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An Efficient Algorithm for Exploiting 
Multiple Arithmetic Units 

Abstract: This  paper  describes the methods employed in the  floating-point  area  of the System/360  Model 91 to exploit  the 
existence  of  multiple  execution units. Basic  to  these  techniques  is a simple  common data busing and  register  tagging  scheme which 
permits  simultaneous  execution of independent  instructions  while  preserving  the  essential  precedences  inherent  in the instruction  stream. 
The  common  data  bus  improves  performance by efficiently utilizing  the  execution  units  without  requiring  specially  optimized  code. 
Instead,  the  hardware, by ‘looking  ahead’  about  eight  instructions.  automatically  optimizes  the  program  execution on a local  basis. 

The  application of these  techniques is not  limited  to  floating-point  arithmetic  or  System/360  architecture. It may  be  used  in  almost 
any  computer  having  multiple execution units  and  one  or  more  ‘accumulators.’  Both of the  execution  units, as well as the  associated 
storage  buffers,  multiple  accumulators  and  input  /output  buses,  are  extensively  checked. 

Introduction 

After storage access time has been satisfactorily  reduced 
through the use  of  buffering  and  overlap  techniques,  even 
after the instruction unit has  been  pipelined to operate 
at a rate approaching one  instruction  per cycle,’ there 
remains the need to optimize the actual performance of 
arithmetic operations,  especially  floating-point.  Two 
familar  problems confront the designer in his attempt to 
balance  execution  with  issuing. First, individual operations 
are not fast  enough* to allow  simple serial execution. 
Second, it is difficult to achieve the fastest  execution 
times in a universal  execution  unit. In other words,  cir- 
cuitry  designed to do both multiply and add will do 
neither as fast as two units each  limited to one kind of 
instruction. 

The first step toward surmounting these  obstacles  has 
been  presented,’  i.e., the division  of the execution  func- 
tion into two  independent parts, a fixed-point  execu- 
tion area and a floating-point  execution area. While  this 
relieves the physical constraint and makes concurrent 
execution  possible, there is another consideration. In order 
to secure a performance  increase the program  must  con- 
tain an intimate mixture of fixed-point and floating-point 
instructions.  Obviously, it is not always  feasible for the 
programmer to arrange this and, indeed,  many of the 
programs of greatest interest to the user  consist  almost 
wholly  of floating-point  instructions. The subject  of this 
paper, then, is the method used to achieve concurrent 
” .” 

During  the  planning  phase,  floating-point  multiply  was  taken to be 

quent  papers  explains how times of 3, 12, and 2 were  actually  achieved. 
six cycles, divide as eighteen cycles and  add  as two cycles. A subse- 

adder,  pipelined  to  start  an  add cycle. 
This  permitted  the  use of only one, instead of two, multipliers  and  one 

execution of floating-point  instructions  in the IBM  Sys- 
tem/360  Model 91. Obviously,  one  begins  with  multiple 
execution  units,  in  this  case an adder and a multi- 
plier/divider.’ 

It might appear that achieving the concurrent operation 
of these  two  units  does not differ substantially from the 
attainment of  fixed-floating  overlap.  However, in the latter 
case the architecture limits each of the instruction classes 
to its own set of accumulators and this  guarantees  inde- 
pendence.* In the former  case there is only one set of 
accumulators, which  implies  program-specified  sequences 
of dependent  operations.  Now it is no longer  simply a 
matter of classifying  each instruction as fixed-point or 
floating-point, a classification  which  is  independent of 
previous  instructions. Rather, it is a question of deter- 
mining  each  instruction’s  relationship  with all previous, 
incompleted  instructions.  Simply stated, the objective 
must  be to preserve  essential  precedences  while  allowing 
the greatest  possible  overlap of independent  operations. 

