

Power-Efficient Adaptable Wireless Sensor Networks

John Lach1, David Evans2, Jon McCune3, Jason Brandon1, Lingxuan Hu2
University of Virginia Departments of Electrical and Computer Engineering1 and Computer Science2, Charlottesville, VA 22904

Carnegie Mellon Department of Electrical and Computer Engineering3, Pittsburgh, PA 15213

Abstract
Wireless sensor networks represent a new data collection

paradigm in which adaptability plays an important role.
Typical sensor network scenarios involve scattering a large
number of wireless nodes from an aircraft across an area of
interest. The nodes then form a network through which
collected data is routed to a base station. Adaptation is
necessary to deal with the unpredictable network topologies
that result from sensor node scatters and to manage resources
(energy in particular) efficiently in response to changing
conditions and requirements. The hardware flexibility required
for dynamic adaptation is traditionally achieved with software-
based processors or field programmable gate arrays (FPGAs),
both of which come with significant energy, area and
performance costs when compared to application-specific
integrated circuits (ASICs). We therefore introduce a small-
scale reconfigurable design technique that minimizes these
costs by efficiently integrating small amounts of application-
specific reconfigurable logic within primarily fixed-logic
circuitry. This technique provides the flexibility necessary for
the adaptations required of wireless sensor networks without
the penalties associated with processors and FPGAs. This
paper makes the case for small-scale reconfigurability by
investigating several different types of adaptation in wireless
sensor network applications that allow applications to deal
with unpredictable network topologies and tradeoff between
network longevity and fidelity, security and latency.

I. INTRODUCTION
In typical wireless sensor network applications, a large

number of sensor and actuator devices (nodes) are scattered by
an aircraft across a target area. A high power base station is
then used by an operator to control the behavior of and receive
data from the nodes via a wireless network. Such applications
pose a number of design challenges for sensor networks:
• Nodes are commonly deployed from an aircraft in a rapid,

ad hoc manner, preventing designers from making
assumptions about where particular nodes will be located,
what the network topology will be, and the role of each
node in the topology.

• Application requirements and environmental conditions
often change during network operation.

• Nodes often fail during network operation, due to depleted
energy, destruction, or movement out of transmission
range.

• Given that the nodes are wireless and ideally quite small,
they have very limited energy, most of which is consumed
by data transmission.

• The large number of nodes in sensor networks, their
limited lifetime, and their inherent disposability require a
low per unit cost.
In this paper, we explore how these challenges can be

addressed through dynamic network adaptability and
mechanisms for achieving certain types of adaptation at both
the application and node levels. Section II describes the
lifetime of a wireless sensor network and considers how
requirements differ throughout that lifetime. Section III
considers how adaptability can be used to deal with
unpredictable network topologies, adjust for changing
application requirements, recover from node failures, and
improve energy management. In Section IV, we consider
approaches to node design that provide the necessary
flexibility for adaptability with low unit cost and minimum
energy consumption. This requires the integration of hardware
design techniques that provide high efficiency (in terms of
cost, energy, and performance) but minimal flexibility with
techniques providing the flexibility required for node
adaptation but limited efficiency.

II. WIRELESS SENSOR NETWORK LIFETIME
Before we discuss the types of adaptations that can be

performed in wireless sensor networks, we first explore the
various stages at which adaptations and design for adaptability
can be performed. We can divide the lifetime of a sensor
network into several stages, during which application
requirements and environmental conditions may change or
become fixed. At different stages, designers will have the
option to give up flexibility to reduce cost and improve
performance. Although the network lifetime is more
accurately continuous, we can loosely identify the following
distinct phases:
Device Design Time. A single node design may be used for
many different network applications. The communications and
data processing aspects of a node are likely to be similar even
if the particular application changes. By designing a single
node that can be used for many applications, the overall design
and manufacturing costs will be reduced through amortization
and economies of scale. At this stage, designers must predict
the range of applications and attempt to design a single device
that serves all of those applications adequately. To reduce
costs and power and improve performance, flexibility can be
sacrificed, but that will limit the possible applications.
Companies including Crossbow Technology and Dust, Inc. are
beginning to sell generic devices for wireless sensor networks.
Application Design Time. After the particular desired
application for a network is established, much of the device
flexibility is no longer required, as the application constrains

