
virtual machines

1

last time

access control lists

user and group IDs in processes

set-user-ID programs

briefly: time-of-check-to-time-of-use errors

capabilities: token to address = permission
token might allow getting other tokens
can pass between processes
token specifies type of access (read, write, open files in, kill, …)

2

minor correction re: POSIX ACLs

implied POSIX ACLs check in order take first/last result

rules are more complicated than that:
take result for user if any (can prohibit user while allow user’s groups)
take best result for group if any (can prohibit group but allow everyone)
take default ‘other’ result otherwise

but designed to allow “do this for group X, with these exceptions”

3

recall: the virtual machine interface

application
operating system
hardware

virtual machine interface
physical machine interface

imitate physical interface
(of some real hardware)

system virtual machine
(VirtualBox, VMWare, Hyper-V, …)

chosen for convenience
(of applications)

process virtual machine
(typical operating systems)

4

recall: the virtual machine interface

application
operating system
hardware

virtual machine interface
physical machine interface

imitate physical interface
(of some real hardware)

system virtual machine
(VirtualBox, VMWare, Hyper-V, …)

chosen for convenience
(of applications)

process virtual machine
(typical operating systems)

4

system virtual machine

goal: imitate hardware interface

what hardware?
usually — whatever’s easiest to emulate

5

system virtual machine terms

hypervisor or virtual machine monitor
something that runs system virtual machines

guest OS
operating system that runs as application on hypervisor

host OS
operating system that runs hypervisor
sometimes, hypervisor is the OS (doesn’t run normal programs)

6

imitate: how close?

full virtualization
guest OS runs unmodified, as if on real hardware

paravirtualization
small modifications to guest OS to support virtual machine
might change, e.g., how page table entries are set
why — we’ll talk later

fuzzy line — custom device drivers sometimes not called
paravirtualization

7

multiple techniques

today: talk about one way of implementing VMs

there are some variations I won’t mention

…or might not have time to mention

one variation: extra HW support for VMs (if time)

one variation: compile guest OS code to new machine code
not as slow as you’d think, sometimes

8

terms for this lecture

virtual address — virtual address for guest OS

physical address — physical address for guest OS

machine address — physical address for hypervisor/host OS

9

process control block for guest OS

guest OS runs like a process, but…

have extra things for hypervisor to track:

if guest OS thinks interrupts are disabled

what guest OS thinks is it’s interrupt handler table

what guest OS thinks is it’s page table base register

if guest OS thinks it is running in kernel mode

…
10

hypervisor basic flow

guest OS operations trigger exceptions
e.g. try to talk to device: page or protection fault
e.g. try to disable interrupts: protection fault
e.g. try to make system call: system call exception

hypervisor exception handler tries to do what processor would
“normally” do

talk to device on guest OS’s behalf
change “interrupt disabled” flag for hypervisor to check later
invoke the guest OS’s system call exception handler

11

virtual machine execution pieces

making IO and kernel-mode-related instructions work
solution: trap-and-emulate
force instruction to cause fault
make fault handler do what instruction would do
might require reading machine code to emulate instruction

making exceptions/interrupts work
‘reflect’ exceptions/interrupts into guest OS
same setup processor would do …
but do setup on guest OS registers + memory

making page tables work
it’s own topic

12

VM layering (intro)

guest OS program

‘guest’ OS

hypervisor

hardware

conceptual layering

user
mode ≈ hypervisor’s process

kernel
mode

pretend
user
mode
pretend
kernel
mode
real
kernel
mode

13

VM layering (intro)

guest OS program

‘guest’ OS

hypervisor

hardware

conceptual layering

user
mode ≈ hypervisor’s process

kernel
mode

pretend
user
mode
pretend
kernel
mode
real
kernel
mode

13

VM layering (intro)

guest OS program

‘guest’ OS

hypervisor

hardware

conceptual layering

user
mode ≈ hypervisor’s process

kernel
mode

pretend
user
mode
pretend
kernel
mode
real
kernel
mode

13

VM layering

guest OS program

‘guest’ OS

hypervisor

hardware

conceptual layering

user
mode

kernel
mode

guest OS registers
page table: physical to machine addresses
I/O devices guest OS can access
…

hypervisor tracks…

same as for normal process so far…
(except renamed virtual/physical addrs)

pretend
user
mode
pretend
kernel
mode
real
kernel
mode

whether in user/kernel mode
guest OS page table ptr (virt to phys)

guest OS exception table ptr
…

extra state to impl. pretend kernel mode
paging, protection, exceptions/interrupts

virtual to machine address page table …
virtual machine state

extra data structures to
translate pretend kernel mode info
to form real CPU understands

