
Security / VM (start)

1

last time

two-phase commit: doing operation together
data is split across several machines
redo logging — machines know what message to send when rebooting
state machine to describe protocol — for proving/testing properties
prepare phase: make promises (can commit/will abort)
finishing phase: commit if everyone agreed; otherwise abort

quorum consensus: continuing despite failures
everyone has a copy of shared data
require quorum (e.g. majority) of nodes
ask for votes for reads and writes
overlap: guarentee one voter knows about about last update
everyone in quorum always updates to latest version

started security
2

last time

two-phase commit: doing operation together
data is split across several machines
redo logging — machines know what message to send when rebooting
state machine to describe protocol — for proving/testing properties
prepare phase: make promises (can commit/will abort)
finishing phase: commit if everyone agreed; otherwise abort

quorum consensus: continuing despite failures
everyone has a copy of shared data
require quorum (e.g. majority) of nodes
ask for votes for reads and writes
overlap: guarentee one voter knows about about last update
everyone in quorum always updates to latest version

started security
2

a note on grading

hope to have FAT grades this week
probably should have “you must test with/supplied Makefile will use
AddressSanitizer” policy in the future to avoid cases where program
totally breaks on the dept. servers I use for testing but probably worked
where student was running it

hope to go through last half of quiz comments next week

3

access control matrix: who does what?

file 1 file 2 process 1
domain 1 read/write
domain 2 read write wakeup
domain 3 read write kill

each process belongs
to 1+ protection domains:

“user cr4bd”
“group csfaculty”

…

objects (whatever type) with restrictions

4

access control matrix: who does what?

file 1 file 2 process 1
domain 1 read/write
domain 2 read write wakeup
domain 3 read write kill
each process belongs

to 1+ protection domains:
“user cr4bd”

“group csfaculty”
…

objects (whatever type) with restrictions

4

access control matrix: who does what?

file 1 file 2 process 1
domain 1 read/write
domain 2 read write wakeup
domain 3 read write kill
each process belongs

to 1+ protection domains:
“user cr4bd”

“group csfaculty”
…

objects (whatever type) with restrictions

4

representing access

with objects (files, etc.): access control list
list of protection domains (users, groups, processes, etc.) allowed to use
each item

list of (domain, object, permissions) stored “on the side”
example: AppArmor on Linux
configuration file with list of program + what it is allowed to access
prevent, e.g., print server from writing files it shouldn’t

5

representing access

with objects (files, etc.): access control list
list of protection domains (users, groups, processes, etc.) allowed to use
each item

list of (domain, object, permissions) stored “on the side”
example: AppArmor on Linux
configuration file with list of program + what it is allowed to access
prevent, e.g., print server from writing files it shouldn’t

6

access control list parts

assign processes to protection domains
typically: process assigned user + group(s)
object (file, etc.) access based on user/group

attach lists to objects (files, processes, etc.)
sometimes very restricted form of list
e.g. can only specify one user + group

7

user IDs

most common way OSes identify what domain process belongs to:

(unspecified for now) procedure sets user IDs

every process has a user ID

user ID used to decide what process is authorized to do

8

POSIX user IDs

uid_t geteuid(); // get current process's "effective" user ID

process’s user identified with unique number

kernel typically only knows about number

effective user ID is used for all permission checks

also some other user IDs — we’ll talk later

standard programs/library maintain number to name mapping

/etc/passwd on typical single-user systems
network database on department machines

9

POSIX user IDs

uid_t geteuid(); // get current process's "effective" user ID

process’s user identified with unique number

kernel typically only knows about number

effective user ID is used for all permission checks

also some other user IDs — we’ll talk later

standard programs/library maintain number to name mapping
/etc/passwd on typical single-user systems
network database on department machines

9

POSIX groups

gid_t getegid(void);
// process's"effective" group ID

int getgroups(int size, gid_t list[]);
// process's extra group IDs

POSIX also has group IDs

like user IDs: kernel only knows numbers
standard library+databases for mapping to names

also process has some other group IDs — we’ll talk later

10

id

cr4bd@power4
: /net/zf14/cr4bd/fall2018/cs4414/hw/fat/grading ; id
uid=858182(cr4bd) gid=21(csfaculty)

groups=21(csfaculty),325(instructors),90027(cs4414)

id command displays uid, gid, group list

names looked up in database
kernel doesn’t know about this database
code in the C standard library