the expected data processing and communication
requirements. For example, an application might be tracking
moving objects in a region [1] or monitoring the temperature
and humidity of a habitat [2]. The tracking application
emphasizes low latency; the habitat monitoring prioritizes
longevity. For certain applications where the scale is huge or
the performance requirements are severe, it may be cost-
effective to design a network node specifically for the
application. For most applications, though, this would be too
expensive. Instead, the application will be designed around
available generic devices that can be cheaply configured to
particular design parameters.
Scenario Design Time. The scenario of a wireless sensor
network application determines the number of devices and the
environment in which the devices will be operating. An
example scenario might be tracking vehicles in a particular
parking lot or monitoring the habitat in a certain bird
migration zone. A given scenario constrains the likely
communication and data processing requirements even more
than an application does and may establish particular latency,
security, fidelity and longevity requirements.
Deployment. For many applications, the actual and relative
locations of devices will not be determined until the network
is deployed. Based on those locations, devices may change
their behavior. For example, devices in high-density regions
may enter sleep mode and wait for their neighbors to lose
power. Other devices may adapt to act as message forwarding
nodes instead of (or as well as) processing or sensing nodes.
Operation. Once the network has been deployed and is
operating, the behavior of individual devices may need to
adapt to either changing requirements or conditions. A
weather monitoring network operator may decide high-fidelity
temperature readings are more important than humidity
readings and send control messages into the network to use
communication and data processing energy accordingly.
Network devices may sense a possible intruder and change
communication modes to use a higher level of encryption.
Nodes may exhaust their energy or may otherwise malfunction
requiring topology adaptation.

A designer of a sensor network application must consider
what degree of adaptability is necessary at various stages in
the application’s lifetime. The more flexibility that is
available, the more freedom there will be to adapt the behavior
and properties of the nodes and network. That freedom is not
without cost, however. Designs that provide unused flexibility
waste resources, primarily energy and cost. These issues are
explored in the following two sections.

III. THE CASE FOR ADAPTATION
In many sensor network applications, the requirements are

not known precisely enough at deployment time to make
tradeoffs required for maximum network utility. Even during
operation, requirements will change in response to varying
conditions. The challenge, then, lies in designing sensor
network applications that can dynamically adapt to changing
requirements by selecting different points in the design space
for trading off resource consumption for fidelity, security and

latency. This is inconsistent with the traditional view of
algorithms in computer science that focuses on their functional
properties (inputs and outputs) and characterizes their
performance based on the time or space the algorithm requires
for a given input size. For wireless sensor networks, it is
important that we have algorithms whose behavior can be
characterized in more precise ways and be parameterized in
ways that change the properties of the algorithm. Since sensor
networks are deployed by scattering devices over an area, it is
important that nodes are able to adapt their behavior to their
topological role in the network. As nodes fail or move, they
will have to alter their behavior accordingly. Since nodes in a
wireless sensor network are untethered and typically must run
on small batteries, a primary factor in determining the utility
of a network is how well it manages energy consumption. As
nodes fail due to energy depletion, a network can quickly
become useless. Therefore, it is often desirable to adapt energy
consumption in ways that increase network longevity by
sacrificing other application properties.

Next, we describe examples showing the importance of
adapting to network topology, and illustrate how applications
can reduce energy consumption (and increase application
longevity) dynamically by adapting fidelity, security and
latency parameters according to changing application
requirements.

A. Network Topology
The topology of a sensor network is normally unknown

until deployment. For example, sensor nodes may be dropped
out of an airplane over a large area. Designers of sensor
network applications cannot assume they know where
particular nodes will land, and often manufacturing and
deployment costs will require that all of the devices are
initially identical.

Once the network is deployed, however, the location of the
nodes is known (and in some cases, the devices will not move
again once they are deployed). Based on happenstance, some
nodes will land close to the base station and others will land
further away; some geographical areas will have a high
density of nodes, and others may have no nodes at all; some
nodes will have many neighbors within communication range,
others may have only a few.

In order for information from the far away nodes to reach
the base station, the nodes need to form a multi-hop routing
tree through connecting nodes to the base station. A simple
way to form a routing tree is for the base station to transmit a
short-range message identifying itself. All nodes that receive
that message are level 1 nodes: their parent is the base station
itself. In the next step, each level 1 node transmits a message
that identifies itself as a level 1 node. Upon hearing this
message, a node that is not already a level 1 node, will become
a level 2 node and select the sending level 1 node as its parent.
(To balance the routing tree, if a node that is already a level 2
node receives an announcement message from a level 1 node
that is not its parent, the level 2 node will arbitrarily select one
of the parents based on randomly assigned node identifiers.)
This process continues until every node reachable from the
base station has a parent node. To avoid transmission

collisions, time segments are divided according to level and
node identities.

