(int socket_fd) {
int read_count, write_count; char request_buf[MAX_SIZE];
while (1) {

read_count = read(socket_fd, request_buf, MAXSIZE);
if (read_count <= 0) return; // error or EOF
write_count = write(socket_fd, request_buf, read_count);
if (read_count != write_count) {...error?...}

}
}

68

aside: send/recv

sockets have some alternate read/write-like functions:
recv, recvfrom, recvmsg
send, sendmsg

have some additional options we won’t need in this class

69

sockets and server sockets

socket

client

server
socket

socket

server

server:
ss_fd = socket(…)
…
listen(ss_fd, …)

client:
fd = socket(…)

socket() function — create socket fdlisten() — turn socket into server socket
still has a file descriptor, but …
can only accept() — create normal socket

request connectio
n

clien
t: c

onn
ect

(fd
, …)

server:
fd = accept(ss_fd, …)

connection

70

sockets and server sockets

socket

client

server
socket

socket

server

server:
ss_fd = socket(…)
…
listen(ss_fd, …)

client:
fd = socket(…)

socket() function — create socket fd

listen() — turn socket into server socket
still has a file descriptor, but …
can only accept() — create normal socket

request connectio
n

clien
t: c

onn
ect

(fd
, …)

server:
fd = accept(ss_fd, …)

connection

70

sockets and server sockets

socket

client

server
socket

socket

server

server:
ss_fd = socket(…)
…
listen(ss_fd, …)

client:
fd = socket(…)

socket() function — create socket fd

listen() — turn socket into server socket
still has a file descriptor, but …
can only accept() — create normal socket

request connectio
n

clien
t: c

onn
ect

(fd
, …)

server:
fd = accept(ss_fd, …)

connection

70

sockets and server sockets

socket

client

server
socket

socket

server

server:
ss_fd = socket(…)
…
listen(ss_fd, …)

client:
fd = socket(…)

socket() function — create socket fdlisten() — turn socket into server socket
still has a file descriptor, but …
can only accept() — create normal socket

request connectio
n

clien
t: c

onn
ect

(fd
, …)

server:
fd = accept(ss_fd, …)

connection

70

sockets and server sockets

socket

client

server
socket

socket

server

server:
ss_fd = socket(…)
…
listen(ss_fd, …)

client:
fd = socket(…)

socket() function — create socket fdlisten() — turn socket into server socket
still has a file descriptor, but …
can only accept() — create normal socket

request connectio
n

clien
t: c

onn
ect

(fd
, …)

server:
fd = accept(ss_fd, …)

connection

70

connections in TCP/IP

connection identified by 5-tuple

(protocol=TCP, local IP addr., local port, remote IP addr., remote port)
how messages are tagged on the network
(other notable protocol value: UDP)

both ends always have an address+port

what is the IP address, port number? set with bind() function
typically always done for servers, not done for clients
system will choose default if you don’t

71

connections on my desktop

cr4bd@reiss−t3620
: /zf14/cr4bd ; netstat −−inet −−inet6 −−numeric
Active Internet connections (w/o servers)
Proto Recv−Q Send−Q Local Address Foreign Address
State
tcp 0 0 128.143.67.91:49202 128.143.63.34:22
ESTABLISHED
tcp 0 0 128.143.67.91:803 128.143.67.236:2049
ESTABLISHED
tcp 0 0 128.143.67.91:50292 128.143.67.226:22
TIME_WAIT
tcp 0 0 128.143.67.91:54722 128.143.67.236:2049
TIME_WAIT
tcp 0 0 128.143.67.91:52002 128.143.67.236:111
TIME_WAIT
tcp 0 0 128.143.67.91:732 128.143.67.236:63439
TIME_WAIT
tcp 0 0 128.143.67.91:40664 128.143.67.236:2049
TIME_WAIT
tcp 0 0 128.143.67.91:54098 128.143.67.236:111
TIME_WAIT
tcp 0 0 128.143.67.91:49302 128.143.67.236:63439
TIME_WAIT
tcp 0 0 128.143.67.91:50236 128.143.67.236:111
TIME_WAIT
tcp 0 0 128.143.67.91:22 172.27.98.20:49566
ESTABLISHED
tcp 0 0 128.143.67.91:51000 128.143.67.236:111
TIME_WAIT
tcp 0 0 127.0.0.1:50438 127.0.0.1:631
ESTABLISHED
tcp 0 0 127.0.0.1:631 127.0.0.1:50438
ESTABLISHED