14

VM layering

guest OS program

‘guest’ OS

hypervisor

hardware

conceptual layering

user
mode

kernel
mode

guest OS registers
page table: physical to machine addresses
I/O devices guest OS can access
…

hypervisor tracks…

same as for normal process so far…
(except renamed virtual/physical addrs)

pretend
user
mode
pretend
kernel
mode
real
kernel
mode

whether in user/kernel mode
guest OS page table ptr (virt to phys)

guest OS exception table ptr
…

extra state to impl. pretend kernel mode
paging, protection, exceptions/interrupts

virtual to machine address page table …
virtual machine state

extra data structures to
translate pretend kernel mode info
to form real CPU understands

14

VM layering

guest OS program

‘guest’ OS

hypervisor

hardware

conceptual layering

user
mode

kernel
mode

guest OS registers
page table: physical to machine addresses
I/O devices guest OS can access
…

hypervisor tracks…

same as for normal process so far…
(except renamed virtual/physical addrs)

pretend
user
mode
pretend
kernel
mode
real
kernel
mode

whether in user/kernel mode
guest OS page table ptr (virt to phys)

guest OS exception table ptr
…

extra state to impl. pretend kernel mode
paging, protection, exceptions/interrupts

virtual to machine address page table …
virtual machine state

extra data structures to
translate pretend kernel mode info
to form real CPU understands

14

VM layering

guest OS program

‘guest’ OS

hypervisor

hardware

conceptual layering

user
mode

kernel
mode

guest OS registers
page table: physical to machine addresses
I/O devices guest OS can access
…

hypervisor tracks…

same as for normal process so far…
(except renamed virtual/physical addrs)

pretend
user
mode
pretend
kernel
mode
real
kernel
mode

whether in user/kernel mode
guest OS page table ptr (virt to phys)

guest OS exception table ptr
…

extra state to impl. pretend kernel mode
paging, protection, exceptions/interrupts

virtual to machine address page table …
virtual machine state

extra data structures to
translate pretend kernel mode info
to form real CPU understands

14

VM layering

guest OS program

‘guest’ OS

hypervisor

hardware

conceptual layering

user
mode

kernel
mode

guest OS registers
page table: physical to machine addresses
I/O devices guest OS can access
…

hypervisor tracks…

same as for normal process so far…
(except renamed virtual/physical addrs)

pretend
user
mode
pretend
kernel
mode
real
kernel
mode

whether in user/kernel mode
guest OS page table ptr (virt to phys)

guest OS exception table ptr
…

extra state to impl. pretend kernel mode
paging, protection, exceptions/interrupts

virtual to machine address page table …
virtual machine state

extra data structures to
translate pretend kernel mode info
to form real CPU understands

14

privileged I/O flow

program

‘guest’ OS

hypervisor

hardware

conceptual layering
pretend
user
mode
pretend
kernel
mode
real
kernel
mode

try to
access device

protection
fault

actually talk to device

update guest OS state
then switch back

…

15

privileged I/O flow

program

‘guest’ OS

hypervisor

hardware

conceptual layering

pretend
user
mode
pretend
kernel
mode
real
kernel
mode

try to
access device

protection
fault

actually talk to device

update guest OS state
then switch back

…

15

privileged I/O flow

program

‘guest’ OS

hypervisor

hardware

conceptual layering

pretend
user
mode
pretend
kernel
mode
real
kernel
mode

try to
access device

protection
fault

actually talk to device

update guest OS state
then switch back

…

15

privileged I/O flow

program

‘guest’ OS

hypervisor

hardware

conceptual layering

pretend
user
mode
pretend
kernel
mode
real
kernel
mode

try to
access device

protection
fault

actually talk to device

update guest OS state
then switch back

…

15

system call/exception flow (part 1)

program

‘guest’ OS

hypervisor

hardware

system call
(exception)

exception handler
page table update

return from exec.

“real” syscall handler

hardware invokes hypervisor’s system call handler
software marks guest as as in “fake kernel mode”
change guest PC to addr. from guest exception tabledifferent guest OS pages accessible

in user v. kernel mode
(this case: could defer updates till page fault)

setup guest OS to run its exception handler
switch to user mode to run it

16

system call/exception flow (part 1)

program

‘guest’ OS

hypervisor

hardware

system call
(exception)

exception handler
page table update

return from exec.

“real” syscall handler

hardware invokes hypervisor’s system call handler
software marks guest as as in “fake kernel mode”
change guest PC to addr. from guest exception tabledifferent guest OS pages accessible

in user v. kernel mode
(this case: could defer updates till page fault)

setup guest OS to run its exception handler
switch to user mode to run it

16

system call/exception flow (part 1)

program

‘guest’ OS

hypervisor

hardware

system call
(exception)

exception handler
page table update

return from exec.

“real” syscall handler
hardware invokes hypervisor’s system call handler
software marks guest as as in “fake kernel mode”
change guest PC to addr. from guest exception table

different guest OS pages accessible
in user v. kernel mode
(this case: could defer updates till page fault)

setup guest OS to run its exception handler
switch to user mode to run it

16

system call/exception flow (part 1)

program

‘guest’ OS

hypervisor

hardware

system call
(exception)

exception handler
page table update

return from exec.