Figures 1a and 1b show two examples of routing trees that
form following this protocol starting from 100 randomly
scattered nodes. To extend the useful lifetime of a sensor
network, nodes must adapt to their role in the routing tree,
which cannot be predicted before deployment or even just
based on location. A node with many children will not survive
long if it forwards all of its children’s messages instantly and
completely. A node with many neighbors may be able to
coordinate with those neighbors to avoid redundant messaging
and take turns running in sleep mode to save energy. Some of
these behavior changes are application-specific and may need
to be carefully designed for a particular network application.

Figures 1a and 1b: Initial routing trees formed from random
deployments of 100 nodes.

A simple strategy for increasing the longevity of a network
is to have the network routing adapt as nodes fail. When a
node’s parent fails, the child node sends out an orphaned
message to find a new parent node to continue sending data
towards the base station. Any functioning node that hears the
orphaned message responds with its level, and the orphaned
node selects the most suitable parent. Figures 2 and 3 illustrate
the impact of parent adaptation on network utility. Note that in
Figure 2 many live nodes are unable to communicate with the
base station, whereas with parent adaptation as shown in
Figure 3 even though several aggregation point nodes have
died, their children have found alternate parent nodes to

maintain a path to the base station. Some live nodes are
temporarily disconnected, but will soon find new parents in
response to orphaned messages.

Our simulations illustrate that adaptive routing techniques
can maintain network connectivity even as nodes fail. To
further improve network longevity, other adaptations may
trade off application properties to conserve energy.

Figure 2: Network from Figure 1a after transmitting 300 requests
without adaptation. Nodes that have failed due to energy exhaustion
are shown as circles.

Figure 3: Network from Figure 1a after transmitting 300 requests
with orphaned child routing adaptation.

B. Fidelity
For a simple example of the need for dynamic adaptation

for energy management, consider a network that monitors an
environment with cameras. Each node in the network takes
pictures of its surrounding area, compresses each image using
JPEG compression, and transmits the data to its parent in the
network. While each leaf node only transmits its own images,
a parent node must also transmit the images of all of its
descendents. A high-level node with many children,
grandchildren and great-grandchildren is responsible for
transmitting a large amount of data. The nodes closest to the
base station (and highest in the routing tree), will have the
most data to transmit and will quickly exhaust their available
energy. After the highest-level nodes have been depleted,
useful information can no longer reach the base station.

The JPEG compression algorithm can be parameterized to
control the block size and tradeoff image quality for execution
time and (more importantly) the size of the output data and the
amount of energy required to transmit it. At the network
topology level, the routing tree could be transformed to reduce
the data forwarding pressure on nodes with a large number of
descendents. Parents could use image processing techniques to
aggregate images from their children into a single image, or
they could use filtering to selectively forward only interesting
images. At the node level, the image compression can be
parameterized for different image qualities and compression
ratios to trade off energy consumption and image fidelity.
Nodes can remain in a low power mode (highest compression,
lowest image quality) until the base station commands a group
of nodes to switch to a higher resolution.

Figure 4 shows how adapting JPEG block size affects the
useful lifetime of such a network. JPEG 1 provides the highest
compression and lowest image quality; JPEG 8 provides the
least compression and best image quality. The network starts
with 400 nodes that are all able to transmit their images to the
base station through the routing tree. As nodes run out of
energy, they are no longer able to transmit their own or their
descendents’ images. When a parent’s energy is depleted, the
routing tree automatically adapts to have its children find
different parents to whom to send their images, but a live
parent node is not always reachable. Given that data
transmission dominates this application’s energy consumption,
the smaller transmissions required for JPEG 1 images allow
the network to keep a larger number of nodes over time. Using
JPEG 1, the base station receives at least 100 images for each
of the first 1400 requests, but by the 300th request using JPEG
8, fewer than 100 images are received. An adaptable network
could switch between JPEG 1 and JPEG 8 based on available
energy or commands from the base station.