11

groups that don’t correspond to users

example: video group for access to monitor

put process in video group when logged in directly

don’t do it when SSH’d in

12

POSIX file permissions

POSIX files have a very restricted access control list

one user ID + read/write/execute bits for user
“owner” — also can change permissions

one group ID + read/write/execute bits for group

default setting — read/write/execute

(see docs for chmod command)

13

POSIX/NTFS ACLs

more flexible access control lists

list of (user or group, read or write or execute or …)

supported by NTFS (Windows)

a version standardized by POSIX, but usually not supported

14

POSIX ACL syntax

group students have read+execute permissions
group:students:r−x
group faculty has read/write/execute permissions
group:faculty:rwx
user mst3k has read/write/execute permissions
user:mst3k:rwx
user tj1a has no permissions, even if in group above
user:tj1a:−−−

15

authorization checking on Unix

checked on system call entry
no relying on libraries, etc. to do checks

files (open, rename, …) — file/directory permissions

processes (kill, …) — process UID = user UID

…

16

superuser

user ID 0 is special

superuser or root

some system calls: only work for uid 0
shutdown, mount new file systems, etc.

automatically passes all (or almost all) permission checks

17

how does login work?

somemachine login: j o
password: ********

jo@somemachine$ l s
...

this is a program which…

checks if the password is correct, and

changes user IDs, and

runs a shell

18

how does login work?

somemachine login: j o
password: ********

jo@somemachine$ l s
...

this is a program which…

checks if the password is correct, and

changes user IDs, and

runs a shell

19

Unix password storage

typical single-user system: /etc/shadow
only readable by root/superuser

department machines: network service
Kerberos / Active Directory
server takes (encrypted) passwords, gives out “tokens” saying “yes, it is
this user”
can cryptographically verify tokens come from server

20

aside: beyond passwords

/bin/login entirely user-space code

only thing special about it: when it’s run

could use any criteria to decide, not just passwords
physical tokens
biometrics
…

21

how does login work?

somemachine login: j o
password: ********

jo@somemachine$ l s
...

this is a program which…

checks if the password is correct, and

changes user IDs, and

runs a shell

22

changing user IDs

int setuid(uid_t uid);

if superuser: sets effective user ID to arbitrary value
and a “real user ID” and a “saved set-user-ID” (we’ll talk later)

system starts in/login programs run as superuser
voluntarily restrict own access before running shell, etc.

23

sudo

tj1a@somemachine$ sudo restart
Password: *********

sudo: run command with superuser permissions
started by non-superuser

recall: inherits non-superuser UID

can’t just call setuid(0)

24

set-user-ID sudo

extra metadata bit on executables: set-user-ID

if set: exec system call changes effectve user ID to owner of
executable

sudo program: owned by root, marked set-user-ID

marking setuid: chmod u+s

25

set-user ID gates

set-user ID program: gate to higher privilege

controlled access to extra functionality

make authorization/authentication decisions outside the kernel

way to allow normal users to do one thing that needs privileges
write program that does that one thing — nothing else!
make it owned by user that can do it (e.g. root)
mark it set-user-ID

want to allow only some user to do the thing
make program check which user ran it

26

uses for setuid programs

mount USB stick
setuid program controls option to kernel mount syscall
make sure user can’t replace sensitive directories
make sure user can’t mess up filesystems on normal hard disks
make sure user can’t mount new setuid root files

control access to device — printer, monitor, etc.
setuid program talks to device + decides who can

write to secure log file
setuid program ensures that log is append-only for normal users

bind to a particular port number < 1024
setuid program creates socket, then becomes not root

27

set-user-ID program v syscalls

hardware decision: some things only for kernel

system calls: controlled access to things kernel can do

decision about how can do it: in the kernel

kernel decision: some things only for root (or other user)

set-user-ID programs: controlled access to things root/… can do

decision about how can do it: made by root/…

28

set-user ID programs are very hard to write

what if stdin, stdout, stderr start closed?

what if the PATH env. var. set to directory of malicious programs?

what if argc == 0?

what if dynamic linker env. vars are set?

what if some bug allows memory corruption?