“real” syscall handler

hardware invokes hypervisor’s system call handler
software marks guest as as in “fake kernel mode”
change guest PC to addr. from guest exception table

different guest OS pages accessible
in user v. kernel mode
(this case: could defer updates till page fault)

setup guest OS to run its exception handler
switch to user mode to run it

16

system call/exception flow (part 1)

program

‘guest’ OS

hypervisor

hardware

system call
(exception)

exception handler
page table update

return from exec.

“real” syscall handler

hardware invokes hypervisor’s system call handler
software marks guest as as in “fake kernel mode”
change guest PC to addr. from guest exception tabledifferent guest OS pages accessible

in user v. kernel mode
(this case: could defer updates till page fault)

setup guest OS to run its exception handler
switch to user mode to run it

16

system call/exception flow (part 1)

program

‘guest’ OS

hypervisor

hardware

system call
(exception)

exception handler
page table update

return from exec.

“real” syscall handler

hardware invokes hypervisor’s system call handler
software marks guest as as in “fake kernel mode”
change guest PC to addr. from guest exception tabledifferent guest OS pages accessible

in user v. kernel mode
(this case: could defer updates till page fault)

setup guest OS to run its exception handler
switch to user mode to run it

16

system call/exception flow (part 2)

program

‘guest’ OS

hypervisor

hardware

return from exception
(in “real” syscall handler)

in user mode,
can’t do that

exception handler
for protection fault

page table update
return from exec.

17

system call/exception flow (part 2)

program

‘guest’ OS

hypervisor

hardware

return from exception
(in “real” syscall handler)

in user mode,
can’t do that

exception handler
for protection fault

page table update
return from exec.

17

system call/exception flow (part 2)

program

‘guest’ OS

hypervisor

hardware

return from exception
(in “real” syscall handler)

in user mode,
can’t do that

exception handler
for protection fault

page table update
return from exec.

17

system call/exception flow (part 2)

program

‘guest’ OS

hypervisor

hardware

return from exception
(in “real” syscall handler)

in user mode,
can’t do that

exception handler
for protection fault

page table update
return from exec.

17

system call/exception flow (part 2)

program

‘guest’ OS

hypervisor

hardware

return from exception
(in “real” syscall handler)

in user mode,
can’t do that

exception handler
for protection fault

page table update
return from exec.

17

trap-and-emulate (1)

normally: privileged instructions trigger fault
e.g. accessing device memory directly (page fault)
e.g. changing the exception table (protection fault)

normal OS: crash the program

hypervisor: pretend it did the right thing
pretend kernel mode: the actual privileged operation
pretend user mode: invoke guest’s exception handler

18

trap-and-emulate (1)

normally: privileged instructions trigger fault
e.g. accessing device memory directly (page fault)
e.g. changing the exception table (protection fault)

normal OS: crash the program

hypervisor: pretend it did the right thing
pretend kernel mode: the actual privileged operation
pretend user mode: invoke guest’s exception handler

19

trap-and-emulate: psuedocode

trap(...) {
...
if (is_read_from_keyboard(tf−>pc)) {

do_read_system_call_based_on(tf);
}
...

}

idea: translate privileged instructions into system-call-like operations

usually: need to deal with reading arguments, etc.

20

recall: xv6 keyboard I/O

...
data = inb(KBDATAP);
/* compiles to:

mov $0x60, %edx
in %dx, %al <-- FAULT IN USER MODE

*/
...

in user mode: triggers a fault

in instruction — read from special ‘I/O address’

but same idea applies to mov from special memory address

21

more complete pseudocode (1)

trap(...) { // tf = saved context (like xv6 trapframe)
...
else if (exception_type == PROTECTION_FAULT

&& guest OS in kernel mode) {
char *pc = tf−>pc;
if (is_in_instr(pc)) { // interpret machine code!

...
int src_address = get_instr_address(instrution);
switch (src_address) {

...
case KBDATAP:

char c = do_syscall_to_read_keyboard();
tf−>registers[get_instr_dest(pc)] = c;
tf−>pc += get_instr_length(pc);
break;
...

}
}

}
...

}

22

more complete pseudocode (1)

trap(...) { // tf = saved context (like xv6 trapframe)
...
else if (exception_type == PROTECTION_FAULT

&& guest OS in kernel mode) {
char *pc = tf−>pc;
if (is_in_instr(pc)) { // interpret machine code!

...
int src_address = get_instr_address(instrution);
switch (src_address) {

...
case KBDATAP:

char c = do_syscall_to_read_keyboard();
tf−>registers[get_instr_dest(pc)] = c;
tf−>pc += get_instr_length(pc);
break;
...

}
}

}
...

}

22

more complete pseudocode (1)

trap(...) { // tf = saved context (like xv6 trapframe)
...
else if (exception_type == PROTECTION_FAULT

&& guest OS in kernel mode) {
char *pc = tf−>pc;
if (is_in_instr(pc)) { // interpret machine code!

