
In 23rd USENIX Security Symposium, San Diego, 20–22 August 2014

SSOScan: Automated Testing of Web Applications for
Single Sign-On Vulnerabilities

Yuchen Zhou David Evans
University of Virginia

[yuchen, evans]@virginia.edu
http://SSOScan.org

Abstract
Correctly integrating third-party services into web ap-
plications is challenging, and mistakes can have grave
consequences when third-party services are used for
security-critical tasks such as authentication and autho-
rization. Developers often misunderstand integration re-
quirements and make critical mistakes when integrating
services such as single sign-on APIs. Since traditional
programming techniques are hard to apply to programs
running inside black-box web servers, we propose to de-
tect vulnerabilities by probing behaviors of the system.
This paper describes the design and implementation of
SSOScan, an automatic vulnerability checker for appli-
cations using Facebook Single Sign-On (SSO) APIs. We
used SSOScan to study the twenty thousand top-ranked
websites for five SSO vulnerabilities. Of the 1660 sites
in our study that employ Facebook SSO, over 20% were
found to suffer from at least one serious vulnerability.

1 Introduction

Single Sign-On (SSO) services are increasingly used to
implement authentication for modern applications. SSO-
enabled applications allow users to log into an applica-
tion using an established account (with a service such as
Facebook or Twitter) and connect their account on the
new site to an established Internet identity. Should the
application need more information from the user, it may
ask the user for extra permissions from the established
service. Once granted, the requested information is re-
turned to the application, which can then be used in the
transparent account registration process.

Although these services provide SDKs intended to en-
able developers without security expertise to integrate
their services, actually integrating security-critical third-
party services correctly can be difficult. Wang et al. iden-
tified several ways applications integrating SSO SDKs
can be vulnerable to serious attacks even when develop-
ers closely follow the documentation [27].

To better understand and mitigate these risks, we de-
veloped SSOScan, an automated vulnerability checker
for applications using SSO. SSOScan takes a website
URL as input, determines if that site uses Facebook SSO,
and automatically signs into the site using Facebook test
accounts and completes the registration process when
necessary. Then, SSOScan simulates several attacks on
the site while observing the responses and monitoring
network traffic to automatically determine if the appli-
cation is vulnerable to any of the tested vulnerabilities.
We focus only on Facebook SSO in this work, but our
approach could be used to check SSO integrations using
other identity providers or other protocols. Many of our
techniques could also be adapted to scan for vulnerabili-
ties in integrating other security-critical services such as
online payments and file sharing APIs.

1.1 Contributions

Our work makes two types of contributions: those related
to the construction of our scanning tool which are largely
independent of the particular vulnerabilities, and those
resulting from our large-scale study of Facebook SSO
implementations.

SSOScan. We explain the design and implementation of
SSOScan (Section 3), as well as how to handle some of
the challenges in the automation process. We describe
techniques that automatically perform user interactions
to walk through the SSO process (Section 3.1), includ-
ing clicking the correct buttons and filling in registration
forms. We collected information of almost 30,000 click
attempts for sites that implement Facebook SSO which
shows in detail how the individual heuristics are affecting
SSOScan’s behavior (Section 5.2). This provides exper-
imental evidence to support our design choices and shed
light on future research that shares a similar goal. SSO-
Scan can detect whether a target application contains any
of the five vulnerabilities listed in Section 2.2 with an

average testing time of 3.5 minutes, and is able to check
792 (81%) of the 973 websites that implement functional
Facebook SSO from the top 10,000 with no human inter-
vention at all.

Large-scale study. We ran SSOScan on the top 20,000
US websites (Section 4). Key results from the study in-
clude finding at least one vulnerability in 345 of the 1660
sites that use Facebook SSO (Section 4.1). We also learn
how vulnerability rates vary due to different ways of in-
tegrating Facebook SSO (Section 4.1.1). We manually
analyzed the 228 sites ranked in the top 10,000 that SSO-
Scan cannot test automatically and report on the reasons
for failures (Section 4.2). Our study reveals the complex-
ity of automatically interacting with web sites that follow
a myriad of designs, while suggesting techniques that
could improve future automated testing tools. In Sec-
tion 6, we discuss our experiences reporting the vulnera-
bilities to site owners and possible ways SSOScan could
be deployed.