…

29

a delegation problem

consider printing program marked setuid to access printer
decision: no accessing printer directly
printing program enforces page limits, etc.

command line: file to print

can printing program just call open()?

30

a broken solution

if (original user can read file from argument) {
open(file from argument);
read contents of file;
write contents of file to printer
close(file from argument);

}

hope: this prevents users from printing files than can’t read

problem: race condition!

31

a broken solution / why
setuid program other user program

create normal file toprint.txt
check: can user access? (yes) —

unlink("toprint.txt")
link("/secret", "toprint.txt")

open("toprint.txt") —
read … —

time-to-check-to-time-of-use vulnerability

32

TOCTTOU solution

temporarily ‘become’ original user

then open

then turn back into set-uid user

this is why POSIX processes have multiple user IDs

can swap out effective user ID temporarily

33

practical TOCTTOU races?

can use symlinks maze to make check slower
symlink toprint.txt → a/b/c/d/e/f/g/normal.txt
symlink a/b → ../a
symlink a/c → ../a
…

gives more time to sneak in unlink/link or (more likely) rename

34

aside: real/effective/saved

POSIX processes have three user IDs

effective — determines permission — geteuid()
jo running sudo: geteuid = superuser’s ID

real — the user who started the program — getuid()
jo running sudo: getuid = jo’s ID

saved set-user-ID — user ID from before last exec
effective user ID saved when a set-user-ID program starts
jo running sudo: = jo’s ID
no standard get function, but see Linux’s getresuid

process can swap or set effective UID with real/saved UID

idea: become other user for one operation, then switch back

35

aside: real/effective/saved

POSIX processes have three user IDs

effective — determines permission — geteuid()
jo running sudo: geteuid = superuser’s ID

real — the user who started the program — getuid()
jo running sudo: getuid = jo’s ID

saved set-user-ID — user ID from before last exec
effective user ID saved when a set-user-ID program starts
jo running sudo: = jo’s ID
no standard get function, but see Linux’s getresuid

process can swap or set effective UID with real/saved UID
idea: become other user for one operation, then switch back

35

why so many?

two versions of Unix:

System V — used effective user ID + saved set-user-ID

BSD — used effective user ID + real user ID

POSIX commitee solution: keep both

36

aside: confusing setuid functions

setuid — if root, change all uids; otherwise, only effective uid

seteuid — change effective uid
if not root, only to real or saved-set-user ID

setreuid — change real+effective; sometimes saved, too
if not root, only to real or effective or saved-set-user ID

…

more info: Chen et al, “Setuid Demystified”
https://www.usenix.org/conference/
11th-usenix-security-symposium/setuid-demystified

37

https://www.usenix.org/conference/11th-usenix-security-symposium/setuid-demystified
https://www.usenix.org/conference/11th-usenix-security-symposium/setuid-demystified

also group-IDs

processes also have a real/effective/saved-set group-ID

can also have set-group-ID executables

same as set-user-ID, but only changes groupo

38

ambient authority

POSIX permissions based on user/group IDs process has
correct user/group ID — can read file
correct user ID — can kill process

permission information “on the side”
separate from how to identify file/process

sometimes called ambient authority

“there’s authorizationin the air…”

alternate approach: ability to address = permission to access

39

representing access

with objects (files, etc.): access control list
list of protection domains (users, groups, processes, etc.) allowed to use
each item

list of (domain, object, permissions) stored “on the side”
example: AppArmor on Linux
configuration file with list of program + what it is allowed to access
prevent, e.g., print server from writing files it shouldn’t

40

capabilities

token to identify = permission to access

typically opaque token

41

some capability list examples

file descriptors
list of open files process has acces to

page table (sort of?)
list of physical pages process is allowed to access

list of what process can access stored with process

handle to access object = key in permitted object table
impossible to skip permission check!

42

some capability list examples

file descriptors
list of open files process has acces to

page table (sort of?)
list of physical pages process is allowed to access

list of what process can access stored with process

handle to access object = key in permitted object table
impossible to skip permission check!