Figure 4: Network fidelity for different image compression ratios.
The vertical axis shows the number of nodes whose image reaches
the base station in response to each request. Initially, there are 400
nodes, scattered randomly throughout an area. Results are the average
of 12 simulated executions. Our simulations are built using
extensions to GloMoSim [3] to simulate a wireless sensor network.
Normalizing the compressed transmitted image size at 1 for JPEG 1,
JPEG 2 and JPEG 8 were of size 2.34 and 4.68, respectively [4].

As this example shows, we can sacrifice application
fidelity to enable a network to provide meaningful readings for
a longer time period. In other situations, it may be more
important to provide high assurance that readings are correct
over a short period of time.

C. Security
Most modern symmetric ciphers (including AES) can be

parameterized to control the number of encryption rounds.
Increasing the number of rounds strengthens the security of
the cipher, but requires more computation (and hence, more
time and energy). Figure 5 shows the effect of adjusting the
number of encryption rounds on the longevity of a wireless
sensor network application. Each transmission must be
encrypted, but the number of rounds is made variable to
tradeoff security and processing energy, just as various JPEG
compression ratios may be used for different power modes.
An adaptive application could use different encryption
strengths (with their own keys) to adapt the costs associated
with encryption to the security requirements of the transmitted
data.

Figure 5: Effect of encryption strength on sensor network longevity.

Cryp64-n represents encryption with
12 +n

 rounds (e.g., Cryp64-4 is
32 rounds). The vertical axis again shows the number of nodes whose
data reaches the base station through the routing network after a
certain number of requests.

D. Aggregation
To reduce the energy consumed forwarding messages,

sensor networks can perform calculations inside the network
to determine aggregate results and forward those instead.
Aggregation collects results from several nodes and calculates
a smaller message that summarizes the important information
from a group of nodes. For example, suppose the operator is
interested in the average of some value in the network. An
inefficient way to find this would be for every node to send its
reading to the base station (often over multiple forwarding
hops), and for the base station to calculate the average of all
readings received. A more efficient way to collect the same
information would be for intermediate nodes to forward the
calculated average value of the readings they receive along
with a count of the number of readings it incorporates. Several

recent research efforts have explored different aggregation
protocols for sensor networks assuming a trusted environment
including directed diffusion [5], LEACH [6], greedy
aggregation [7], Cougar [8] and TAG, an in-network
aggregation service for TinyOS motes that supports an SQL-
like language for expressing aggregation queries over
streaming sensor data [9].

In general, aggregation protocols allow wireless sensor
network applications to reduce energy consumption in
exchange for increased latency and possibly lower fidelity. To
aggregate responses, inner nodes must wait until several
readings have been received before they are able to calculate
an aggregate result and forward it to the next node. In some
cases, the aggregation function may lose information (for
example, sending averages instead of forwarding all readings
means the base station does not receive enough information to
construct a histogram).

Aggregation also makes authentication more difficult.
Aggregating nodes must be able to combine multiple results
into a single value, but a single compromised node should not
be able to disrupt readings from an entire subtree. We have
developed a technique (illustrated in Figure 6) that delays
aggregation one hop to provide some of the energy-saving
benefits of aggregation without sacrificing the ability for the
base station to authenticate readings [10]. Keys are revealed
after each time step is completed (and then invalidated so they
may not be reused), so intermediate nodes can verify message
authentication codes used during the previous step. As shown,
a conspiracy of two consecutive nodes is required to forge
readings of other nodes. Delaying the aggregation additional
hops increases the communication costs but makes the
protocol resilient to additional classes of attacks.

IDA | RA | MAC (KAi, RA)
| IDB | RB | MAC (KBi, RB)

| MAC (KEi, Aggr (RA, RB))

IDB | RB | MAC (KBi, RB)

IDC | RC | MAC (KCi, RC)
| IDD | RD | MAC (KDi, RD)

| MAC (KFi, Aggr (RC, RD))

IDA | RA | MAC (KAi, RA)

A
B

C

D

E F

G

IDE | Aggr (RA, RB) | MAC (KEi, Aggr (RA, RB)
| IDF | Aggr (RC, RD) | MAC (KFi, Aggr (RC, RD)

| MAC (KGi, Aggr (RA, RB, RC, RD))

RA is the sensor
measurement for node A.
KAi is the ith key in a
µTesla key chain

Figure 6: Data aggregation with authentication. Each leaf node
forwards its data reading and a message authentication code (MAC)
to its parent. Parents retransmit readings and MACs, along with a
calculated aggregate value and MAC to grandparents. Grandparents
can verify the aggregate value and need not retransmit the individual
data readings and MACs.