72

client/server flow (one connection at a time)

create client socket

connect socket to server hostname:port
(gets assigned local host:port)

write request

read response

close socket

create server socket

bind to host:port

start listening for connections

accept a new connection
(get connection socket)

read request from connection socket

write response to connection socket

close connection socket

73

connection setup: client — manual addresses

int sock_fd;

server = /* code on later slide */;
sock_fd = socket(AF_INET, /* IPv4 */

SOCK_STREAM, /* byte-oriented */
IPPROTO_TCP);

if (sock_fd < 0) { /* handle error */ }

struct sockaddr_in addr;
addr.sin_family = AF_INET;
addr.sin_addr.s_addr = htonl(2156872459); /* 128.143.67.11 */
addr.sin_port = htons(80); /* port 80 */
if (connect(sock_fd, (struct sockaddr*) &addr, sizeof(addr)) {

/* handle error */
}
DoClientStuff(sock_fd); /* read and write from sock_fd */
close(sock_fd);

specify IPv4 instead of IPv6 or local-only sockets
specify TCP (byte-oriented) instead of UDP (‘datagram’ oriented)

htonl/s = host-to-network long/short
network byte order = big endian

struct representing IPv4 address + port number
declared in <netinet/in.h>
see man 7 ip on Linux for docs

74

connection setup: client — manual addresses

int sock_fd;

server = /* code on later slide */;
sock_fd = socket(AF_INET, /* IPv4 */

SOCK_STREAM, /* byte-oriented */
IPPROTO_TCP);

if (sock_fd < 0) { /* handle error */ }

struct sockaddr_in addr;
addr.sin_family = AF_INET;
addr.sin_addr.s_addr = htonl(2156872459); /* 128.143.67.11 */
addr.sin_port = htons(80); /* port 80 */
if (connect(sock_fd, (struct sockaddr*) &addr, sizeof(addr)) {

/* handle error */
}
DoClientStuff(sock_fd); /* read and write from sock_fd */
close(sock_fd);

specify IPv4 instead of IPv6 or local-only sockets
specify TCP (byte-oriented) instead of UDP (‘datagram’ oriented)

htonl/s = host-to-network long/short
network byte order = big endian

struct representing IPv4 address + port number
declared in <netinet/in.h>
see man 7 ip on Linux for docs

74

connection setup: client — manual addresses

int sock_fd;

server = /* code on later slide */;
sock_fd = socket(AF_INET, /* IPv4 */

SOCK_STREAM, /* byte-oriented */
IPPROTO_TCP);

if (sock_fd < 0) { /* handle error */ }

struct sockaddr_in addr;
addr.sin_family = AF_INET;
addr.sin_addr.s_addr = htonl(2156872459); /* 128.143.67.11 */
addr.sin_port = htons(80); /* port 80 */
if (connect(sock_fd, (struct sockaddr*) &addr, sizeof(addr)) {

/* handle error */
}
DoClientStuff(sock_fd); /* read and write from sock_fd */
close(sock_fd);

specify IPv4 instead of IPv6 or local-only sockets
specify TCP (byte-oriented) instead of UDP (‘datagram’ oriented)

htonl/s = host-to-network long/short
network byte order = big endian

struct representing IPv4 address + port number
declared in <netinet/in.h>
see man 7 ip on Linux for docs

74

connection setup: client — manual addresses

int sock_fd;

server = /* code on later slide */;
sock_fd = socket(AF_INET, /* IPv4 */

SOCK_STREAM, /* byte-oriented */
IPPROTO_TCP);

if (sock_fd < 0) { /* handle error */ }

struct sockaddr_in addr;
addr.sin_family = AF_INET;
addr.sin_addr.s_addr = htonl(2156872459); /* 128.143.67.11 */
addr.sin_port = htons(80); /* port 80 */
if (connect(sock_fd, (struct sockaddr*) &addr, sizeof(addr)) {

/* handle error */
}
DoClientStuff(sock_fd); /* read and write from sock_fd */
close(sock_fd);

specify IPv4 instead of IPv6 or local-only sockets
specify TCP (byte-oriented) instead of UDP (‘datagram’ oriented)

htonl/s = host-to-network long/short
network byte order = big endian

struct representing IPv4 address + port number
declared in <netinet/in.h>
see man 7 ip on Linux for docs

74

sockaddr_in

/* from 'man 7 ip' */
struct sockaddr_in {

sa_family_t sin_family; /* address family: AF_INET */
in_port_t sin_port; /* port in network byte order */
struct in_addr sin_addr; /* internet address */