42

sharing capabilities

capability-based OSes have ways of sharing capabilities:

inherited by spawned programs
file descriptors/page tables do this

send over local socket or pipe
usually supported for file descriptors!
(look up SCM_RIGHTS — how it works different for Linux v. OS X v.
FreeBSD v. …)

43

Capsicum: practical capabilities for UNIX (1)

Capsicum: research project from Cambridge

adds capabilities to FreeBSD by extending file descriptors

opt-in: can set process to require capabilities to access objects
instead of absolute path, process ID, etc.

capabilities = fds for each directory/file/process/etc.

more permissions on fds than read/write
execute
open files in (for fd representing directory)
kill (for fd reporesenting process)
…

44

Capsicum: practical capabilities for UNIX (2)

capabilities = no global names

no filenames, instead fds for directories
new syscall: openat(directory_fd, "path/in/directory")
new syscall: fexecv(file_fd, argv)

no pids, instead fds for processes
new syscall: pdfork()

45

alternative to per-process tables

file descriptors: different in every process
use special functions to move between processes

alternate idea: same number in every process
one big table

sharing token = copy number

but how to control access? make numbers hard to guess

example: use random 128-bit numbers

46

47

sandboxing

sandbox — restricted environment for program

idea: dangerous code can play in the sandbox as much as it wants

can’t do anything harmful

48

sandbox use cases

buggy video parsing code that has buffer overflows

browser running scripts in webpage

autograder running student submissions

…

(parts of) program that don’t need to have user’s full permissions

no reason video parsing code should be able open() my taxes

can we have a way to ask OS for this?

49

sandbox use cases

buggy video parsing code that has buffer overflows

browser running scripts in webpage

autograder running student submissions

…

(parts of) program that don’t need to have user’s full permissions
no reason video parsing code should be able open() my taxes

can we have a way to ask OS for this?

49

Google Chrome architecture

50

sandboxing mechanisms

create a new user with few privileged, switch to user
problem: creating new users usually requires sysadmin access
problem: every user can do too much
e.g. everyone can open network connection?

with capabilities, just discard most capabilities
just close capabilities you don’t need
run rendering engine with only pipes to talk to browser kernel

otherwise: system call filtering
disallow all ‘dangerous’ system calls

51

Linux system call filtering

seccomp() system call

“strict mode”: only allow read/write/_exit/sigreturn
current thread gives up all other privileges
usage: setup pipes, then communicate with rest of process via pipes

alternately: setting a whitelist of allowed system calls + arguments
little programming language (!) for supported operations

browsers use this to protect from bugs in their scripting
implementations

hope: find a way to execute arbitrary code? — not actually useful

52

sandbox browser setup

create pipe

spawn subprocess (“rendering engine”)

put subproces in strict system call filter mode

send subprocesses webpages + events

subprocess sends images to render back on pipe

53

sandboxing use case: buggy video decoder
/* dangerous video decoder to isolate */
int main() {

EnterSandbox();
while (fread(videoData, sizeof(videoData), 1, stdin) > 0) {

doDangerousVideoDecoding(videoData, imageData);
fwrite(imageData, sizeof(imageData), 1, stdout);

}
}

/* code that uses it */
FILE *fh = RunProgramAndGetFileHandle("./video-decoder");
for (;;) {

fwrite(getNextVideoData(), SIZE, 1, fh);
fread(image, sizeof(image), 1, fh);
displayImage(image);

}

54

talking to the sandbox

browser kernel sends commands to sandbox

sandbox sends commands to browser kernel

idea: commands only allow necessary things

55

original Chrome sandbox interface

sandbox to browser “kernel”
show this image on screen

(using shared memory for speed)
make request for this URL
download files to local FS
upload user requested files

browser “kernel” to sandbox
send user input

needs filtering — at least no file: (local file) URLscan still read any website!
still sends normal cookies!

files go to download directory only
can’t choose arbitrary filenames

browser kernel displays file choser
only permits files selected by user

56

original Chrome sandbox interface

sandbox to browser “kernel”
show this image on screen

(using shared memory for speed)
make request for this URL
download files to local FS
upload user requested files

browser “kernel” to sandbox
send user input

needs filtering — at least no file: (local file) URLs

can still read any website!
still sends normal cookies!

files go to download directory only
can’t choose arbitrary filenames

browser kernel displays file choser
only permits files selected by user

56

original Chrome sandbox interface

sandbox to browser “kernel”
show this image on screen

(using shared memory for speed)
make request for this URL
download files to local FS
upload user requested files

browser “kernel” to sandbox
send user input

needs filtering — at least no file: (local file) URLs

can still read any website!
still sends normal cookies!