Figure 7 illustrates the impact of authenticated data
aggregation of network longevity. In this case, no time
aggregation is used, so latency is not sacrificed. Aggregation
functions may be specific to particular sensor network
applications, but data aggregation can be generalized to many
applications. A combination of the above techniques can be

used to realize aggregation methods that tradeoff latency,
security and fidelity for energy consumption.

Figure 7: Effect of aggregation on network longevity.

IV. DESIGNING ADAPTABLE NODES
Most wireless sensor networks are composed of nodes

implemented with embedded processors that execute software-
based instructions. For example, the MICA wireless sensor
motes developed at UC Berkeley and marketed by Crossbow
Technology each contain an Atmega 128L processor, which is
a low-power microcontroller, running the TinyOS operating
system [11]. These and other processor-based nodes are
capable of functional adaptation simply by loading and
executing various software programs. However, this virtually
unlimited flexibility comes at a price, as software algorithms
executed on processors typically consume more energy, are
more expensive per unit for large volumes, and have lower
performance than application-specific integrated circuit
(ASIC) implementations of those algorithms. Given the
limited energy, cost bounds and real-time requirements of
many sensor nodes, ASIC-based nodes would provide
significant benefits. However, fixed-logic ASICs do not have
the flexibility to reap the benefits provided by dynamic
adaptability illustrated in the previous section. Because of this
efficiency/flexibility tradeoff inherent in node design, a wide
range of implementation options are worth consideration.

A. Processing Hardware
The two efficiency extremes in implementing a single

algorithm are direct hardware implementation using a fixed-
logic ASIC and software instructions executed on a general-
purpose processor (GPP). The custom nature of an ASIC
makes it extremely efficient (in terms of energy, area, and
performance) for executing a single algorithm, as it does not
have any flexibility. GPPs allow for maximum flexibility and
are therefore relatively inefficient per task. Since flexibility is
expensive, finding the implementation that just satisfies the
flexibility needs of an application will ensure highest
efficiency. Considering that the adaptations a wireless sensor
node must perform are limited, the excessive flexibility
provided by the embedded processor in the MICA motes
translates into reduced efficiency.

Modern hardware implementations include a number of
design options between GPPs and ASICs, and the proper
implementation technique must be chosen for providing the
necessary adaptability with maximal efficiency. Given what
information is known at different points in a node’s lifetime, a
hybrid device composed of several of these implementation
types likely yields maximum efficiency. The following are
distinct implementations of processing hardware, from the
flexibility of GPPs to the efficiency of ASICs:
General-Purpose Processor (GPP). A processor that is
designed for general use, such as those used in desktop
computers. A GPP can perform any computable function
(except as limited by available energy, memory and time) and
provides a general instruction set that is not targeted to any
particular application. The processor hardware is fixed, but the
instruction memory can be loaded and re-loaded with various
programs. GPPs can be high performance but require large
chip area and are extremely power hungry.
Application-Specific Processor (ASP). A processor that is
designed for a specific application. ASPs still execute software
instructions, but the instruction set is designed for the
execution of certain types of programs. They still are typically
universal computers, but their performance on applications
outside of their domain is reduced. Their efficiency
performing the target applications is much higher than that for
GPPs, but they still suffer the penalties inherent to software-
based execution.
Digital Signal Processor (DSP). A type of ASP whose
instruction set architecture and datapath are designed to handle
the computationally intensive nature of digital signal
processing. While the instructions can be changed to
manipulate data in various ways, the strict instruction set and
datapath cannot be easily used for non-DSP applications.
DSPs have increased efficiency for related applications, but
remain bounded by their execution of software instructions.
SRAM-Based Field Programmable Gate Array (FPGA). A
structured array of reconfigurable logic and interconnect.
Logic functions are implemented using SRAM-based lookup
tables, and programmable interconnections are made through
SRAM-gated pass transistors. FPGAs can be reconfigured a
large number of times, including in the field, and can
implement a wide range of algorithms in hardware. However,
their general-purpose nature results in less dense logic, longer
delays, and higher energy consumption than the following
implementations.
Antifuse-Based FPGA. Similar to the SRAM-based FPGA,
except these devices can only be programmed one time.
Interconnections and logic functions are configured onto the
device by blowing the appropriate set of fuses. While a non-
programmed device can be configured to implement a wide
range of algorithms, this flexibility is lost after it is
configured. The anti-fuse nature of these devices make them
much more efficient (in terms of energy, cost and
performance) than SRAM-based FPGAs.
Application-Specific Integrated Circuit (ASIC). Fixed-logic
hardware implementations of algorithms. They are designed to

perform only a single task, but they perform it with the highest
efficiency when well designed.