This objective is achieved in the Model 91 through a 
scheme  called the common data bus  (CDB). It makes 
possible  maximum  concurrency  with  minimal  effort 
(usually  none) by the programmer or, more importantly, 
by the compiler.  At the same  time, the hardware required 
is  small and logically  simple. The CDB can function  with 
any  number of accumulators and any  number of execution 
units. In short, it provides a hardware algorithm for the 
automatic, efficient exploitation of multiple  execution 
units. 

* Such  dependencies  as  exist  are  handled by the  store-fetch  sequenc- 
ing of the  storage  bus  and  the  condition code control  described in the 
following paper.2 
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Figure 1 Data  registers and transfer  paths  without CDB. 

The next  section of this paper will  discuss the physical 
framework of registers, data paths and execution  circuitry 
which is implied by the architecture and the overall CPU 
structure presented in a previous  paper.'  Within this 
framework  one  can  subsequently  discuss the problem of 
precedence,  some  possible  solutions, and the selected 
solution, the CDB. In conclusion  will  be a summary of 
the results  obtained. 

Definitions and  data  paths 

While the reader  is  assumed to be familiar with  System/360 
architecture and mnemonics, the terminology  as  modified 
by the context of the Model 91 organization  will  be re- 
viewed here. The instruction unit, in preparing  instruc- 
tions for the floating-point operation stack (FLOS),  maps 
both storage-to-register and register-to-register  instruc- 
tions into a pseudo-register-to-register format. In this 
format R1 is  always  one of the four floating-point regis- 
ters (FLR) defined  by the architecture. It is  usually the 
sink of the instruction, i.e., it is the FXR  whose contents 
are set equal to the result of the operation. Store opera- 
tions are the sole  exception*  wherein R1 specifies the 
source of the operand to be  placed in storage. A word  in 

26 * Compares do  not, of course, alter the contents of R1.  
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storage is  really the sink of a store. (R1 and R2 refer to 
fields as defined  by  System/360  architecture.) 

In  the pseudo-register-to-register format "seen"  by the 
FLOS the R2 field  can  have three different  meanings. It 
can be an  FLR as in a normal register-to-register  instruc- 
tion. If the program contains a storage-to-register in- 
struction, the R2 field  designates the floating-point buffer 
(FLB)  assigned  by the instruction unit to receive the 
storage operand.  Finally, R2 can designate a store data 
buffer  (SDB)  assigned  by the instruction unit to store 
instructions. In the first  two  cases R2 is the source of an 
operand; in the last case it is a sink. Thus, the instruction 
unit maps all of storage into the 6 floating-point  buffers 
and 3 store data buffers so that the FLOS sees  only  pseudo- 
register-to-register operations. 

The distinction between source and sink  will  become 
quite important during the discussion of precedence and 
should be fixed  firmly in mind.  All of the instructions 
(except store and compare)  have the following form: 

R1 op R2"--4R1 
Register Register  Register 

or 

buffer 
source source sink 
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Figure 2 Timing  relationship between instruction unit and FLOS decode for the processing of one  instruction. 

For example, the instruction ADO, 2 means  “place the 
double-precision  sum of registers 0 and 2 in register 0,” 
i.e., RO + R2 + RO. Note that  R1 is  really both a source 
and a sink.*  Nevertheless, it will  be  called the sink and R2 
the source  in all subsequent  discussion. 

This  definition  of operations and the machine  organiza- 
tion taken together  imply a set of data registers  with 
transfer paths among  them.  These are shown in Fig. 1. 
The major  sets of registers  (FLR’s, FLB’s, FLOS and 
SDB’s)  have already been  discussed, both above and in 
a preceding  paper.’  Two additional registers,  one  sink 
and one  source, are shown  feeding  each  execution  circuit. 
Initially  these  registers were considered to be the internal 
working  registers  required by the execution  circuits and 
put to multiple use  in a way to be  described  below. Later, 
their function was  generalized  under the reservation station 
concept and they were dissociated from their “working” 
function. 