2 Background

This section provides a brief introduction to single sign-
on systems, describes the vulnerabilities we checked, and
summarizes relevant previous work.

2.1 Single Sign-On

A typical single sign-on process involves three parties.
Alice first visits a web application and elects to use SSO
to login. She is then redirected to the identity provider’s
SSO entry point (e.g., Facebook’s server). After she logs
into Facebook, her OAuth credentials are issued to the
application server. The application server confirms the
identity and authenticates the client.

OAuth uses three different types of (rather confu-
singly-named) credentials:

Access token. An access token represents permissions
granted by the user. For example, the application may
request that user grant permission to access the birth-
day and friend lists from her Facebook account. Upon
the user’s consent, a token will be issued and forwarded
to the application which may then use it to obtain the
granted information from Facebook. An access token
eventually expires, but may be valid for a long time.

Code. A code is used to exchange for an access token
through the identity provider. This exchange requires the
application’s unique app secret to proceed. If the secret
does not match, Facebook will not issue the token. This
means a code is bound to a user as well as a target appli-
cation. With Facebook SSO, the code expires after being

used in the first exchange.

Signed request. A signed request is a base64 encoded
string that contains a user identity, a code, and a signa-
ture that can be verified using an application’s app secret
and some other metainformation. Once issued, it is not
tied to Facebook (except for the enveloped code), and the
signature can be verified locally.

2.2 Vulnerabilities

Our interest in building an automatic scanning tool was
initially motivated by the access token misuse vulnera-
bility reported by Wang et al. [27]. We further identified
four new vulnerabilities that are both serious and suitable
for automatic testing. The first two vulnerabilities con-
cern confusions about how authentication and authoriza-
tion are done; the other three concern failures to protect
important secrets.

Access token misuse. This vulnerability stems from
confusion about authentication and authorization. In
OAuth 2.0, an access token is intended for authoriza-
tion purposes only because it is not tied to any specific
application. When a service uses an access token to au-
thenticate users, it will also accept ones granted to any
other application. Figure 1 illustrates an impersonation
attack that exploits this vulnerability: Alice visits Mal-
lory’s website (step 1), logs in using Facebook SSO (2),
and receives an access token from Facebook (3). Then,
Mallory’s client-side code running in Alice’s browser
forwards the access token to Mallory (4), which presents
the token to a vulnerable application’s server (5). After
confirming the token represents Alice, Foo’s application
server authenticates Mallory as Alice (6).

1. Visit

3. Issue credentials

4. Forward
credentials

5. Reuse credentials

6. Authenticated

Facebook User

Mallory
Foo app server

2. Login

Figure 1: OAuth credential misuse

Signed request misuse. Sometimes developers have
chosen the correct OAuth credentials to use, but still end
up with a vulnerable implementation. One way this hap-
pens is when information decoded from a signed request
is used but the signature is never checked using the
app secret. The attack to exploit this vulnerability is

2

similar to the previous one, except that Mallory needs
to reuse the signed request in addition to access token.

App secret leak. When a developer registers an appli-
cation with Facebook, she receives an app secret. It
is essential for the application owner to keep it a se-
cret because the app secret is used as the key to cre-
ate signed requests and to access many other privileged
functionalities. However, careless developers may reveal
this secret to clients, especially when using code flow to
authenticate users. By design, the code and app secret
must be sent from the application’s back end server to
Facebook in exchange for an access token. When this
exchange is carried out through the client instead of the
server, app secret is exposed to any malicious client.