...
int src_address = get_instr_address(instrution);
switch (src_address) {

...
case KBDATAP:

char c = do_syscall_to_read_keyboard();
tf−>registers[get_instr_dest(pc)] = c;
tf−>pc += get_instr_length(pc);
break;
...

}
}

}
...

}

22

trap-and-emulate (1)

normally: privileged instructions trigger fault
e.g. accessing device memory directly (page fault)
e.g. changing the exception table (protection fault)

normal OS: crash the program

hypervisor: pretend it did the right thing
pretend kernel mode: the actual privileged operation
pretend user mode: invoke guest’s exception handler

23

more complete pseudocode (2)

trap(...) { // tf = saved context (like xv6 trapframe)
...
else if (exception_type == PROTECTION_FAULT

&& guest OS in user mode) {
...
tf−>in_kernel_mode = TRUE;
tf−>stack_pointer = /* guest OS kernel stack */;
tf−>pc = /* guest OS trap handler */;

}
}

24

trap and emulate (2)

guest OS should still handle exceptions for its programs

most exceptions — just “reflect” them in the guest OS

look up exception handler, kernel stack pointer, etc.
saved by previous privilege instruction trap

25

reflecting exceptions

trap(...) { ...
else if (exception_type == /* most exception types */

&& guest OS in user mode) {
...
tf−>in_kernel_mode = TRUE;
tf−>stack_pointer = /* guest OS kernel stack */;
tf−>pc = /* guest OS trap handler */;

}

26

trap and emulate (3)

what about memory mapped I/O?

when guest OS tries to access “magic” device address, get page
fault

need to emulate any memory writing instruction!

(at least) two types of page faults for hypervisor
guest OS trying to access device memory — emulate it
guest OS trying to access memory not in its page table — run exception
handler in guest

(and some more types — next topic)

27

trap and emulate (3)

what about memory mapped I/O?

when guest OS tries to access “magic” device address, get page
fault

need to emulate any memory writing instruction!

(at least) two types of page faults for hypervisor
guest OS trying to access device memory — emulate it
guest OS trying to access memory not in its page table — run exception
handler in guest

(and some more types — next topic)
27

trap and emulate not enough

trap and emulate assumption: can cause fault

priviliged instruction not in kernel

memory access not in hypervisor-set page table

…

until ISA extensions, on x86, not always possible

if time, (pretty hard-to-implement) workarounds later

28

things VM needs

normal user mode intructions
just run it in user mode

guest OS I/O or other privileged instructions
guest OS tries I/O/etc. — triggers interrupt
hypervisor translates to I/O request
or records privileged state change (e.g. switch to user mode) for later

guest OS exception handling
track “guest OS thinks it in kernel mode”?
record OS exception handler location when ‘set handler’ instruction faults
hypervisor adjust PC, stack, etc. when guest OS should have exception

guest OS virtual memory
???

29

things VM needs

normal user mode intructions
just run it in user mode

guest OS I/O or other privileged instructions
guest OS tries I/O/etc. — triggers interrupt
hypervisor translates to I/O request
or records privileged state change (e.g. switch to user mode) for later

guest OS exception handling
track “guest OS thinks it in kernel mode”?
record OS exception handler location when ‘set handler’ instruction faults
hypervisor adjust PC, stack, etc. when guest OS should have exception

guest OS virtual memory
???

29

terms for this lecture

virtual address — virtual address for guest OS

physical address — physical address for guest OS

machine address — physical address for hypervisor/host OS

30

three page tables

virtual
address

physical
address

machine
address

guest
page table

hypervisor
page table?

page table pointer guest
set with privileged instruction
(x86: mov …, %cr3)
hypervisor records on protection fault

need to allow OS to use any address
run multiple guests in same memory
dynamically allocate memory
normally: use page table for thisthe translation the processor needs to do when running code

we need to supply the processor a page table…

shadow
page table

hypervisor conversionhardware knows about
only this PT

guest OS knows about
only this PT

31

three page tables

virtual
address

physical
address

machine
address

guest
page table

hypervisor
page table?

page table pointer guest
set with privileged instruction
(x86: mov …, %cr3)
hypervisor records on protection fault

need to allow OS to use any address
run multiple guests in same memory
dynamically allocate memory
normally: use page table for thisthe translation the processor needs to do when running code

we need to supply the processor a page table…

shadow
page table

hypervisor conversionhardware knows about
only this PT

guest OS knows about
only this PT

31

three page tables

virtual
address

physical
address

machine
address

guest
page table

hypervisor
page table?

page table pointer guest
set with privileged instruction
(x86: mov …, %cr3)
hypervisor records on protection fault

need to allow OS to use any address
run multiple guests in same memory
dynamically allocate memory
normally: use page table for this

the translation the processor needs to do when running code
we need to supply the processor a page table…

shadow
page table

hypervisor conversionhardware knows about
only this PT

guest OS knows about
only this PT

31

three page tables

virtual
address

physical
address

machine
address

guest
page table

hypervisor
page table?