In actually  designing a machine the data paths evolve 
as the design  progresses.  Here,  however, a complete,  first- 
pass data path will  be  shown to facilitate  discussion. To 
illustrate the operation let us consider,  in turn, four kinds 
of instructions-load of a register from storage,  storage- 
to-register  arithmetic,  register-to-register  arithmetic, and 
store. Let us first see  how  each  can  be  accomplished in 
vacuo; then  what  difficulties  arise  when  each is embedded 
in the context of a program. For simplicity  double- 
precision  (64-bit operands) will  be  used throughout. 

Figure 2 shows the timing  relationship  between the 
instruction  unit’s  handling of an instruction and its 
processing by the FLOS  decode.  When the FLOS  decodes 
a load, the buffer  which  will  receive the operand has not 
yet  been loaded from storage.+ Rather than holding the 
decode  until the operand arrives, the FLOS  sets control 
bits  associated  with the buffer  which cause its content 
to be transmitted to the adder when it “goes  full.” The 

* This economy of specification compounds the  difficulties of achiev- 
ing  concurrency while preserving precedence, as will be seen  later. 

t A FULL/EMPTY control  hit  indicates  this.  The bit is set FULL 
by the  Main  Storage  Control  Element  and EMPTY when the buffer is 

and  the  FLR ingates. 
used. LOAD uses  the  adder  in  order to minimize  the buffer outgates 

adder receives control information which  causes it to send 
data to floating-point  register R1, when its source  reg- 
ister  is  set full by the buffer. 

If the instruction is a storage-to-register arithmetic func- 
tion, the storage operand is handled as in load (control 
bits  cause it  to be  forwarded to the proper unit) but the 
floating-point  register,  along  with the operation, is  sent 
by the decoder to  the appropriate unit. After receiving 
the buffer the unit will  execute the operation and send the 
result to register  R1. 

In register-to-register arithmetic instructions  two  float- 
ing point registers are transmitted on successive  cycles to 
the appropriate execution  unit. 

Stores are handled  like  storage-to-register  arithmetic 
functions,  except that the content of the floating-point 
register  is  sent to a store data buffer rather than to an 
execution  unit. 

Thus far, the handling of one instruction at a time  has 
proven rather straightforward. Now  consider the following 
“program” : 

Example I 

LD FO FLBl LOAD register FO from buffer 1 

MD FO FLB2 MULTIPLY register FO by  buffer 2 

The load can  be  handled as before, but what about the 
multiply?  Certainly FO and FLB2 cannot be  sent to the 
multiplier as in the case of the isolated  multiply,  since 
FLBl has not yet  been set into FO.* This  sequence  illus- 
trates the cardinal precedence  principle: No floating- 
point register  may participate in an operation if it is the 
sink of another, incompleted instruction. That is, a register 
cannot be  used until its contents reflect the result of the 
most  recent operation to use that register as its sink. 

The design presented thus far has not incorporated any 
mechanism for dealing  with this situation. Three functions 
must  be  required of any  such  mechanism: 

(1) It must  recognize the existence of a dependency. 

be placed in FO. This  hints  at  the CDB concept. 
* Note  that  the  program  calls  for  the  product of FLBl and  FLB2 t o  

27 
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Figure 3 Timing for the  instruction  sequence  required to perform  the  function A + B $- C + D * E : (a)  without  reserva- 
tion  stations, (b) with  reservation  stations  included  in the register  set. 

26 CYCLES 

(2) It must  cause the correct sequencing of the dependent 
instructions. 

(3) It must  distinguish  between the given  sequence and 
such  sequences as 

LD FO, FLBl 
MD F2, FLB2 

Here it must  allow the independent MD to proceed 
regardless of the disposition of the LD. 

The first  two  requirements are necessary to preserve the 
28 logical  integrity of the program; the third is  necessary to 

meet the performance  goal. The next  section  will  present 
several  alternatives for accomplishing  these  objectives. 