User OAuth credentials leak. The last two vulnerabili-
ties both leak a user’s OAuth credentials. When the Face-
book OAuth landing page contains third-party content,
requests to retrieve those contents will automatically in-
clude OAuth credentials in the referer header, which
leaks them to the third-party. To thwart this leakage,
Facebook offers a layer of protection by only allowing
access token and signed request to appear in the URL
fragments, which are not visible in the referer header.
Therefore only code can be leaked via referer unless the
application intentionally pulls the credentials and puts it
in the URL1. In addition, credentials can be exfiltrated
by third-party scripts if they are present in the page con-
tent. If a malicious party is able to obtain these creden-
tials, it could carry out impersonation attacks or perform
malicious actions using permissions the user granted the
original application, such as posting on the user’s time-
line or accessing sensitive information. Note the differ-
ence between embedding OAuth credentials in the URL
and in the body content is that the former will directly
leak them to third parties, while the latter only leaks the
credential when the embedded third party code accesses
it explicitly.

2.3 Related Work

Our work builds on extensive previous work on automat-
ically testing applications for vulnerabilities. We briefly
describe relevant approaches next, as well as previous
works that analyze vulnerabilities in SSO services.

Program analysis. Program analysis techniques such as
static analysis [3] and dynamic analysis including sym-
bolic execution [7, 17] automatically identify vulnera-
bilities with fast testing speed and good code coverage.
Runtime instrumentation techniques such as taint track-
ing [11] and inference [18] also help to safeguard sensi-

1Surpsingly, we found several sites doing this (e.g., dealchicken.com
and bloglovin.com).

tive source-sink pairs. However, these techniques require
white-box access to the application (at least at the level of
its binary), which is not available for remote web appli-
cation testing. Automated web application testing tools
that work on the server implementation [1, 8, 16] do not
apply to large-scale vulnerability testing well. They ei-
ther require access to application source code or other
specific details such as UML or application states. For
our purposes, the test target (application server imple-
mentation) is only available as a black box.

Automated security testing. Penetration testing is
widely used to check applications for vulnerabilities [15,
28]. The tester analyzes the system and performs sim-
ulated attacks on it, often requiring substantial manual
effort. More automated testing requires an oracle to de-
termine whether or not a test failed. Sprenkle et al.
developed a difference metric by comparing two web-
pages based on DOM structure and n-grams [21] and im-
proved results using machine learning techniques [22].
SSOScan also requires an oracle (Section 3.2) to deter-
mine session identity. For our purposes, a targeted oracle
works better than their generic approach.

Automated GUI testing. SSOScan is also closely re-
lated to automated GUI testing. The GUI element trig-
gering approach we take shares some similarities with re-
cent works to simulate random user interactions on GUI
element to explore application execution space on An-
droid system [14], native Windows applications [29], and
web applications [5, 10]. Their common goal is to ex-
plore app execution space efficiently to discover buggy,
abnormal or malicious behavior. By contrast, our goal is
to drive the application through a particular SSO process
rather than explore its execution space. Further, we need
the tests to proceed fast enough for large-scale evalua-
tion. Since each simulated user interaction with the web
application involves round-trip traffic and a non-trivial
delay to get the response, our primary focus is to develop
useful heuristics to quickly prune search space before
triggering any user interactions.

SmartDroid [32] and AppIntent [31] both aim to re-
cover sequences of UI events required to reach a par-
ticular program state or follow an execution path ob-
tained from static analysis. These approaches target An-
droid applications and rely on client-side information
that is not available for our web application scanning
tool, where the necessary state only exists on the (inac-
cessible) server side.

Human cooperative testing. Off-the-shelf testing tools
like Selenium [19] and TestingBot [24] can be used to
discover bugs in web applications under developers’ as-
sistance. These tools replay user interactions based on
testing scripts that are manually created by the applica-

3

tion developer. BugBuster [6] offers some automatic web
application exploration capabilities, but still does not un-
derstand the application context enough to perform any
non-trivial actions such as those involving authentication
and business logic.