files go to download directory only
can’t choose arbitrary filenames

browser kernel displays file choser
only permits files selected by user

56

original Chrome sandbox interface

sandbox to browser “kernel”
show this image on screen

(using shared memory for speed)
make request for this URL
download files to local FS
upload user requested files

browser “kernel” to sandbox
send user input

needs filtering — at least no file: (local file) URLscan still read any website!
still sends normal cookies!

files go to download directory only
can’t choose arbitrary filenames

browser kernel displays file choser
only permits files selected by user

56

original Chrome sandbox interface

sandbox to browser “kernel”
show this image on screen

(using shared memory for speed)
make request for this URL
download files to local FS
upload user requested files

browser “kernel” to sandbox
send user input

needs filtering — at least no file: (local file) URLscan still read any website!
still sends normal cookies!

files go to download directory only
can’t choose arbitrary filenames

browser kernel displays file choser
only permits files selected by user

56

extending voting

two-phase commit: unanimous vote to commit

assumption: data split across nodes, every must cooperate

other model: every node has a copy of data

goal: work despite a few failing nodes

just require “enough” nodes to be working

for now — assume fail-stop
nodes don’t respond or tell you if broken

57

extending voting

two-phase commit: unanimous vote to commit

assumption: data split across nodes, every must cooperate

other model: every node has a copy of data

goal: work despite a few failing nodes

just require “enough” nodes to be working

for now — assume fail-stop
nodes don’t respond or tell you if broken

57

quorums (1)

A B C D E

perform read/write with vote of any quorum of nodes

any quorum enough — okay if some nodes fail

if A, C, D agree: that’s enough

B, E will figure out what happened when they come back up

58

quorums (1)

A B C D E

perform read/write with vote of any quorum of nodes

any quorum enough — okay if some nodes fail

if A, C, D agree: that’s enough

B, E will figure out what happened when they come back up

58

quorums (2)

A B C D E

requirement: quorums overlap

overlap = someone in quorum knows about every update
e.g. every operation requires majority of nodes

part of voting — provide other voting nodes with ‘missing’ updates
make sure updates survive later on

cannot get a quorum to agree on anything conflicting with past
updates

59

quorums (2)

A B C D E

requirement: quorums overlap

overlap = someone in quorum knows about every update
e.g. every operation requires majority of nodes

part of voting — provide other voting nodes with ‘missing’ updates
make sure updates survive later on

cannot get a quorum to agree on anything conflicting with past
updates

59

quorums (2)

A B C D E

requirement: quorums overlap

overlap = someone in quorum knows about every update
e.g. every operation requires majority of nodes

part of voting — provide other voting nodes with ‘missing’ updates
make sure updates survive later on

cannot get a quorum to agree on anything conflicting with past
updates

59

quorums (3)

A B C D E

sometimes vary quorum based on operation type

example: update quorum = 4 of 5; read quorum = 2 of 5

requirement: read overlaps with last update

compromise: better performance sometimes, but tolerate less
failures

60

quorums (3)

A B C D E

sometimes vary quorum based on operation type

example: update quorum = 4 of 5; read quorum = 2 of 5

requirement: read overlaps with last update

compromise: better performance sometimes, but tolerate less
failures

60

quorums

A B C D E

details very tricky
what about coordinator failures?
how does recovery happen?
what information needs to be logged?
“catching up” nodes that aren’t part of several updates

full details: lookup Raft or Paxis

61

quorums for Byzantine failures

just overlap not enough

problem: node can give inconsistent votes
tell A “I agree to commit”, tell B “I do not”

need to confirm consistency of votes with other notes

need supermajority -type quorums
f failures — 3f + 1 nodes

full details: lookup PBFT

62

	access matrix/control list
	access control lists
	POSIX user IDs
	POSIX groups
	file permissions

	authorizaton on Unix
	where checking happens
	superuser
	/bin/login
	sudo/set-user-ID
	set-user-ID programs are hard to write
	aside: TOCTTOU
	real/effective/saved

	capabilities
	ambient authority v. capability idea
	capability concept

	backup slides
	sandboxing / seccomp
	sandboxing code: video decoder
	Chrome architecture
	distribued consensus