};

/* Internet address. */
struct in_addr {

uint32_t s_addr; /* address in network byte order */
};

75

sockaddr_in6

/* from 'man 7 ipv6' */
struct sockaddr_in6 {

sa_family_t sin6_family; /* AF_INET6 */
in_port_t sin6_port; /* port number */
uint32_t sin6_flowinfo; /* IPv6 flow information */
struct in6_addr sin6_addr; /* IPv6 address */
uint32_t sin6_scope_id; /* Scope ID (new in 2.4) */

};

struct in6_addr {
unsigned char s6_addr[16]; /* IPv6 address */

};

76

connection setup: client, using addrinfo

int sock_fd;
struct addrinfo *server = /* code on next slide */;

sock_fd = socket(server−>ai_family,
// ai_family = AF_INET (IPv4) or AF_INET6 (IPv6) or ...

server−>ai_socktype,
// ai_socktype = SOCK_STREAM (bytes) or ...

server−>ai_prototcol
// ai_protocol = IPPROTO_TCP or ...

);

if (sock_fd < 0) { /* handle error */ }
if (connect(sock_fd, server−>ai_addr, server−>ai_addrlen) < 0) {

/* handle error */
}
freeaddrinfo(server);
DoClientStuff(sock_fd); /* read and write from sock_fd */
close(sock_fd);

addrinfo contains all information needed to setup socket
set by getaddrinfo function (next slide)
handles IPv4 and IPv6
handles DNS names, service names

ai_addr points to a struct sockaddr_in* or
a struct sockaddr_in6*
(cast to a struct sockaddr*)

since addrinfo contains pointers to dynamically allocated memory,
call this function to free everything

77

connection setup: client, using addrinfo

int sock_fd;
struct addrinfo *server = /* code on next slide */;

sock_fd = socket(server−>ai_family,
// ai_family = AF_INET (IPv4) or AF_INET6 (IPv6) or ...

server−>ai_socktype,
// ai_socktype = SOCK_STREAM (bytes) or ...

server−>ai_prototcol
// ai_protocol = IPPROTO_TCP or ...

);

if (sock_fd < 0) { /* handle error */ }
if (connect(sock_fd, server−>ai_addr, server−>ai_addrlen) < 0) {

/* handle error */
}
freeaddrinfo(server);
DoClientStuff(sock_fd); /* read and write from sock_fd */
close(sock_fd);

addrinfo contains all information needed to setup socket
set by getaddrinfo function (next slide)
handles IPv4 and IPv6
handles DNS names, service names

ai_addr points to a struct sockaddr_in* or
a struct sockaddr_in6*
(cast to a struct sockaddr*)

since addrinfo contains pointers to dynamically allocated memory,
call this function to free everything

77

connection setup: client, using addrinfo

int sock_fd;
struct addrinfo *server = /* code on next slide */;

sock_fd = socket(server−>ai_family,
// ai_family = AF_INET (IPv4) or AF_INET6 (IPv6) or ...

server−>ai_socktype,
// ai_socktype = SOCK_STREAM (bytes) or ...

server−>ai_prototcol
// ai_protocol = IPPROTO_TCP or ...

);

if (sock_fd < 0) { /* handle error */ }
if (connect(sock_fd, server−>ai_addr, server−>ai_addrlen) < 0) {

/* handle error */
}
freeaddrinfo(server);
DoClientStuff(sock_fd); /* read and write from sock_fd */
close(sock_fd);

addrinfo contains all information needed to setup socket
set by getaddrinfo function (next slide)
handles IPv4 and IPv6
handles DNS names, service names

ai_addr points to a struct sockaddr_in* or
a struct sockaddr_in6*
(cast to a struct sockaddr*)

since addrinfo contains pointers to dynamically allocated memory,
call this function to free everything

77

connection setup: client, using addrinfo

int sock_fd;
struct addrinfo *server = /* code on next slide */;

sock_fd = socket(server−>ai_family,
// ai_family = AF_INET (IPv4) or AF_INET6 (IPv6) or ...

server−>ai_socktype,
// ai_socktype = SOCK_STREAM (bytes) or ...

server−>ai_prototcol
// ai_protocol = IPPROTO_TCP or ...

