
two-phase commit / security (start)

1



Changelog

Changes made in this version not seen in first lecture:
quorum: add note that part of voting is updating other nodes to latest
version

1



last time (1)

RPC: remote function calls like local
interface description language compiled into stubs (wrapper functions)
marshalling (AKA serialization) of arguments/return value into bytes

NFS: file operations into remote procedure calls

NFS is stateless operation
server uses file IDs — give inode number
client remembers fd to file ID mapping
nothing to recover on server failure
nothing for server to forget on client failure

2



last time (2)

close-to-open consistency
check for updates on open, write file on close
idea: inconsistent behavior if two processes open file at once okay

AFS: callbacks on write rather than proactive checks
…but server still needs to know about write to callback

3



file locking

so, your program doesn’t like conflicting writes

what can you do?

if offline operation, probably not much…

otherwise file locking

except it often doesn’t work on NFS, etc.

4



advisory file locking with fcntl

int fd = open(...);
struct flock lock_info = {

.l_type = F_WRLCK, // write lock; RDLOCK also available
// range of bytes to lock:
.l_whence = SEEK_SET, l_start = 0, l_len = ...

};
/* set lock, waiting if needed */
int rv = fcntl(fd, F_SETLKW, &lock_info);
if (rv == −1) { /* handle error */ }
/* now have a lock on the file */

/* unlock --- could also close() */
lock_info.l_type = F_UNLCK;
fcntl(fd, F_SETLK, &lock_info);

5



advisory locks

fcntl is an advisory lock

doesn’t stop others from accessing the file…

unless they always try to get a lock first

6



POSIX file locks are horrible

actually two locking APIs: fcntl() and flock()

fcntl: not inherited by fork

fcntl: closing any fd for file release lock
even if you dup2’d it!

fcntl: maybe sometimes works over NFS?

flock: less likely to work over NFS, etc.

7



fcntl and NFS

seems to require extra state at the server

typical implementation: separate lock server

not a stateless protocol

8



lockfiles

use a separate lockfile instead of “real” locks
e.g. convention: use NOTES.txt.lock as lock file

lock: create a lockfile with link() or open() with O_EXCL
can’t lock: link()/open() will fail “file already exists”
for current NFSv3: should be single RPC calls that always contact server
some (old, I hope?) systems: link() atomic, open() O_EXCL not

unlock: remove the lockfile
annoyance: what if program crashes, file not removed?

9



failure models

how do machines fail?…

well, lots of ways

10



two models of machine failure

fail-stop

failing machines stop responding
or one always detects they’re broken and can ignore them

Byzantine failures

failing machiens do the worst possible thing

11



dealing with machine failure

recover when machine comes back up
does not work for Byzantine failures

rely on a quorum of machines working
requires 1 extra machine for fail-stop
requires 3F + 1 to handle F failures with Byzantine failures

12



distributed transaction problem

distributed transaction

two machines both agree to do something or not do something

even if a machine fails

13



distributed transaction example

course database across many machines

machine A and B: student records

machine C: course records

want to make sure machines agree to add students to course

…even if one machine fails

no confusion about student is in course

14



the centralized solution

one solution: a new machine D decides what to do
for machines A-C which store records

machine D maintains a redo log for all machines

treats them as just data storage

problem: we’d like machines to work indepdently
not really taking advantage of distributed
why did we split student records across two machines anyways?

15



the centralized solution

one solution: a new machine D decides what to do
for machines A-C which store records

machine D maintains a redo log for all machines

treats them as just data storage

problem: we’d like machines to work indepdently
not really taking advantage of distributed
why did we split student records across two machines anyways?

15



decentralized solution sketch

want each machine to be responsible just for their own data

only coordinate when transaction crosses machine
e.g. changing course + student records

only coordinate with involved machines

hopefully, scales to tens or hundreds of machines
typical transaction would involve 1 to 3 machines?

16



distributed transactions and failures

extra tool: persistent log

idea: machine remembers what happen on failure

same idea as redo log: record what to do in log
preview: whether trying to do/not do action

…but need to handle if machine stopped while writing log

17



two-phase commit: setup

every machine votes on transaction

commit — do the operation (add student A to class)

abort — don’t do it (something went wrong

require unanimity to commit
otherwise, default=abort

18



two-phase commit: phases

phase 1: preparing

each machine states their intention: commit/abort

phase 2: finishing

gather intentions, figure out whether to do/not do it

19



preparing

agree to commit
promise: “I will accept this transaction”
promise recorded in the machine log in case it crashes

agree to abort
promise: “I will not accept this transaction”
promise recorded in the machine log in case it crashes

never ever take back agreement!

to keep promise: can’t allow interfering operations
e.g. agree to add student to class → reserve seat in class
(even though student might not be added)