Preservation of precedence 

Perhaps the simplest  scheme for preserving  precedence is 
as follows. A "busy" bit is  associated  with  each of the four 
floating-point  registers.  This bit is set when the FLOS 
decode issues an instruction  designating the register as a 
sink; it is  reset  when the executing unit returns the result 
to the register. No instruction can be issued  by the FLOS 
if the busy  bit of its sink  is on. If the source of a register- 
to-register  instruction  has its busy bit on, the FLOS sets 
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control bits associated with the source register. When a 
result is entered  into  the register, these control bits cause 
the register to be sent via the FLR bus to  the unit waiting 
for it as a source. 

This scheme easily meets the first two requirements. 
The  third is met with the help of the programmer; he 
must use different registers to achieve overlap. For ex- 
ample, the expression A + B + C + D * E can be pro- 
grammed as follows: 

Example 2 

LD FO, D FO = D 
LD F2, C F2 = C 
LD F4, B F4 = B 
MD FO, E FO = D * E  
AD F2, FO F2 = C + D * E  
AD F4, A F4 = A +  B 
AD F2, F4 F2 = A + B f C + D * E  

The busy bit scheme should allow the second add  and 
the multiply to be executed simultaneously (really, in 
any order) since they use different sinks. Unfortunately, the 
timing chart of Fig. 3a shows not only that  the expected 
overlap does not occur but also that many cycles are 
lost to transmission time. The overlap fails to materialize 
because the first add uses the result of the multiply, and 
the  adder  must wait for that result. Cycles are lost to 
control because so many of the instructions use the adder. 
The  FLOS cannot decode an instruction unless a unit is 
available to execute it. When an assigned unit finishes 
execution, it  takes  one cycle to transmit the fact to  the 
FLOS so that it can decode a waiting instruction. Similarly, 
when the FLOS is held up because of a busy sink register, 
it cannot begin to decode until  the result has been entered 
into  the register. 

One solution that could be considered is the addition of 
one or more adders. If this were done and some programs 
timed, however, it would become apparent  that  the execu- 
tion circuitry would be in use only a small part of the time. 
Most of the lost time would occur while the adder waited 
for operands which are the result of previous instructions. 
What is required is a device to collect operands (and con- 
trol  information) and then engage the execution circuitry 
when all conditions are satisfied. But this is  precisely the 
function of the sink and source registers in Fig. 1. There- 
fore,  the  better  solution is to associate more  than  one set  of 
registers (control, sink, source) with each execution unit. 
Each such set is called a reservation sfation.* Now instruc- 
tion issuing depends on  the availability of the appropriate 
kind of reservation station. In the  Model 91 there  are  three 
add  and two multiply/divide reservation stations. For sim- 
____ 

* The  fetch  and  store  buffers  can he considered as specialized,  one- 
operand  reservation  stations.  Previous  systems,  such  as  the IBM 7030, 
have  in effect employed one  “reservation  station”  ahead of each  execu- 
tion  unit.  The  extension  to  several  reservation  stations  adds  to  the 
effectiveness of the  execution  hardware, 

plicity they are treated  as if they were actual units. Thus, 
in the  future, we will speak of Adder 1 (Al), Adder 2 (A2), 
etc., and  M/D 1 and  M/D 2. 

Figure 3b shows the effect  of the addition of reservation 
stations  on the problem running  time: five  cycles have been 
eliminated. Note  that  the second AD now overlaps the 
MD and actually executes before the first AD. While the 
speed increase is gratifying and  the busy bit method easy 
to implement, there remains a dependence on the pro- 
grammer. Note  that  the expression could have been coded 
this way: 

Example 3a 

LD FO, E 
MD FO, D 
AD FO, C 
AD FO, B 
AD FO, A 

Now overlap is impossible and  the program will run six 
cycles longer despite having two fewer instructions. Sup- 
pose however, that this  program  is part of a loop, as below: 