);

if (sock_fd < 0) { /* handle error */ }
if (connect(sock_fd, server−>ai_addr, server−>ai_addrlen) < 0) {

/* handle error */
}
freeaddrinfo(server);
DoClientStuff(sock_fd); /* read and write from sock_fd */
close(sock_fd);

addrinfo contains all information needed to setup socket
set by getaddrinfo function (next slide)
handles IPv4 and IPv6
handles DNS names, service names

ai_addr points to a struct sockaddr_in* or
a struct sockaddr_in6*
(cast to a struct sockaddr*)

since addrinfo contains pointers to dynamically allocated memory,
call this function to free everything

77

connection setup: client, using addrinfo

int sock_fd;
struct addrinfo *server = /* code on next slide */;

sock_fd = socket(server−>ai_family,
// ai_family = AF_INET (IPv4) or AF_INET6 (IPv6) or ...

server−>ai_socktype,
// ai_socktype = SOCK_STREAM (bytes) or ...

server−>ai_prototcol
// ai_protocol = IPPROTO_TCP or ...

);

if (sock_fd < 0) { /* handle error */ }
if (connect(sock_fd, server−>ai_addr, server−>ai_addrlen) < 0) {

/* handle error */
}
freeaddrinfo(server);
DoClientStuff(sock_fd); /* read and write from sock_fd */
close(sock_fd);

addrinfo contains all information needed to setup socket
set by getaddrinfo function (next slide)
handles IPv4 and IPv6
handles DNS names, service names

ai_addr points to a struct sockaddr_in* or
a struct sockaddr_in6*
(cast to a struct sockaddr*)

since addrinfo contains pointers to dynamically allocated memory,
call this function to free everything

77

connection setup: lookup address

/* example hostname, portname = "www.cs.virginia.edu", "443" */
const char *hostname; const char *portname;
...
struct addrinfo *server;
struct addrinfo hints;
int rv;
memset(&hints, 0, sizeof(hints));
hints.ai_family = AF_UNSPEC; /* for IPv4 OR IPv6 */
// hints.ai_family = AF_INET4; /* for IPv4 only */

hints.ai_socktype = SOCK_STREAM; /* byte-oriented --- TCP */
rv = getaddrinfo(hostname, portname, &hints, &server);
if (rv != 0) { /* handle error */ }

/* eventually freeaddrinfo(result) */

NB: pass pointer to addrinfo to fill in

AF_UNSPEC: choose between IPv4 and IPv6 for me
AF_INET, AF_INET6: choose IPv4 or IPV6 respectively

78

connection setup: lookup address

/* example hostname, portname = "www.cs.virginia.edu", "443" */
const char *hostname; const char *portname;
...
struct addrinfo *server;
struct addrinfo hints;
int rv;
memset(&hints, 0, sizeof(hints));
hints.ai_family = AF_UNSPEC; /* for IPv4 OR IPv6 */
// hints.ai_family = AF_INET4; /* for IPv4 only */

hints.ai_socktype = SOCK_STREAM; /* byte-oriented --- TCP */
rv = getaddrinfo(hostname, portname, &hints, &server);
if (rv != 0) { /* handle error */ }

/* eventually freeaddrinfo(result) */

NB: pass pointer to addrinfo to fill in

AF_UNSPEC: choose between IPv4 and IPv6 for me
AF_INET, AF_INET6: choose IPv4 or IPV6 respectively

78

connection setup: lookup address

/* example hostname, portname = "www.cs.virginia.edu", "443" */
const char *hostname; const char *portname;
...
struct addrinfo *server;
struct addrinfo hints;
int rv;
memset(&hints, 0, sizeof(hints));
hints.ai_family = AF_UNSPEC; /* for IPv4 OR IPv6 */
// hints.ai_family = AF_INET4; /* for IPv4 only */

hints.ai_socktype = SOCK_STREAM; /* byte-oriented --- TCP */
rv = getaddrinfo(hostname, portname, &hints, &server);
if (rv != 0) { /* handle error */ }

/* eventually freeaddrinfo(result) */

NB: pass pointer to addrinfo to fill in

AF_UNSPEC: choose between IPv4 and IPv6 for me
AF_INET, AF_INET6: choose IPv4 or IPV6 respectively

78

connection setup: multiple server addresses

struct addrinfo *server;
...
rv = getaddrinfo(hostname, portname, &hints, &server);
if (rv != 0) { /* handle error */ }

for (struct addrinfo *current = server; current != NULL;
current = current−>ai_next) {

sock_fd = socket(current−>ai_family, current−>ai_socktype, current−>ai_protocol);
if (sock_fd < 0) continue;
if (connect(sock_fd, current−>ai_addr, current−>ai_addrlen) == 0) {

break;
}
close(sock_fd); // connect failed

}
freeaddrinfo(server);
DoClientStuff(sock_fd);
close(sock_fd);

addrinfo is a linked list
name can correspond to multiple addresses
example: redundant copies of web server
example: an IPv4 address and IPv6 address
example: wired + wireless connection on one machine