page table pointer guest
set with privileged instruction
(x86: mov …, %cr3)
hypervisor records on protection fault

need to allow OS to use any address
run multiple guests in same memory
dynamically allocate memory
normally: use page table for this

the translation the processor needs to do when running code
we need to supply the processor a page table…

shadow
page table

hypervisor conversionhardware knows about
only this PT

guest OS knows about
only this PT

31

three page tables

virtual
address

physical
address

machine
address

guest
page table

hypervisor
page table?

page table pointer guest
set with privileged instruction
(x86: mov …, %cr3)
hypervisor records on protection fault

need to allow OS to use any address
run multiple guests in same memory
dynamically allocate memory
normally: use page table for thisthe translation the processor needs to do when running code

we need to supply the processor a page table…

shadow
page table

hypervisor conversionhardware knows about
only this PT

guest OS knows about
only this PT

31

three page tables

virtual
address

physical
address

machine
address

guest
page table

hypervisor
page table?

page table pointer guest
set with privileged instruction
(x86: mov …, %cr3)
hypervisor records on protection fault

need to allow OS to use any address
run multiple guests in same memory
dynamically allocate memory
normally: use page table for thisthe translation the processor needs to do when running code

we need to supply the processor a page table…

shadow
page table

hypervisor conversion

hardware knows about
only this PT

guest OS knows about
only this PT

31

three page tables

virtual
address

physical
address

machine
address

guest
page table

hypervisor
page table?

page table pointer guest
set with privileged instruction
(x86: mov …, %cr3)
hypervisor records on protection fault

need to allow OS to use any address
run multiple guests in same memory
dynamically allocate memory
normally: use page table for thisthe translation the processor needs to do when running code

we need to supply the processor a page table…

shadow
page table

hypervisor conversionhardware knows about
only this PT

guest OS knows about
only this PT

31

page table synthesis question

creating new page table = two PT lookups
lookup in guest OS page table
lookup in hypervisor page table (or equivalent)

synthesize new page table from combined info

Q: when does the hypervisor update the shadow page table?

32

page table synthesis question

creating new page table = two PT lookups
lookup in guest OS page table
lookup in hypervisor page table (or equivalent)

synthesize new page table from combined info

Q: when does the hypervisor update the shadow page table?

32

interlude: the TLB

Translation Lookaside Buffer — cache for page table entries

what the processor actually uses to do address translation with
normal page tables

has the same problem

contents synthesized from the ‘normal’ page table

processor needs to decide when to update it

preview: hypervisor can use same solution
33

Interlude: TLB (no virtualization)

virtual
address

physical
addresspage table

TLB

fetch entries
on demand

addr in VPN 0x234?
VPN PTE
0x127 PPN=0x1280, …
0x367 PPN=0x1278, …
0x78A PPN=0xFF31, …
… …

0x234
missing

VPN PTE
0x127 PPN=0x1280, …
0x234 PPN=0x4298, …
0x367 PPN=0x1278, …
0x78A PPN=0xFF31, …
… …

VPN PTE
0x1 (invalid)
0x2 PPN=0x329C, …
… …
0x234 PPN=0x4298, …
0x235 PPN=0x1278, …
… …

imitating this to fill
shadow page table (not TLB)
in hypervisor (not CPU)?

fetch on page fault

OS sets page table entry

TLB not automatically sync’d

OS explicitly
invalidates

34

Interlude: TLB (no virtualization)

virtual
address

physical
addresspage table

TLB

fetch entries
on demand

addr in VPN 0x234?
VPN PTE
0x127 PPN=0x1280, …
0x367 PPN=0x1278, …
0x78A PPN=0xFF31, …
… …

0x234
missing

VPN PTE
0x127 PPN=0x1280, …
0x234 PPN=0x4298, …
0x367 PPN=0x1278, …
0x78A PPN=0xFF31, …
… …

VPN PTE
0x1 (invalid)
0x2 PPN=0x329C, …
… …
0x234 PPN=0x4298, …
0x235 PPN=0x1278, …
… …

imitating this to fill
shadow page table (not TLB)
in hypervisor (not CPU)?

fetch on page fault

OS sets page table entry

TLB not automatically sync’d

OS explicitly
invalidates

34

Interlude: TLB (no virtualization)

virtual
address

physical
addresspage table

TLB

fetch entries
on demand

addr in VPN 0x234?
VPN PTE
0x127 PPN=0x1280, …
0x367 PPN=0x1278, …
0x78A PPN=0xFF31, …
… …

0x234
missing

VPN PTE
0x127 PPN=0x1280, …
0x234 PPN=0x4298, …
0x367 PPN=0x1278, …
0x78A PPN=0xFF31, …
… …

VPN PTE
0x1 (invalid)
0x2 PPN=0x329C, …
… …
0x234 PPN=0x4298, …
0x235 PPN=0x1278, …
… …

imitating this to fill
shadow page table (not TLB)
in hypervisor (not CPU)?

fetch on page fault

OS sets page table entry

TLB not automatically sync’d

OS explicitly
invalidates

34

Interlude: TLB (no virtualization)

virtual
address

physical
addresspage table

TLB

fetch entries
on demand

addr in VPN 0x234?