To reduce developer effort, Pirolli et al. [13], Elbaum
et al. [9], and the Zaddach tool [12] show promising re-
sults by collecting interactions from normal users and re-
playing them to learn application states and invariants for
vulnerability scanning. These works do not require extra
manual effort from developers to write testing script or
specify user interactions. However, one potential prob-
lem these works fail to address is user’s privacy con-
cerns when submitting interactions. This could be es-
pecially sensitive when the actions involve passwords or
payments. SSOScan avoids this problem and is comple-
mentary to this line of work — SSOScan attempts to scan
applications in a fully automatic fashion and does not re-
quire traces from any party.

Single sign-on security. Single sign-on has emerged as
an important security service and has been well-studied
in recent years. Previous works have discovered prob-
lems in protocols, bugs in SDK code and missed assump-
tions in developers’ implementations [4, 20, 23, 25, 27].
Automated scanning is especially valuable for vulnera-
bilities that cannot be simply fixed by upgrading SDKs
or improving the protocols, but stem from mistakes inte-
grating the SSO service.

Integuard [30] and AuthScan [2] have similar goals
with SSOScan. Integuard infers invariants across re-
quests and responses and uses them to perform intru-
sion detection on future activities. AuthScan [2] is an
automated tool to extract specifications from SSO imple-
mentations by using both static program analysis and dy-
namic behavior probing. Our goals differ in that we focus
on detecting specific vulnerabilities rather than generic
ones. This enables us to establish clear automation goals
and build well-defined state machines for the scanner,
and removes the uncertainties the previous works incur
when inferring invariants or modeling unknown func-
tions. The drawback is our approach relies on knowledge
of particular vulnerabilities. For many integrated web
services, including SSO, many vulnerabilities are known
or can be obtained using systematic explication [27].

3 SSOScan

SSOScan consists of two main parts: the Enroller and
the Vulnerability Tester. The Enroller automatically reg-
isters two test accounts at a web application using Face-
book SSO. The Vulnerability Tester simulates attacks
and monitors traffic to test for each vulnerability. In this
section, we describe the general workflow of these mod-

Vulnerability
Tester

Oracle
SSO

Button clicked

SSO
button finder

SSO process
automation

Registration
automation

SSO process
finished

No FB SSO
Detected

Homepage

Give up/
Manual analysis

Registration
successful to try?

More strategies

See FB SSO
traffic?

Start

Yes

No

Yes

No

Yes

No

Yes

No

Figure 2: Enroller Overview.
Ovals represent testing states, curved rectangles represent different
modules in our tool, and diamonds represent control flow decisions.

ules necessary to understand the results in Section 4, but
defer the details of our heuristics to Section 5.

3.1 Enroller
Figure 2 shows the workflow of the Enroller. Given a
target web application, our tool first removes all cook-
ies from the browser and navigates to the target URL.
A short delay after the page has fired its onload event,
the SSO button finder (Section 3.1.1) analyzes the DOM
and outputs the most likely candidate elements for SSO
button. The Enroller then simulates clicks on those ele-
ments, monitoring traffic to listen for the Facebook SSO
traffic pattern. Once a click or sequence of clicks is found
that produces the recognizable SSO traffic, SSOScan au-
tomatically logs into Facebook and grants the requested
permissions to the application.

About 44% of sites we tested still require a user to reg-
ister when using SSO, so it is important to automate this
process. SSOScan combines heuristics with random in-
puts to fill in and submit the forms (Section 3.1.2), and
then uses an oracle (Section 3.2) to determine if the sub-
mission succeeds. If the oracle deems the registration to
be a failure, the Enroller tries using different strategies
(Section 5) until either the oracle passes or a threshold
level of effort is exceeded. The entire process succeeds
for 80% of the websites using Facebook SSO in the top
10,000 sites (Section 4 presents detailed results).