79

connection setup: multiple server addresses

struct addrinfo *server;
...
rv = getaddrinfo(hostname, portname, &hints, &server);
if (rv != 0) { /* handle error */ }

for (struct addrinfo *current = server; current != NULL;
current = current−>ai_next) {

sock_fd = socket(current−>ai_family, current−>ai_socktype, current−>ai_protocol);
if (sock_fd < 0) continue;
if (connect(sock_fd, current−>ai_addr, current−>ai_addrlen) == 0) {

break;
}
close(sock_fd); // connect failed

}
freeaddrinfo(server);
DoClientStuff(sock_fd);
close(sock_fd);

addrinfo is a linked list
name can correspond to multiple addresses
example: redundant copies of web server
example: an IPv4 address and IPv6 address
example: wired + wireless connection on one machine

79

connection setup: old lookup function

/* example hostname, portnum= "www.cs.virginia.edu", 443*/
const char *hostname; int portnum;
...
struct hostent *server_ip;
server_ip = gethostbyname(hostname);

if (server_ip == NULL) { /* handle error */ }

struct sockaddr_in addr;
addr.s_addr = *(struct in_addr*) server_ip−>h_addr_list[0];
addr.sin_port = htons(portnum);
sock_fd = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);
connect(sock_fd, &addr, sizeof(addr));
...

80

connection setup: server, manual

int server_socket_fd = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);
struct sockaddr_in addr;
addr.sin_family = AF_INET;
addr.sin_addr.s_addr = INADDR_ANY; /* "any address I can use" */

/* or: addr.s_addr.in_addr = INADDR_LOOPBACK (127.0.0.1) */
/* or: addr.s_addr.in_addr = htonl(...); */

addr.sin_port = htons(9999); /* port number 9999 */

if (bind(server_socket_fd, &addr, sizeof(addr)) < 0) {
/* handle error */

}
listen(server_socket_fd, MAX_NUM_WAITING);
...
int socket_fd = accept(server_socket_fd, NULL);

INADDR_ANY: accept connections for any address I can!
alternative: specify specific address

bind to 127.0.0.1? only accept connections from same machine
what we recommend for FTP server assignment

choose the number of unaccepted connections

81

connection setup: server, manual

int server_socket_fd = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);
struct sockaddr_in addr;
addr.sin_family = AF_INET;
addr.sin_addr.s_addr = INADDR_ANY; /* "any address I can use" */

/* or: addr.s_addr.in_addr = INADDR_LOOPBACK (127.0.0.1) */
/* or: addr.s_addr.in_addr = htonl(...); */

addr.sin_port = htons(9999); /* port number 9999 */

if (bind(server_socket_fd, &addr, sizeof(addr)) < 0) {
/* handle error */

}
listen(server_socket_fd, MAX_NUM_WAITING);
...
int socket_fd = accept(server_socket_fd, NULL);

INADDR_ANY: accept connections for any address I can!
alternative: specify specific address

bind to 127.0.0.1? only accept connections from same machine
what we recommend for FTP server assignment

choose the number of unaccepted connections

81

connection setup: server, manual

int server_socket_fd = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);
struct sockaddr_in addr;
addr.sin_family = AF_INET;
addr.sin_addr.s_addr = INADDR_ANY; /* "any address I can use" */

/* or: addr.s_addr.in_addr = INADDR_LOOPBACK (127.0.0.1) */
/* or: addr.s_addr.in_addr = htonl(...); */

addr.sin_port = htons(9999); /* port number 9999 */

if (bind(server_socket_fd, &addr, sizeof(addr)) < 0) {
/* handle error */

}
listen(server_socket_fd, MAX_NUM_WAITING);
...
int socket_fd = accept(server_socket_fd, NULL);

INADDR_ANY: accept connections for any address I can!
alternative: specify specific address

bind to 127.0.0.1? only accept connections from same machine
what we recommend for FTP server assignment

choose the number of unaccepted connections

81

connection setup: server, manual

int server_socket_fd = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);
struct sockaddr_in addr;
addr.sin_family = AF_INET;
addr.sin_addr.s_addr = INADDR_ANY; /* "any address I can use" */