Example 3b 

LOOP 1 LD FO, Ei 
MD FO, Di 
AD FO, Ci 
AD FO, Bi 
AD FO, Ai 
STD FO, Fi 
BXH i, - 1, 0, LOOP 1 (decrease i by 1, 
branch if i > 0) 

LD F2, Ei + 1 
MD FO, Di 
MD F2, Di + 1 
AD FO, Ci 
AD  F2, Ci + 1 
AD FO, Bi 
AD F2, Bi + 1 
AD FO, Ai 
AD F2, Ai + 1 
STD FO, Fi 
STD F2, Fi + 1 
BXH i, -2,0,  LOOP 2 

LOOP 2 LD FO, Ei 

Iteration n + 1 of LOOP 1 will appear to  the  FLOS to 
depend on iteration n, since the instructions in  both 
iterations have the same sink. But it is clear that  the two 
iterations  are, in fact, independent. This example illustrates 
a second way in which two instruction sequences can be 
independent. The first way,  of course, is  for  the  two strings 
to have different sink registers. The second way is  for the 
second string to begin with a load. By its definition a 29 
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load launches a new, independent  string  because it in- 
structs the computer to destroy the previous contents of 
the specified  register. Unfortunately, the busy bit scheme 
does not recognize this possibility. If overlap  is to be 
achieved  with this scheme, the programmer  must  write 
LOOP 2. (This  technique  is  called doubling or unravelling. 
It requires  twice as much storage but it runs faster by 
enabling  two iterations to be  executed  simultaneously.) 

Attempts were made to improve the busy bit scheme 
so as to handle this case. The most  tempting approach is 
the expansion of the bit into a counter.  This  would appear 
to allow  more than one  instruction  with a given  sink to 
be  issued. As each  is  issued, the FLOS increments the 
counter; as each  is  executed the counter is  decremented. 
However,  major  difficulty  is  caused  by the fact that storage 
operands do not return in sequence. This can  cause the 
result of instruction n + 1 to be  placed in a register  before 
that of n. When n completes, it erroneously  destroys the 
register  contents. 

Some  of the other proposals considered  would, if imple- 
mented,  have  been  of  such  logical  complexity  as to jeop- 
ardize the achievement of a fast cycle. 

The Common Data Bus 

The preceding  sections  were  intended to portray the dif- 
ficulties of achieving  concurrency  among  floating-point 
instructions and to show  some of the steps in the evolution 
of a design to overcome  them. It is clear, in retrospect, 
that the previous  algorithms  failed for lack of a way to 
uniquely  identify  each instruction and to use  this  informa- 
tion to sequence  execution and set  results into the floating- 
point  registers. As far as action by the FLOS is  concerned, 
the only thing unique to a particular instruction is the 
unit which  will  execute it. This, then, must  form the 
basis of the common data bus  (CDB). 

Figure 4 shows the data paths required for operation of 
the  CDB.* When  Fig. 4 is compared  with  Fig. 1 the 
following  changes, in addition to  the reservation stations, 
are evident:  Another output port has been added to the 
buffers. This port has been combined  with the results 
from the adder and multiplier/divider; the combination 
is the CDB. The CDB now  goes not only to the registers 
but also to the sink and source  registers of all reservation 
stations, including the store data buffers but excluding 
the floating-point  buffers. This data path will enable  loads 
to be  executed  without the adder and will  make the re- 
sult of any operation available to all units without  first 
going through a floating-point  register. 

Note that  the CDB is fed by all units that can alter a 
register and that  it feeds all units which can  have a register 
as an operand. The control part of the CDB enumerates 

Everything could he done by a slight  extension of the CDB but  time 
* The FLB and FLR busses are  retained  for performance reasons. 