20



preparing

agree to commit
promise: “I will accept this transaction”
promise recorded in the machine log in case it crashes

agree to abort
promise: “I will not accept this transaction”
promise recorded in the machine log in case it crashes

never ever take back agreement!to keep promise: can’t allow interfering operations
e.g. agree to add student to class → reserve seat in class
(even though student might not be added)

20



finishing

learn all machines agree to commit: commit transaction
actually apply transaction (e.g. record student is in class)
record decision in local log

learn any machine agreed to abort: abort transaction
don’t ever try to apply transaction
record decision in local log

unsure which? just ask everyone what they agreed to do
they can’t change their mind once they tell you

21



finishing

learn all machines agree to commit: commit transaction
actually apply transaction (e.g. record student is in class)
record decision in local log

learn any machine agreed to abort: abort transaction
don’t ever try to apply transaction
record decision in local log

unsure which? just ask everyone what they agreed to do
they can’t change their mind once they tell you

21



two-phase commit: blocking

agree to commit “add student to class”?

can’t allow conflicting actions…

adding student to conflicting class?
removing student from the class?
not leaving seat in class?

…until know transaction globally committed/aborted

22



two-phase commit: blocking

agree to commit “add student to class”?

can’t allow conflicting actions…
adding student to conflicting class?
removing student from the class?
not leaving seat in class?

…until know transaction globally committed/aborted

22



waiting forever?

machine goes away, two-phase commit state is uncertain

never resolve what happens

solution in practice: manual intervention

23



two-phase commit: roles

typical two-phase commit implementation

several workers

one coordinator
might be same machine as a worker

24



two-phase-commit messages

coordiantor → worker: PREPARE
“will you agree to do this action?”
on failure: can ask multiple times!

worker → coordinator: VOTE-COMMIT or VOTE-ABORT
I agree to commit/abort transaction
worker records decision in log, returns same result each time

coordinator → worker: GLOBAL-COMMMIT or GLOBAL-ABORT
I counted the votes and the result is commit/abort
only commit if all votes were commit

25



reasoning about protocols: state machines

very hard to reason about dist. protocol correctness

typical tool: state machine

each machine is in some state

know what every message does in this state

avoids common problem: don’t know what message does

26



reasoning about protocols: state machines

very hard to reason about dist. protocol correctness

typical tool: state machine

each machine is in some state

know what every message does in this state

avoids common problem: don’t know what message does

26



coordinator state machine (simplified)

INIT

WAITING

ABORTED COMMITTED

send PREPARE (ask for votes)

receive any AGREE-TO-ABORT
send ABORT

receive AGREE-TO-COMMIT from all
send COMMIT

accumulate votes

resend PREPARE
after timeout

worker resends vote?
gets ABORT

workers resends vote?
gets COMMIT

27



coordinator state machine (simplified)

INIT

WAITING

ABORTED COMMITTED

send PREPARE (ask for votes)

receive any AGREE-TO-ABORT
send ABORT

receive AGREE-TO-COMMIT from all
send COMMIT

accumulate votes

resend PREPARE
after timeout

worker resends vote?
gets ABORT

workers resends vote?
gets COMMIT

27



coordinator state machine (simplified)

INIT

WAITING

ABORTED COMMITTED

send PREPARE (ask for votes)

receive any AGREE-TO-ABORT
send ABORT

receive AGREE-TO-COMMIT from all
send COMMIT

accumulate votes

resend PREPARE
after timeout

worker resends vote?
gets ABORT

workers resends vote?
gets COMMIT

27



coordinator state machine (simplified)

INIT

WAITING

ABORTED COMMITTED

send PREPARE (ask for votes)

receive any AGREE-TO-ABORT
send ABORT

receive AGREE-TO-COMMIT from all
send COMMIT

accumulate votes

resend PREPARE
after timeout

worker resends vote?
gets ABORT

workers resends vote?
gets COMMIT

27



coordinator failure recovery

duplicate messages okay — unique transaction ID!

coordinator crashes? log indicating last state
log written before sending any messages
if INIT: resend PREPARE,
if WAIT/ABORTED: send ABORT to all (dups okay!)
if COMMITTED: resend COMMIT to all (dups okay!)

message doesn’t make it to worker?
coordinator can resend PREPARE after timeout (or just ABORT)
worker can resend vote to coordinator to get extra reply

28



coordinator failure recovery

duplicate messages okay — unique transaction ID!

coordinator crashes? log indicating last state
log written before sending any messages
if INIT: resend PREPARE,
if WAIT/ABORTED: send ABORT to all (dups okay!)
if COMMITTED: resend COMMIT to all (dups okay!)

message doesn’t make it to worker?
coordinator can resend PREPARE after timeout (or just ABORT)
worker can resend vote to coordinator to get extra reply