/* or: addr.s_addr.in_addr = INADDR_LOOPBACK (127.0.0.1) */
/* or: addr.s_addr.in_addr = htonl(...); */

addr.sin_port = htons(9999); /* port number 9999 */

if (bind(server_socket_fd, &addr, sizeof(addr)) < 0) {
/* handle error */

}
listen(server_socket_fd, MAX_NUM_WAITING);
...
int socket_fd = accept(server_socket_fd, NULL);

INADDR_ANY: accept connections for any address I can!
alternative: specify specific address

bind to 127.0.0.1? only accept connections from same machine
what we recommend for FTP server assignment

choose the number of unaccepted connections

81

aside: on server port numbers

Unix convention: must be root to use ports 0–1023
root = superuser = ‘adminstrator user’ = what sudo does

so, for testing: probably ports > 1023

82

connection setup: server, address setup

/* example (hostname, portname) = ("127.0.0.1", "443") */
const char *hostname; const char *portname;
...
struct addrinfo *server;
struct addrinfo hints;
int rv;
memset(&hints, 0, sizeof(hints));
hints.ai_family = AF_INET; /* for IPv4 */
/* or: */ hints.ai_family = AF_INET6; /* for IPv6 */
/* or: */ hints.ai_family = AF_UNSPEC; /* I don't care */
hints.ai_flags = AI_PASSIVE;
rv = getaddrinfo(hostname, portname, &hints, &server);
if (rv != 0) { /* handle error */ }

hostname can be NULL
means “use all possible addresses”
only makes sense for servers

portname can also be NULL
means “choose a port number for me”
only makes sense for servers

AI_PASSIVE: “I’m going to use bind”

83

connection setup: server, address setup

/* example (hostname, portname) = ("127.0.0.1", "443") */
const char *hostname; const char *portname;
...
struct addrinfo *server;
struct addrinfo hints;
int rv;
memset(&hints, 0, sizeof(hints));
hints.ai_family = AF_INET; /* for IPv4 */
/* or: */ hints.ai_family = AF_INET6; /* for IPv6 */
/* or: */ hints.ai_family = AF_UNSPEC; /* I don't care */
hints.ai_flags = AI_PASSIVE;
rv = getaddrinfo(hostname, portname, &hints, &server);
if (rv != 0) { /* handle error */ }

hostname can be NULL
means “use all possible addresses”
only makes sense for servers

portname can also be NULL
means “choose a port number for me”
only makes sense for servers

AI_PASSIVE: “I’m going to use bind”

83

connection setup: server, address setup

/* example (hostname, portname) = ("127.0.0.1", "443") */
const char *hostname; const char *portname;
...
struct addrinfo *server;
struct addrinfo hints;
int rv;
memset(&hints, 0, sizeof(hints));
hints.ai_family = AF_INET; /* for IPv4 */
/* or: */ hints.ai_family = AF_INET6; /* for IPv6 */
/* or: */ hints.ai_family = AF_UNSPEC; /* I don't care */
hints.ai_flags = AI_PASSIVE;
rv = getaddrinfo(hostname, portname, &hints, &server);
if (rv != 0) { /* handle error */ }

hostname can be NULL
means “use all possible addresses”
only makes sense for servers

portname can also be NULL
means “choose a port number for me”
only makes sense for servers

AI_PASSIVE: “I’m going to use bind”

83

connection setup: server, address setup

/* example (hostname, portname) = ("127.0.0.1", "443") */
const char *hostname; const char *portname;
...
struct addrinfo *server;
struct addrinfo hints;
int rv;
memset(&hints, 0, sizeof(hints));
hints.ai_family = AF_INET; /* for IPv4 */
/* or: */ hints.ai_family = AF_INET6; /* for IPv6 */
/* or: */ hints.ai_family = AF_UNSPEC; /* I don't care */
hints.ai_flags = AI_PASSIVE;
rv = getaddrinfo(hostname, portname, &hints, &server);
if (rv != 0) { /* handle error */ }

hostname can be NULL
means “use all possible addresses”
only makes sense for servers

portname can also be NULL
means “choose a port number for me”
only makes sense for servers

AI_PASSIVE: “I’m going to use bind”

83

connection setup: server, addrinfo

struct addrinfo *server;
... getaddrinfo(...) ...

int server_socket_fd = socket(
server−>ai_family,
server−>ai_sockttype,
server−>ai_protocol);

if (bind(server_socket_fd, ai−>ai_addr, ai−>ai_addr_len)) < 0) {
/* handle error */

}
listen(server_socket_fd, MAX_NUM_WAITING);
...
int socket_fd = accept(server_socket_fd, NULL);