30 would he lost  due  to conflicts over  the common facility. 

the units which  feed the CDB. Thus the floating-point 
buffers 1 through 6 are assigned the numbers 1 through 6; 
the three adders (actually  reservation stations) are num- 
bered 10 through 12; the two  multiplier/dividers are 8 and 
9. Since there are eleven contributors to the CDB, a four- 
bit binary  number suffices to enumerate them.  This  number 
is  called a tag. A tag is  associated  with  each of the four 
floating-point  registers (in addition to the busy  bit*), 
with both the source and sink  registers of each  of the five 
reservation stations and with  each of the three Store Data 
Buffers. Thus a total of  17 four-bit fag  registers has been 
added, as shown in Fig. 4. 

Tags  also appear in another context. A tag is  generated 
by the CDB priority controls to identify the unit whose 
result will  next  appear on the CDB. Its use  will  be  made 
clear  shortly. 

Operation of this complex is as  follows. In decoding 
each  instruction the FLOS  checks the busy bit of each of 
the specified floating-point  registers. If that bit is  zero, 
the content of the register@)  may  be  sent to the selected unit 
via the FLR bus, just as  before. Upon issuing the instruc- 
tion, which requires  only that a unit be  available to execute 
it, the FLOS not only  sets the busy bit of the sink  register 
but  also  sets its tag to the designation of the selected  unit. 
The source  register control bits  remain  unchanged. As an 
example, take the instruction, AD FO, FLB1.  After  issuing 
this  instruction to Adder 1 the control bits of FO would be: 

BB TAG 
1 1010 (Al) 

So far the only  change from previous  methods  is the 
setting of the tag. The significant  difference  occurs  when 
the FLOS  finds the busy bit on at decode  time.  Previously, 
this caused a suspension of decoding until the bit went 
off. Now the FLOS will issue the instruction and update 
the tag. In so doing it will not transmit the register  con- 
tents to the selected unit but it will transmit the “old” tag. 
For example,  suppose the previous AD was  followed  by a 
second  AD. At the end of the decode of this second AD, 
FO’s control bits would  be: 

BB TAG 
1 1011  (A2) 

One  cycle later the sink tag of the A2 reservation station 
would  be  1010,  i.e., the same as Al, the unit whose  result 
will  be required by  A2. 

Let us look ahead temporarily to the execution of the 
first AD. Some  time after the start of execution but before 
the end,? A1 will  request the CDB.  Since the CDB is  fed 
by many  sources,  its  time-sharing  is  controlled by a central 

formed by use of an  unassigned  tag  number.  However,  it is conve- 
* The  busy bit is  no  longer  necessary  since  its  function  can be per- 

nient  to  retain  it. 
t Since  the  required  lead  time is two  cycles,  the  request  is  made at  

the  start of execution  for an  add-type  instruction. 

R. M. TOMASULO 
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I priority circuit. If the CDB is  free, the priority control 
signals the requesting adder, Al,  to outgate its result and 

~ it broadcasts the tag of the requestor (1010  in this case) 
to all reservation stations. Each active  reservation station 
(selected but awaiting a register operand) compares its 
sink and source tags to the CDB  tag. If they  match, the 
reservation station ingates  the data from the CDB. In a 
similar manner, the CDB tag is compared  with the tag 
of each busy floating-point  register.  All  busy  registers 
with  matching  tags ingate from the CDB and reset their 
busy  bits. 

Two  steps toward the goal of preserving  precedence 
have  been  accomplished  by the foregoing. First, the second 
AD cannot start until the first AD finishes  because it 
cannot receive both  its  operands until the result of the 
first AD appears on the CDB.  Secondly, the result of the 
first AD cannot change  register FO once the second AD 
is issued,  since the tag in FO will not match Al. These are 
precisely the desired  effects. 

Before  proceeding  with  more  detailed  considerations  let 
us recapitulate the essence of the method. The floating- 
point register  tag  identifies  the  last unit whose  result  is 
destined for the register.  When an instruction is issued 
that requires a busy register the tag is sent to the selected 

unit in place of the register contents. The unit continuously 
compares this tag with that generated by the CDB priority 
control. When a match  is  detected, the unit ingates from 
the CDB. The unit begins  executing  as  soon as  it has both 
operands. It may  receive one or both operands from either 
the CDB or the FZR bus; the source operand for storage- 
to-register instructions is transmitted via the FLB bus. 