3.1.1 SSO Button Finder

A typical starting page, taken from huffingtonpost.com,
is shown in Figure 3. SSOScan needs to first find and
click the “Log in” button on the main page, and then the
“Log in with Facebook” button on the overlay that pops
up afterwards. As illustrated in Figure 4, SSOScan first
extracts a list of qualifying elements from all nodes in
an HTML page, and then extracts content strings from
such elements. The Button Finder relies on the assump-
tion that developers put one of a small pre-defined set

4

of expected words in the text content or attributes of the
SSO button. It computes a score for each element by
matching its content with regular expressions such as
[Ll][Oo][Gg][IiOo][Nn] which indicates its resemblance
to “login”. SSOScan forms a candidate pool consisting
of the top-scoring elements and triggers clicks on them.
(Section 5 describes the heuristic choices SSOScan uses
to filter elements and compute scores.)

3.1.2 Completing Registration

The required interactions to complete the registration
process after single sign-on vary significantly across web
applications. They range from simply clicking a submit
button (e.g., Figure 5, in which all input fields are pre-
populated using information taken from the SSO pro-
cess), to very complicated registration processes that in-
volve interactively filling in multiple forms.

SSOScan attempts to complete all forms on the SSO
landing page by leaving pre-populated fields untouched
and processing the remaining inputs in the order of ra-
dios, selects, checkboxes and finally text inputs. We
found this ordering to be very important to achieve
higher automation success, as some forms may dynami-
cally change what needs to be filled upon selecting differ-
ent radio or select elements. Processing these elements
first allows SSOScan to rescan for dynamically generated
fields and process them accordingly.

For radio and select elements, SSOScan randomly
chooses an option; for checkboxes, it simply checks
all of them. For text inputs, SSOScan tries to infer
their requirements using heuristics and provide satisfac-
tory mock values. Once all the inputs have been filled,
the next step is to reuse the SSO Button Finder (Sec-
tion 3.1.1) with different settings designed to find submit
buttons. After SSOScan attempts to click on a submit
button candidate, it refers to the oracle to determine if
the entire registration process is successful.

1
2

Figure 3: SSO Buttons (huffingtonpost.com)

String
Filtering

Extract
Content

Regex
matching HTML

Element

Score
1 2 3

Figure 4: SSO button finder workflow

3.2 Oracle

The Oracle analyzes the application and determines
whether it is in an authenticated state, and if so, further
identifies the session identity. This module is necessary
for SSOScan to decide if a registration attempt is suc-
cessful. It is also used by the Vulnerability Tester to de-
termine if a simulated impersonation attack succeeds.

The key observation behind the Oracle is that web ap-
plications normally remove the original login button and
display some identifying information about the user in
an authenticated session. For example, after a successful
registration many websites display a welcome message
that includes the user’s first name.

After the page finishes loading, the Oracle searches
the entire DOM and document.cookie for test account
user information (e.g., names, email, or profile images).
We evaluate the correctness of our assumptions and ef-
fectiveness of our Oracle in Section 4.2.

3.3 Vulnerability Tester

After the Enroller successfully registers two test ac-
counts, control is passed to the Vulnerability Tester
which checks the target application for the vulnerabilities
described in Section 2.2. We use two different probing
approaches to cover the five tested vulnerabilities: simu-
lated attacks and passive monitoring.

Simulated Attacks.The two credential misuse vulnera-
bilities are tested using simulated impersonation attacks.
We describe how this is done for signed request misuses;
the method for checking access token misuses is similar.

Figure 5: Registration Form (espn.go.com).

5

To set up the tests, we created a test application Mal
which uses Facebook SSO, and obtained Alice’s sign-
ed request for Mal. This mimics the scenario where
Alice is tricked into visiting and signing into an arbi-
trary malicious website using Facebook. After the ac-
count registration finishes, we use Bob’s credentials to
sign into Facebook for target application, but replace the
signed request in Facebook’s response with the prior re-
sponse received for Alice. For consistency, we also re-
place all access tokens found in the traffic.

The attack is successful if Bob is able to login as Al-
ice using the replayed signed request. The Vulnerability
Tester deems the site vulnerable if the Oracle determines
that Alice is logged in after the simulated attack.