The coarse granularity of this set of distinct design options
does not offer suitable choices for the efficiency/flexibility
tradeoff that is central to wireless sensor node design. We
therefore explore a new heterogeneous design technique that
maximizes the amount of fixed-logic in a node (and therefore
the efficiency) while providing enough flexibility for node and
network adaptation. As opposed to the general-purpose
reconfigurable fabric of FPGAs, heterogeneous small-scale
reconfigurability (SSR) finely integrates small amounts of
application-specific reconfigurable logic and interconnect with
fixed-logic, providing only the flexibility that is required for
the nodes to enable the necessary adaptations. As a result, SSR
provides the necessary flexibility while achieving efficiency
approaching that of ASICs. Hybrid FPGAs containing ASIC
cores surrounded by general-purpose reconfigurable fabric
arose from the same principle, but SSR provides more
application-specific and fine-grained integration between fixed
and reconfigurable logic for even greater efficiency.

The preservation of flexibility must be considered for the
adaptations at different points in a node’s lifetime, as
discussed in Section II. Increasingly more information is
known about a node and its role in a network at each
successive stage in its lifetime. At the node’s device design
time, little may be known about its future network,
application, or deployment. As a result, much of the node must
be flexible. However, characteristics that are common to any
wireless node can and should be implemented in fixed-logic.
Once the network application and scenario are known, a
significant portion of the previously flexible node can be
permanently configured. Therefore, antifuse-based logic can
be used in the node design and permanently configured once
this additional pre-deployment information is known. As a
result, this portion of the node can be made more efficient than
would be possible with an SRAM-based reconfigurable logic
implementation and significantly more efficient than software
executed on a GPP.

Once the nodes are deployed, even more information is
known. Based on whether or not this information will remain
constant throughout the network’s lifetime, the associated
logic may also be permanently configured, thereby enabling
again the use of antifuse-based logic. However, SRAM-based
reconfigurable logic is required for portions of the node that
may require multiple adaptations. Therefore, SRAM-based
logic is required for operation adaptations, such as the
different power modes in the JPEG compression example
above, as further adaptations may always be required.

Understanding the various parts of a node’s design that
require adaptation at different points in its lifetime is the key
to maximally efficient implementation. As much should be
implemented with fixed-logic as possible; that which can be
permanently configured once more information is available
should be implemented using antifuse-based logic; portions of
the node requiring multiple dynamic adaptations should be
SRAM-based; and maximum programmability can be

provided when necessary by limited support for executing
software instructions.

B. Cost of Excessive Flexibility
Wireless sensor network application utility is primarily a

function of battery life, making the efficient use of energy the
primary consideration in node implementation, followed by
performance for real-time considerations and area for sensor
network applications,.

Figure 8 shows the utility of the image collection network
described above with various node implementations.
Specifically considered is the implementation of the JPEG
compression algorithm. Efficiency is necessary for energy,
area, and performance, but flexibility is required for dynamic
parameter adaptation. Although this particular application is
dominated by transmission energy consumption, it is clear the
energy required for the JPEG compression processing has an
effect on the network fidelity, as the less energy-efficient node
implementations (GPP and FPGA) result in reduced fidelity.
The SSR implementation shown is based on a reconfigurable
architecture for adaptive wireless image communication [4].
Of course, the ASIC provides the longest utility, but it is not
capable of switching JPEG parameters for fidelity adaptation.

Figure 8: Impact of excessive flexibility on image collection network
lifetime. As in Figure 4, the vertical axis is the number of nodes
whose image reaches the base station after a request. The processing
energy consumption of SSR nodes is normalized to 1, and the ASIC,
FPGA, and GPP node processing energy consumptions are 0.01, 2,
and 6, respectively [4]. Each node maintains a constant compression
ratio and performs image aggregation at a ratio of n , where n is the
number of images at each node.