84

client/server flow (multiple connections)

spawn new process (fork)
or thread per connection

create client socket

connect socket to server hostname:port
(gets assigned local host:port)

write request

read response

close socket

create server socket

bind to host:port

start listening for connections

accept a new connection
(get connection socket)

read request from connection socket

write response to connection socket

close connection socket

85

incomplete writes

write might write less than requested
error, or buffer full

read might read less than requested
error, or didn’t get there in time

86

handling incomplete writes

bool write_fully(int fd, const char *buffer, ssize_t count) {
const char *ptr = buffer;
const char *end = buffer + count;
while (ptr != end) {

ssize_t written = write(fd, (void*) ptr, end − ptr);
if (written == −1) {

return false;
}
ptr += written;

}
return true;

}

87

on filling buffers

char buffer[SIZE];
ssize_t buffer_end;

int fill_buffer(int fd) {
ssize_t amount = read(

fd, buffer + buffer_end, SIZE − buffer_end
);
if (amount == 0) {

/* handle EOF */ ???
} else if (amount == −1) {

return −1;
} else {

buffer_end += amount;
}

}

88

reading lines

int read_line(int fd, const char *p_line, size_t *p_size) {
const char *newline;
while (1) {

newline = memchr(buffer, '\n', buffer_end);
if (newline != NULL || buffer_end == SIZE) break;
fill_buffer();

}
memcpy(p_line, buffer, newline − buffer);
*p_size = newline − buffer;
memmove(newline, buffer, buffer + SIZE − newline);
buffer_end −= (newline − buffer);

}

89

aside: getting addresses

on a socket fd: getsockname = local addresss
sockaddr_in or sockaddr_in6
IPv4/6 address + port

on a socket fd: getpeername = remote address

90

addresses to string

can access numbers/arrays in sockaddr_in/in6 directly

another option: getnameinfo
supports getting W.X.Y.Z form or looking up a hostname

91

example echo client/server

handle reporting errors from incomplete writes

handle avoiding SIGPIPE
OS kills program trying to write to closed socket/pipe

set the SO_REUSEADDR “socket option”
default: OS reserves port number for a while after server exits
this allows keeps it unreserved
allows us to bind() immediately after closing server

client handles reading until a newline
but doesn’t check for reading multiple lines at once

92

example echo client/server

handle reporting errors from incomplete writes

handle avoiding SIGPIPE
OS kills program trying to write to closed socket/pipe

set the SO_REUSEADDR “socket option”
default: OS reserves port number for a while after server exits
this allows keeps it unreserved
allows us to bind() immediately after closing server

client handles reading until a newline
but doesn’t check for reading multiple lines at once

92

reading and writing at once

so far assumption: alternate between reading+writing
sufficient for FTP assignment
how many protocols work

“half-duplex”

don’t have to use sockets this way, but tricky

threads: one reading thread, one writing thread OR
event-loop: use non-blocking I/O and select()/poll()/etc. functions

non-blocking I/O setup with fcntl() function
non-blocking write() fills up buffer as much as possible, then returns
non-blocking read() returns what’s in buffer, never waits for more

93

94

log-structured filesystems

logging is a great access pattern for hard drives and SSDs
sequential
right for SSDs — write everything once before writing again

how about designing a filesystem around it!

idea: log-structured filesystems

95

log-structured filesystem

image: Rosenblum and Ousterhout, “The Design and Implementatoin of a Log Structures Filesystem” 96

log-structured filesystem ideas

write inodes + data + free map + etc. to log instead of disk

problem: scanning log to find latest version of inode?

periodically write inode maps to log
computed latest location of inodes

searching limited to last inode map

97

log-structured FS garbage collection

challenge: what happens when log gets to the end of the disk?
want to start from beginning of disk again…

either: copy data to free space or ‘thread’ log around used space:

image: Rosenblum and Ousterhout, “The Design and Implementatoin of a Log Structures Filesystem” 98

log-structured filesystems in practice

the kind of ideas you’d use to implement an SSD

used for some filesystems that work directly with Flash chips

99

changing file atomically?

often applications want to update a file all at once

on Unix, one way to do this:

create a new file with a hard-to-guess name in the same directory

rename the new file to replace the old file
overwrites that directory entry

no one will ever read partially written file

100

changing file atomically?

often applications want to update a file all at once

on Unix, one way to do this:

create a new file with a hard-to-guess name in the same directory

rename the new file to replace the old file
overwrites that directory entry

no one will ever read partially written file

100

aside: fsync

so, filesystem can order things carefully

what if I, non-OS programmer want to do that?