VPN PTE
0x127 PPN=0x1280, …
0x367 PPN=0x1278, …
0x78A PPN=0xFF31, …
… …

0x234
missing

VPN PTE
0x127 PPN=0x1280, …
0x234 PPN=0x4298, …
0x367 PPN=0x1278, …
0x78A PPN=0xFF31, …
… …

VPN PTE
0x1 (invalid)
0x2 PPN=0x329C, …
… …
0x234 PPN=0x4298, …
0x235 PPN=0x1278, …
… …

imitating this to fill
shadow page table (not TLB)
in hypervisor (not CPU)?

fetch on page fault

OS sets page table entry

TLB not automatically sync’d

OS explicitly
invalidates

34

Interlude: TLB (no virtualization)

virtual
address

physical
addresspage table

TLB

fetch entries
on demand

addr in VPN 0x234?

VPN PTE
0x127 PPN=0x1280, …
0x367 PPN=0x1278, …
0x78A PPN=0xFF31, …
… …

0x234
missing

VPN PTE
0x127 PPN=0x1280, …
0x234 PPN=0x4298, …
0x367 PPN=0x1278, …
0x78A PPN=0xFF31, …
… …

VPN PTE
0x1 (invalid)
0x2 PPN=0x329C, …
… …
0x234 PPN=0x4298, …
0x235 PPN=0x1278, …
… …

imitating this to fill
shadow page table (not TLB)
in hypervisor (not CPU)?

fetch on page fault

OS sets page table entry

TLB not automatically sync’d

OS explicitly
invalidates

34

Interlude: TLB (no virtualization)

virtual
address

physical
addresspage table

TLB

fetch entries
on demand

addr in VPN 0x234?

VPN PTE
0x127 PPN=0x1280, …
0x367 PPN=0x1278, …
0x78A PPN=0xFF31, …
… …

0x234
missing

VPN PTE
0x127 PPN=0x1280, …
0x234 PPN=0x4298, …
0x367 PPN=0x1278, …
0x78A PPN=0xFF31, …
… …

VPN PTE
0x1 (invalid)
0x2 PPN=0x329C, …
… …
0x234 PPN=0xFFFF, …
0x235 PPN=0x1278, …
… …

imitating this to fill
shadow page table (not TLB)
in hypervisor (not CPU)?

fetch on page fault

OS sets page table entry

TLB not automatically sync’d

OS explicitly
invalidates

34

Interlude: TLB (no virtualization)

virtual
address

physical
addresspage table

TLB

fetch entries
on demand

addr in VPN 0x234?

VPN PTE
0x127 PPN=0x1280, …
0x367 PPN=0x1278, …
0x78A PPN=0xFF31, …
… …

0x234
missing

VPN PTE
0x127 PPN=0x1280, …
0x234 PPN=0x4298, …
0x367 PPN=0x1278, …
0x78A PPN=0xFF31, …
… …

VPN PTE
0x1 (invalid)
0x2 PPN=0x329C, …
… …
0x234 PPN=0xFFFF, …
0x235 PPN=0x1278, …
… …

imitating this to fill
shadow page table (not TLB)
in hypervisor (not CPU)?

fetch on page fault

OS sets page table entry

TLB not automatically sync’d

OS explicitly
invalidates

34

three page tables (revisited)

virtual
address

physical
address

machine
address

guest
page table

hypervisor
page table?

hypervisor conversion

real
page table

when guest OS edits this
runs privileged instruction
to fix up TLB

hypervisor clears (part of) this
whenever guest OS runs
TLB-fixing instruction

35

three page tables (revisited)

virtual
address

physical
address

machine
address

guest
page table

hypervisor
page table?

hypervisor conversion

real
page table

when guest OS edits this
runs privileged instruction
to fix up TLB

hypervisor clears (part of) this
whenever guest OS runs
TLB-fixing instruction

35

three page tables (revisited)

virtual
address

physical
address

machine
address

guest
page table

hypervisor
page table?

hypervisor conversion

real
page table

when guest OS edits this
runs privileged instruction
to fix up TLB

hypervisor clears (part of) this
whenever guest OS runs
TLB-fixing instruction

35

alternate view of shadow page table

shadow page table is like a virtual TLB

caches commonly used page table entries in guest

entries need to be in shadow page table for instructions to run

needs to be explicitly cleared by guest OS

implicitly filled by hypervisor

36

on TLB invalidation

two major ways to invalidate TLB:

when setting a new page table base pointer
e.g. x86: mov ..., %cr3

when running an explicit invalidation instruction
e.g. x86: invlpg

hopefully, both privileged instructions

37

nit: memory-mapped I/O

recall: devices which act as ‘magic memory’

hypervisor needs to emulation

keep corresponding pages invalid for trap+emulate
page fault triggers instruction emulation instead