28



worker state machine (simplified)

INIT

AGREED-TO-COMMIT

COMMITTED

ABORTED

recv PREPARE
send AGREE-TO-COMMIT

recv PREPARE
send AGREE-TO-ABORT

recv ABORT

recv COMMIT

29



worker failure recovery

duplicate messages okay — unqiue transaction ID!

worker crashes? log indicating last state
if INIT: wait for PREPARE (resent)?
if AGREE-TO-COMMIT or ABORTED: resend
AGREE-TO-COMMIT/ABORT
if COMMITTED: redo operation

message doesn’t make it to coordinator
resend after timeout or during reboot on recovery

30



state machine missing details

really want to specify result of/action for every message!

allows verifying properties of state machine
what happens if machine fails at each possible time?
what happens if possible message is lost?
…

31



TPC: normal operation

coordinator

worker 1

worker 2

PREPARE AGREE-TO-
COMMIT

COMMIT

log: state=WAIT

log: state=AGREED-TO-COMMIT

log: state=COMMIT

32



TPC: normal operation

coordinator

worker 1

worker 2

PREPARE AGREE-TO-
COMMIT

COMMIT

log: state=WAIT

log: state=AGREED-TO-COMMIT

log: state=COMMIT

32



TPC: normal operation — conflict

coordinator

worker 1

worker 2

PREPARE

AGREE-TO-
ABORT

AGREE-TO-
COMMIT

ABORT

class is full!
log: state=ABORT

log: state=WAIT

log: state=AGREED-TO-COMMIT

log: state=ABORT

33



TPC: normal operation — conflict

coordinator

worker 1

worker 2

PREPARE

AGREE-TO-
ABORT

AGREE-TO-
COMMIT

ABORT

class is full!
log: state=ABORT

log: state=WAIT

log: state=AGREED-TO-COMMIT

log: state=ABORT

33



TPC: worker failure (1)

coordinator

worker 1

worker 2

PREPARE

AGREE-TO-
COMMIT

AGREE-TO-
ABORT

ABORT

on reboot — didn’t record transaction
abort it (proactively/when coord. retries)

34



TPC: worker failure (1)

coordinator

worker 1

worker 2

PREPARE

AGREE-TO-
COMMIT

AGREE-TO-
ABORT

ABORT

on reboot — didn’t record transaction
abort it (proactively/when coord. retries)

34



TPC: worker failure (2)

coordinator

worker 1

worker 2

PREPARE

AGREE-TO-
COMMIT

AGREE-TO-
COMMIT

COMMIT

record agree-to-commit

on reboot — resend logged message

35



TPC: worker failure (2)

coordinator

worker 1

worker 2

PREPARE

AGREE-TO-
COMMIT

AGREE-TO-
COMMIT

COMMIT

record agree-to-commit

on reboot — resend logged message

35



TPC: worker failure (3)

coordinator

worker 1

worker 2

PREPARE

AGREE-TO-
COMMIT

AGREE-TO-
COMMIT

COMMIT

record agree-to-commit

on reboot — resend logged message

36



TPC: worker failure (3)

coordinator

worker 1

worker 2

PREPARE

AGREE-TO-
COMMIT

AGREE-TO-
COMMIT

COMMIT

record agree-to-commit

on reboot — resend logged message
36



extending voting

two-phase commit: unanimous vote to commit

assumption: data split across nodes, every must cooperate

other model: every node has a copy of data

goal: work despite a few failing nodes

just require “enough” nodes to be working

for now — assume fail-stop
nodes don’t respond or tell you if broken

37



extending voting

two-phase commit: unanimous vote to commit

assumption: data split across nodes, every must cooperate

other model: every node has a copy of data

goal: work despite a few failing nodes

just require “enough” nodes to be working

for now — assume fail-stop
nodes don’t respond or tell you if broken

37



quorums (1)

A B C D E

perform read/write with vote of any quorum of nodes

any quorum enough — okay if some nodes fail

if A, C, D agree: that’s enough

B, E will figure out what happened when they come back up

38



quorums (1)

A B C D E

perform read/write with vote of any quorum of nodes

any quorum enough — okay if some nodes fail

if A, C, D agree: that’s enough

B, E will figure out what happened when they come back up

38



quorums (2)

A B C D E

requirement: quorums overlap

overlap = someone in quorum knows about every update
e.g. every operation requires majority of nodes

part of voting — provide other voting nodes with ‘missing’ updates
make sure updates survive later on

cannot get a quorum to agree on anything conflicting with past
updates

39



quorums (2)

A B C D E

requirement: quorums overlap

overlap = someone in quorum knows about every update
e.g. every operation requires majority of nodes

part of voting — provide other voting nodes with ‘missing’ updates
make sure updates survive later on

cannot get a quorum to agree on anything conflicting with past
updates

39



quorums (2)