As each instruction is  issued the existing  tag(s)  is (are) 
transmitted to the selected unit and then the sink tag is 
updated. By passing  tags around in this fashion, all opera- 
tions having the same  sink are correctly  sequenced  while 
other operations are allowed to proceed  independently. 
Finally, the floating-point  register tag controls the chang- 
ing of the register  itself,  thereby  ensuring that only the 
most  recent instruction will  change the register.  This has 
the interesting  consequence that a loop of the following 
kind : 

Example 5 

LOOP LD FO,  Ai 
AD FO,  Bi 
STD FO, Ci STORE 
BXH i, -1, 0, LOOP 31 
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Figure 5 Timing sequence for Example 6, showing effect 
of CDB. 

may  execute  indefinitely  without  any  change  in the con- 
tents of FO. Under normal conditions  only the final itera- 
tion will  place its result in FO. 

As mentioned  previously, there are two ways of starting 
an independent instruction string. The first is to specify a 
different  sink  register and the second  is to load a register. 
The CDB  handles the former  in  essentially the same way 
as the busy  bit  scheme. The load, which had been a dif- 
ficult  problem  previously, is now  very  simple.  Regard- 
less  of the register  tag or busy bit, a load turns the busy 
bit on and sets the tag equal to the floating-point  buffer 
which the instruction unit had assigned to the load. This 
causes  subsequent  instructions to sequence on the buffer 
rather than on whatever unit may  have  identified the 
register as its sink prior to the load. The buffer controls 
are set to request the CDB when the storage operand 
arrives. The following  example and Fig. 5 show  this  clearly. 

Example 6 

LD FO, FLBl 
DD FO, FLB2 DIVIDE 
STD FO, A 
LD FO, FLB3 
AD FO, FLB4 

Note that  the add finishes  before the divide. The dashed 
line portion of Fig. 5 shows  what  would  happen if the 
busy bit scheme  alone  were  used. Figure 6 displays the 
sequences  followed  under the two schemes. This  figure 
graphically illustrates the bottleneck  caused by using a 
single  sink  register  with a busy bit scheme.  Because all 
data must  pass through this  register, the program is 
reduced to strictly  sequential  execution,  steps 1 through 7. 
With the CDB, on the other hand, the sink  register  hardly 
appears and the program  is  broken into two independent, 
concurrent sequences.  This  facility  of the CDB obviates 
the need for loop doubling. 

The CDB makes it possible to execute  some instructions 
32 in, effectively, no time at all. In the above  example the 

store took place  during the CDB cycle  following the divide. 
In a similar  fashion a register-to-register load of a busy 
register  is  accomplished by moving the tag of the source 
floating-point register to the tag of the sink  floating-point 
register. For example,  in the sequence 

AD FO, FLBl 
LDR F2, FO move FO to F2 

the tag of FO will  be  1010 (Al)  at the time the LDR is 
decoded.  The  decoder simply  sets  F2’s tag to 1010.  Now, 
when the result of the AD appears on the CDB both FO 
and F2 will ingate  since the CDB tag of  1010  will  match 
the tag of each  register.  Thus, no unit or extra time was 
required for the execution of the LDR. 

A number of details  have been omitted from this dis- 
cussion  in  order to clarify the concept, but really  only 
two are of operational significance. First, every unit must 
request the CDB two cycles  before it finishes  execution. 
(These  two  cycles are required for propagation of the 
request to the CDB controls, the establishment of priority 
among  competing  units, and propagation of a “select” 
signal to the chosen  unit.)  This  limits  the  execution  time  of 
any instruction to a two-cycle  minimum. (Of course, the 
faster the execution the less the need for, or gain from, 
concurrency.) It also adds one*  cycle to the access  time 
for loads. Because  of  buffering and overlap,  this  does not 
usually  cause an increase  in  problem  running  time. 