38

problem with filling on demand

most OSs: invalidate entire TLB on context switch

so, rebuild shadow page table on each guest OS context switch

this is often unacceptably slow

want to cache the shadow page tables

problem: OS won’t tell you when it’s writing

39

problem with filling on demand

virtual
address

physical
address

machine
address

guest pid 1
page table

guest pid 2
page table

hypervisor
page table?

shadow page table
for pid 1 only

hypervisor conversion

contains only pid 1 data
only active page table
guest OS switches page tables
all entries potentially invalid
refilled as guest pid 2 runs
problem: slow
…and repeat process again
when switching back to pid 1

40

problem with filling on demand

virtual
address

physical
address

machine
address

guest pid 1
page table

guest pid 2
page table

hypervisor
page table?

shadow page table
for pid 1 only

hypervisor conversioncontains only pid 1 data
only active page table

guest OS switches page tables
all entries potentially invalid
refilled as guest pid 2 runs
problem: slow
…and repeat process again
when switching back to pid 1

40

problem with filling on demand

virtual
address

physical
address

machine
address

guest pid 1
page table

guest pid 2
page table

hypervisor
page table?

shadow page table
(((((((((hhhhhhhhhfor pid 1 only
for pid 2 only

hypervisor conversion

contains only pid 1 data
only active page table

guest OS switches page tables
all entries potentially invalid

refilled as guest pid 2 runs
problem: slow
…and repeat process again
when switching back to pid 1

40

problem with filling on demand

virtual
address

physical
address

machine
address

guest pid 1
page table

guest pid 2
page table

hypervisor
page table?

shadow page table
(((((((((hhhhhhhhhfor pid 1 only
for pid 2 only

hypervisor conversion

contains only pid 1 data
only active page table
guest OS switches page tables
all entries potentially invalid

refilled as guest pid 2 runs
problem: slow

…and repeat process again
when switching back to pid 1

40

problem with filling on demand

virtual
address

physical
address

machine
address

guest pid 1
page table

guest pid 2
page table

hypervisor
page table?

shadow page table
for pid 1 only
(((((((((hhhhhhhhhfor pid 2 only

hypervisor conversion

contains only pid 1 data
only active page table
guest OS switches page tables
all entries potentially invalid
refilled as guest pid 2 runs
problem: slow

…and repeat process again
when switching back to pid 1

40

proactively maintaining page tables

virtual
address

physical
address

machine
address

guest pid 1
page table

guest pid 2
page table

hypervisor
page table?

shadow page table for pid 1

shadow page table for pid 2

hypervisor conversion
maintain multiple shadow PTs
only one active as hardware page table

still needs to be updated
even if not active hardware PT

guest can update while
not active hardware PT

41

proactively maintaining page tables

virtual
address

physical
address

machine
address

guest pid 1
page table

guest pid 2
page table

hypervisor
page table?

shadow page table for pid 1

shadow page table for pid 2

hypervisor conversion

maintain multiple shadow PTs
only one active as hardware page table

still needs to be updated
even if not active hardware PT

guest can update while
not active hardware PT

41

proactively maintaining page tables

track physical pages that are part of any page tables
update list on page table base register write?
update list while filling shadow page table on demand

make sure marked read-only in shadow page tables

use trap+emulate to handles writes to them

(…even if not current active guest page tables)

on write to page table: update shadow page table

42

pros/cons: proactive over on-demand

pro: work with guest OSs that make assumptions about TLB size

pro: maintain shadow page table for each guest process
can avoid reconstructing each page table on each context switch

con: more instructions spent doing copy-on-write

con: what happens when page table memory recycled?

43

page tables and kernel mode?

guest OS can have kernel-only pages

guest OS in pretend kernel mode
shadow PTE: marked as user-mode accessible

guest OS in pretend user mode
shadow PTE: marked inaccessible

44

four page tables? (1)

virtual
address

physical
address

machine
address

guest
page table

hypervisor
page table?

shadow page table
(pretend kernel mode)

shadow page table
(pretend user mode)

45

four page tables? (2)

one solution: pretend kernel and pretend user shadow page table

alternative: clear page table on kernel/user switch

neither seems great for overhead

46

interlude: VM overhead

some things much more expensive in a VM:

I/O via priviliged instructions/memory mapping
typical strategy: instruction emulation

47

exercise: overhead?

guest program makes read() system call

guest OS switches to another program

guest OS gets interrupt from keyboard

guest OS switches back to original program, returns from syscall

how many guest page table switches?

how many (real/shadow) page table switches?