POSIX mechanism: fsync
“please actually write this file to disk now — I’ll wait”

some stories of broken implementations of fsync
nasty problem — how do you test it???

101

beyond threads: event based programming

writing server that servers multiple clients?
e.g. multiple web browsers at a time

maybe don’t really need multiple processors/cores
one network, not that fast

idea: one thread handles multiple connections

issue: read from/write to multiple streams at once?

102

beyond threads: event based programming

writing server that servers multiple clients?
e.g. multiple web browsers at a time

maybe don’t really need multiple processors/cores
one network, not that fast

idea: one thread handles multiple connections

issue: read from/write to multiple streams at once?

102

event loops

while (true) {
event = WaitForNextEvent();
switch (event.type) {
case NEW_CONNECTION:

handleNewConnection(event); break;
case CAN_READ_DATA_WITHOUT_WAITING:

connection = LookupConnection(event.fd);
handleRead(connection);
break;

case CAN_WRITE_DATA_WITHOUT_WAITING:
connection = LookupConnection(event.fd);
handleWrite(connection);
break;
...

}
}

103

some single-threaded processing code

void ProcessRequest(int fd) {
while (true) {

char command[1024] = {};
size_t comamnd_length = 0;
do {

ssize_t read_result =
read(fd, command + command_length,

sizeof(command) − command_length);
if (read_result <= 0) handle_error();
command_length += read_result;

} while (command[command_length − 1] != '\n');
if (IsExitCommand(command)) { return; }
char response[1024];
computeResponse(response, commmand);
size_t total_written = 0;
while (total_written < sizeof(response)) {

...
}

}
}

class Connection {
int fd;
char command[1024];
size_t command_length;
char response[1024];
size_t total_written;
...

};

104

some single-threaded processing code

void ProcessRequest(int fd) {
while (true) {

char command[1024] = {};
size_t comamnd_length = 0;
do {

ssize_t read_result =
read(fd, command + command_length,

sizeof(command) − command_length);
if (read_result <= 0) handle_error();
command_length += read_result;

} while (command[command_length − 1] != '\n');
if (IsExitCommand(command)) { return; }
char response[1024];
computeResponse(response, commmand);
size_t total_written = 0;
while (total_written < sizeof(response)) {

...
}

}
}

class Connection {
int fd;
char command[1024];
size_t command_length;
char response[1024];
size_t total_written;
...

};

104

as event code

handleRead(Connection *c) {
ssize_t read_result =

read(fd, c−>command + command_length,
sizeof(command) − c−>command_length);

if (read_result <= 0) handle_error();
c−>command_length += read_result;

if (c−>command[c−>command_length − 1] == '\n') {
computeResponse(c−>response, c−>command);
if (IsExitCommand(command)) {

FinishConnection(c);
}
StopWaitingToRead(c−>fd);
StartWaitingToWrite(c−>fd);

}
}

105

as event code

handleRead(Connection *c) {
ssize_t read_result =

read(fd, c−>command + command_length,
sizeof(command) − c−>command_length);

if (read_result <= 0) handle_error();
c−>command_length += read_result;

if (c−>command[c−>command_length − 1] == '\n') {
computeResponse(c−>response, c−>command);
if (IsExitCommand(command)) {

FinishConnection(c);
}
StopWaitingToRead(c−>fd);
StartWaitingToWrite(c−>fd);

}
}

105

POSIX support for event loops

select and poll functions
take list(s) of file descriptors to read and to write
wait for them to be read/writeable without waiting
(or for new connections associated with them, etc.)

many OS-specific extensions/improvements/alternatives:
examples: Linux epoll, Windows IO completion ports
better ways of managing list of file descriptors
do read/write when ready instead of just returning when reading/writing
is okay

106

	ordering rules
	aside: ordering and disk performance
	write-ahead logging
	idea: beyond ordering
	redo logging
	the xv6 FS journal
	redo logging overhead/GC

	snapshots and copy-on-write
	virtual file systems APIs
	distributed systems/networks intro
	introduction, models, goals

	communication models
	names and addresses
	protocols / TCP / UDP

	sockets
	introduction / read-write flow
	connection setup outline
	server flow (simple)
	connection setup code
	server flow (multiple connections)
	incomplete reads/writes
	getting addresses from sockets
	socket examples on webiste
	simultaneous read/write

	backup slides
	log-based filesystems
	aside: atomic rename trick
	aside: on fsync
	event loops