The second point is concerned  with mixed  precision. 
Because the architectural definition  causes the low-order 
part of an FLR to be  preserved  during  single-precision 
operation, an error can  occur  in the following kind of 
program: 

LD FO, FLBl 
AD FO, FLB2 
AE FO, FLB3 

Since  only the last instruction, which  is  single-precision, 
will  change FO, the low order result of the  double-precision 
AD will  be lost.  This is handled by associating a bit  with 
each  register to indicate  whether a particular register  is 
the sink of an outstanding single- or double-precision 
instruction. If this  bit  does not match the “length” of the 
instruction being  decoded, the decode  is  suspended until 
the busy  bit  goes off. While  this stratagemt solves the 
logic  problem, it does so at the expense of performance. 
Unfortunately, no way has been found to avoid  this. Note, 
however, that all-single-  or  all-dohble-precision  programs 
run at the maximum  possible  speed. It is  only the interface 
between  single- and double-precision  to the same sink 
register that suffers  delay. 

tion of the  arrival of data. 
* It does not add  two cycles since  storage gives one cycle prenotifica- 

multiply  produces  a double-precision product.  This  is  handled  sepa- 
t Further complications arise  from  the  fact  that  single-precision 

rately  but  with  the  same  time  penalty  as above. 

R. M. TOMASULO 
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Figure 6 Functional  sequence  for  Example 6 (a) with  busy 
bit controls  only, (b) with CDB. 

Conclusions 

Two  concepts of some  significance to the design  of  high- 
performance  computers  have been  presented. The first, 
reservation stations, is  simply an expeditious  method of 
buffering,  in an environment  where the transmission  time 
between units is  of  consequence.  Because  of the disparity 
between storage access and circuit  speeds and because of 
dependencies  between  successive  operations, it is  observed 
(given multiple  execution  units) that each unit spends 
much  of its  time  waiting for operands. In effect, the reserva- 
tion stations do the waiting for operands while the execu- 
tion  circuitry  is  free to be  engaged by  whichever reservation 
station fills first. 

The second, and more important, innovation, the CDB, 
utilizes the reservation stations and a simple  tagging 
scheme to preserve  precedence  while  encouraging  con- 
currency. In conjunction  with the various  kinds of buf- 
fering  in the CPU, the CDB helps  render the Model 91 
less  sensitive to programming. It should be  evident,  how- 
ever, that the programmer still exercises substantial control 
over  how  much  concurrency  will  occur. The two  different 
programs for doing A + B + C + D * E illustrate this 
clearly. 

It might appear that  the CDB adds one cycle to the 
execution  time of each operation, but in fact it does not. 
In practice  only 30 nsec of the 60-nsec CDB interval are 
required to perform all of the CDB functions. The remain- 
ing  time  could, in this case,  be  used  by the execution unit 
to achieve a shorter effective  cycle. For example, if an add 
requires 120 nsec,  then add plus the CDB time  required 
is 150 nsec. Therefore, as far as the add is concerned, the 
machine  cycle  could  be 50 nsec.  Besides,  even without the 
CDB, a similar amount of time  would  be  required to trans- 
mit  results both to the floating-point  registers and back 
as an input to the unit generating the result. 

The following  program, a typical partial differential 
equation inner loop, illustrates the possible  performance 
increase. 

LOOP MD FO, Ai 
AD FO, Bi 
LD F2, Ci 
SDR F2, FO 
MDR F2, F6 
AD2 F2, Ci 
STD F2, Ci 
BXH i, -1, 0, LOOP 

Without the CDB one iteration of the loop would use 
17 cycles,  allowing 4 per MD, 3 per AD and nothing for 
LD or STD.  With the CDB one iteration requires 11 cycles. 
For this kind of code the CDB improves  performance by 
about one-third. 
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