A B C D E

requirement: quorums overlap

overlap = someone in quorum knows about every update
e.g. every operation requires majority of nodes

part of voting — provide other voting nodes with ‘missing’ updates
make sure updates survive later on

cannot get a quorum to agree on anything conflicting with past
updates

39



quorums (3)

A B C D E

sometimes vary quorum based on operation type

example: update quorum = 4 of 5; read quorum = 2 of 5

requirement: read overlaps with last update

compromise: better performance sometimes, but tolerate less
failures

40



quorums (3)

A B C D E

sometimes vary quorum based on operation type

example: update quorum = 4 of 5; read quorum = 2 of 5

requirement: read overlaps with last update

compromise: better performance sometimes, but tolerate less
failures

40



quorums

A B C D E

details very tricky
what about coordinator failures?
how does recovery happen?
what information needs to be logged?
“catching up” nodes that aren’t part of several updates

full details: lookup Raft or Paxis

41



quorums for Byzantine failures

just overlap not enough

problem: node can give inconsistent votes
tell A “I agree to commit”, tell B “I do not”

need to confirm consistency of votes with other notes

need supermajority -type quorums
f failures — 3f + 1 nodes

full details: lookup PBFT

42



protection/security

protection: mechanisms for controlling access to resources
page tables, preemptive scheduling, encryption, …

security: using protection to prevent misuse
misuse represented by policy
e.g. “don’t expose sensitive info to bad people”

this class: about mechanisms more than policies

goal: provide enough flexibility for many policies

43



adversaries

security is about adversaries

do the worst possible thing

challenge: adversary can be clever…

44



authorization v authentication

authentication — who is who

authorization — who can do what
probably need authentication first…

45



authorization v authentication

authentication — who is who

authorization — who can do what
probably need authentication first…

45



authentication

password

hardware token

…

this class: mostly won’t deal with how

just tracking afterwards

46



authentication

password

hardware token

…

this class: mostly won’t deal with how

just tracking afterwards

46



access control matrix: who does what?

file 1 file 2 process 1
domain 1 read/write
domain 2 read write wakeup
domain 3 read write kill

each process belongs
to 1+ protection domains:

“user cr4bd”
“group csfaculty”

…

objects (whatever type) with restrictions

47



access control matrix: who does what?

file 1 file 2 process 1
domain 1 read/write
domain 2 read write wakeup
domain 3 read write kill
each process belongs

to 1+ protection domains:
“user cr4bd”

“group csfaculty”
…

objects (whatever type) with restrictions

47



access control matrix: who does what?

file 1 file 2 process 1
domain 1 read/write
domain 2 read write wakeup
domain 3 read write kill
each process belongs

to 1+ protection domains:
“user cr4bd”

“group csfaculty”
…

objects (whatever type) with restrictions

47



representing access

with objects (files, etc.): access control list
list of protection domains (users, groups, processes, etc.) allowed to use
each item

list of (domain, object, permissions) stored “on the side”
example: AppArmor on Linux
configuration file with list of program + what it is allowed to access
prevent, e.g., print server from writing files it shouldn’t

48



49



two general’s problem (setup)

A B“enemy”

general A and B want to agree on time to attack enemy (center)

only attack if they know the other will
attack together: victory
attack separately: defeat

communication mecahnism: unreliable messengers
could be captured by enemy — message lost

50



two general’s problem

recall: both agree to attack at same time
(otherwise don’t attack — sure defeat)

general A general B

attack at 11AM? OK?

OK, as long as you are. Are you?

Yeah, but as long as I know you got this message…

I will if I know you got this message…

B: If I don’t get a reply, was A’s message lost?
Or was my message just lost?

51



two general’s problem

recall: both agree to attack at same time
(otherwise don’t attack — sure defeat)

general A general B

attack at 11AM? OK?

OK, as long as you are. Are you?

Yeah, but as long as I know you got this message…

I will if I know you got this message…
B: If I don’t get a reply, was A’s message lost?
Or was my message just lost?

51



impossibility

can’t gaurentee that both parties will attack

…even if no messages are lost

proof sketch:
some message flips A’s state from “attacking” to “not attacking”
…but what if that message is lost — contradiction

52



relaxing assumptions

can’t get gaurentee of receiving message

in practice: best approximation

wait for acknowledgement

retry on timeout

lots of timeouts — look like machine failure

53


	file locking
	failure models
	two-phase commit
	two-phase commit: messages
	aside: state machines
	two-phase commit state machine
	two-phase commit examples

	briefly: distributed consensus
	protection v security
	security: authentication v authorization
	access matrix/control list
	backup slides
	general's paradox