48

non-virtualization instrs.

assumption: priviliged operations cause exception instead
and can keep memory mapped I/O to cause exception instead

many instructions sets work this way

x86 is not one of them

49

POPF

POPF instruction: pop flags from stack
condition codes — CF, ZF, PF, SF, OF, etc.
direction flag (DF) — used by “string” instructions
I/O privilege level (IOPL)
interrupt enable flag (IF)
…

some flags are privileged!

popf silently doesn’t change them in user mode

50

POPF

POPF instruction: pop flags from stack
condition codes — CF, ZF, PF, SF, OF, etc.
direction flag (DF) — used by “string” instructions
I/O privilege level (IOPL)
interrupt enable flag (IF)
…

some flags are privileged!

popf silently doesn’t change them in user mode

50

PUSHF

PUSHF: push flags to stack

write actual flags, include privileged flags

hypervisor wants to pretend those have different values

51

handling non-virtualizable

option 1: patch the OS
typically: use hypervisor syscall for changing/reading the special flags,
etc.
‘paravirtualization’
minimal changes are typically very small — small parts of kernel only

option 2: binary translation
compile machine code into new machine code

option 3: change the instruction set
after VMs popular, extensions made to x86 ISA
one thing extensions do: allow changing how push/popf behave

52

binary translation

compile assembly to new assembly

works without instruction set support

early versions of VMWare on x86

later, x86 added HW support for virtualization

multiple ways to implement, I’ll show one idea
similar to Ford and Cox, “Vx32: Lightweight, User-level Sandboxing on
the x86”

53

binary translation idea

0x40FE00: addq %rax, %rbx
movq 14(%r14,4), %rdx
addss %xmm0, (%rdx)
...
0x40FE3A: jne 0x40F404

divide machine code
into basic blocks
(= “straight-line” code)
(= code till
jump/call/etc.)

generated code:
// addq %rax, %rbx
movq rax_location, %rdi
movq rbx_location, %rsi
call checked_addq
movq %rax, rax_location
...
// jne 0x40F404
... // get CCs
je do_jne
movq $0x40FE3F, %rdi
jmp translate_and_run
do_jne:
movq $0x40F404, %rdi
jmp translate_and_run

subss %xmm0, 4(%rdx)
...
je 0x40F543
ret

54

binary translation idea

0x40FE00: addq %rax, %rbx
movq 14(%r14,4), %rdx
addss %xmm0, (%rdx)
...
0x40FE3A: jne 0x40F404

divide machine code
into basic blocks
(= “straight-line” code)
(= code till
jump/call/etc.)

generated code:
// addq %rax, %rbx
movq rax_location, %rdi
movq rbx_location, %rsi
call checked_addq
movq %rax, rax_location
...
// jne 0x40F404
... // get CCs
je do_jne
movq $0x40FE3F, %rdi
jmp translate_and_run
do_jne:
movq $0x40F404, %rdi
jmp translate_and_run

subss %xmm0, 4(%rdx)
...
je 0x40F543
ret

54

binary translation idea

0x40FE00: addq %rax, %rbx
movq 14(%r14,4), %rdx
addss %xmm0, (%rdx)
...
0x40FE3A: jne 0x40F404

divide machine code
into basic blocks
(= “straight-line” code)
(= code till
jump/call/etc.)

generated code:
// addq %rax, %rbx
movq rax_location, %rdi
movq rbx_location, %rsi
call checked_addq
movq %rax, rax_location
...
// jne 0x40F404
... // get CCs
je do_jne
movq $0x40FE3F, %rdi
jmp translate_and_run
do_jne:
movq $0x40F404, %rdi
jmp translate_and_run

subss %xmm0, 4(%rdx)
...
je 0x40F543
ret

54

a binary translation idea

convert whole basic blocks
code upto branch/jump/call

end with call to translate_and_run
compute new simulated PC address to pass to call

55

making binary translation fast

only have to convert kernel code

cache converted code
translate_and_run checks cache first

patch calls to translate_and_run to refer directly to cached
code

do something more clever than movq rax_location, ...
map (some) registers to registers, not memory

ends up being “just-in-time” compiler

56

hardware hypervisor support

Intel’s VT-x

HW tracks whether a VM is running, how to run hypervisor
new VMENTER instruction
instruction switches page tables, sets program counter, etc.

HW tracks value of guest OS registers as if running normal

new VMEXIT interrupt — run hypervisor when VM needs to stop
exits ‘VM is running mode’, switch to hypervisor

57

hardware hypervsior support

VMEXIT triggered regardless of user/kernel mode
means guest OS kernel mode can’t do some things
real I/O device, unhandled priviliged instruction, …

partially configurable: what instructions cause VMEXIT
reading page table base? writing page table base? …

partially configurable: what exceptions cause VMEXIT
otherwise: HW handles running guest OS exception handler instead

58

HW support for VM page tables

already avoided two shadow page tables:
HW user/kernel mode now separate from hypervisor/guest

but HW can help a lot more

nested page tables
HW does lookup in guest page table, then hypervisor PT
avoids extra page faults

tagging TLB entries with the VM ID
keep page table entries cached despite switching from guest to hypervisor
PT

59

	virtual machine: concept
	interlude: VM VM terms
	VM execution pieces
	high-level flow
	layering
	trap-and-emulate

	pause: emulation pieces
	managing page tables
	three page tables
	supporting user/kernel mode

	on VM overhead
	non-virtualizable instructions
	binary translation?

	hardware support