The advantages of more efficient node implementations
are even clearer for applications that require a significant
amount of processing at each node and smaller transmission
sizes than JPEG images, as shown for the data encryption
application in Figure 9. The high energy consumption of
nodes implemented with GPPs results in the network
collapsing after only 200 requests. As expected, FGPA-based
nodes perform slightly better, and the small-scale
reconfigurable implementation introduced here maintains
network function even longer. While ASIC-based nodes
would consume even less energy, they would not have the
necessary flexibility. In both network examples, small-scale
reconfigurability provides the highest efficiency (and resulting

fidelity) while still being capable of enabling the necessary
parameter adaptations.

Figure 9: Impact of excessive flexibility on data encryption network
lifetime with same energy consumptions assumptions as in Figure 8.

V. CONCLUSION
We have shown that for wireless sensor networks to

maintain efficiency and utility, they must have dynamic
adaptation abilities to deal with unpredictable and changing
application requirements and to efficiently manage limited
resources. In particular, the energy-limited nature of distri-
buted nodes often requires the network to dynamically
tradeoff fidelity, security or latency for network longevity.
Changing algorithm parameters such as JPEG compression
ratios or the number of encryption rounds, and using adaptive
aggregation are necessary for the network’s longevity while
still providing its desired functionality. In addition, the
information known about a network’s application, scenario
and deployment is limited at node design time, requiring a
network to adapt to its configuration post-deployment. During
operation, node failures and mobility often require dynamic
topology adaptation to maintain network efficiency and utility.

The flexibility required for dynamic adaptation does not
come without a cost. The software-based processing hardware
commonly used for adaptation is significantly less energy
efficient, is more expensive in large quantities, and has lower
performance than inflexible ASICs. We described a
heterogeneous small-scale reconfigurability design technique
that provides flexibility with ASIC-like efficiency by finely
integrating fixed and reconfigurable logic. Simulations
revealed that nodes implemented using this technique achieve
significant energy savings and a corresponding increase in
network longevity.

ACKNOWLEDGMENTS
This work is supported in part by the National Science

Foundation under CCR-0105626, NSF CAREER (CCR-
0092945) and NSF ITR (EIA-0205327) grants.

REFERENCES
[1] T. He, J. Stankovic, C. Lu, T. Abdelzaher, “SPEED: A

stateless protocol for real-time communication in sensor

networks,” International Conference on Distributed
Computing Systems, May 2003.

[2] A. Mainwaring, J. Polastre, R. Szewczyk, D. Culler, J.
Anderson, “Wireless sensor networks for habitat
monitoring,” ACM International Workshop on Wireless
Sensor Networks and Applications, September 2002.

[3] X. Zeng, R. Bagrodia, M. Gerla, “GloMoSim: A library
for parallel simulation of large-scale wireless networks,”
Proceedings of the 12th Workshop on Parallel and
Distributed Simulations, May 1998.

[4] D. Panigrahi, C.N. Taylor, S. Dey, “A hardware/software
reconfigurable architecture for adaptive wireless image
communication,” International Conference on VLSI
Design, 2002.

[5] C. Intanagonwiwat, R. Govindan, D. Estrin, “Directed
diffusion: A scalable and robust communication paradigm
for sensor networks,” Mobile Computing and Networking,
August 2000.

[6] W.R. Heinzelman, A. Chandrakasan, H. Balakrishnan,
“Energy-efficient communication protocol for wireless

microsensor networks,” Hawaii International Conference
on System Sciences, January 2000.

[7] C. Intanagonwiwat, D. Estrin, R. Govindan, J.
Heidemann, “Impact of network density on data
aggregation in wireless sensor networks,” International
Conference on Distributed Computing Systems, November
2001.

[8] Y. Yao, J. E. Gehrke, “The Cougar approach to in-
network query processing in sensor networks,” Sigmod
Record, Vol. 31, No. 3, September 2002.

[9] S.R. Madden, M. Franklin, J. Hellerstein, W. Hong,
“TAG: A Tiny AGgregation Service for Ad-Hoc Sensor
Networks,” Annual Symposium on Operating Systems
Design and Implementation, December 2002.

[10] L. Hu, D. Evans, “Secure aggregation for wireless
networks,” Workshop on Security and Assurance in Ad
Hoc Networks, January 2003.

[11] S. Coleri, M. Ergen, T.J. Koo, “Applications and OS:
Lifetime analysis of a sensor network with hybrid
automata modeling,” International Workshop on Wireless
Sensor Networks and Applications, 2002.