Passive Monitoring. The three credential leakage vul-
nerabilities are detected using passive approaches. For
brevity, we only explain how leaks through the referrer
header are detected; the other leaks are detected similarly
by observing network traffic and web page contents.

To check if an application leaks the user’s OAuth cre-
dentials through the referrer header, SSOScan monitors
all request data during the account registration process
and compares each referrer header to OAuth credentials
recorded in earlier stages. If a match is found, SSOScan
then checks if the requesting page contains any third-
party content such as scripts, images, or other elements
that may generate an HTTP request. SSOScan reports a
potential leakage when credentials are found in the refer-
rer header for a page that contains third-party content.

4 Results

We evaluated SSOScan by running it on the list of the
most popular 20,000 websites based on US traffic down-
loaded from quantcast.com as of 7 July 2013. Of those
20,000 sites, 715 of the sites are shown as hidden profile
(that is, no URL is given, thus excluded from our study).

We ran SSOScan on the remaining 19,285 sites in
September 2013, and found that homepages of 1372 sites
failed to load during two initial attempts (most likely due
to either expired or incorrect domain name, server error,
or downtime). We excluded these sites from our data set,
leaving a final test dataset containing 17,913 sites.

Completing the tests took about three days, running 15
concurrent sessions spread across three machines. The
average time to test a site is 3.5 minutes. We limited the
maximum stalling time for each site on any one module
to four minutes, and the overall testing time to 25 min-
utes per site. If this timeout is reached, SSOScan restarts
and retries a second time before skipping it. We ran extra
rounds on tests that failed or stalled during initial round
until either the test is completed or the four rounds max-
imum limit has been reached. The extra rounds involved

Not Vulnerable
77.4%

Buggy
2.3%

Valid Top 20,000 sites

No Facebook
SSO, 83.1 %

Timeout/error 7.6%

Facebook
SSO, 9.3%

Vulnerable
20.3%

1660 Sites using Facebook SSO

Figure 6: Results overview

fewer sites (<10%) and took a week to complete running
on one machine with four concurrent sessions.

In July 2014, we re-ran the tests on the vulnerable sites
to see how many sites had corrected the vulnerabilities.
The results from that scan are reported in Section 6.2.

4.1 Automated Test Results

Figure 6 presents results purely based on automatic tests
run by SSOScan. SSOScan found a total of 1660 sites
using Facebook SSO among the 17,913 sites (9.3% of
the total). Figure 7 shows the number of Facebook SSO
supported sites, sites that misuse credentials, and sites
that leak credentials distributed by site ranking. The dot-
ted lines on top of the bars show the average stats of all
sites that are more popular than that rank. In Section 4.3,
we report on our manual analysis on failed tests for sites
ranked in the top 10,000.

Facebook SSO integration. Figure 7 (a) shows that
more popular sites are more likely to integrate Facebook
SSO. Of the top 1000 sites, 270 (27%) of them include
Facebook SSO, compared to only 52 out of the 1000
lowest-ranked sites in our dataset. This supports our be-
lieve that covering the top-ranked 20,000 websites is suf-
ficient to get a clear picture of prevailing Facebook SSO
usage since less popular sites are both less visited and
less likely to use Facebook SSO.

Faulty implementations. To implement Facebook SSO,
an application must be configured correctly in the Face-
book developer center. Using incorrect parameters to call
the SSO entry point also result in errors that will prevent
any user from authenticating to that application through
SSO. Such cases, automatically identified by SSOScan,
were more common than we expected. The most popular
errors include setting the application to ‘sandbox’ mode
(for development stage only) in the developer center, or
providing a wrong application ID. SSOScan found 39
(2.3% out of 1660 sites that incorporate Facebook SSO
buttons) sites that display visible Facebook SSO buttons
but have implementations so buggy that no user could
ever login using them. A possible explanation is that the
buttons are there for SEO purposes and the developers

6

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

%
 s

u
p

p
o

rt
in

g
FB

 S
SO

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

%
 v

u
ln

e
ra

b
le

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

%
 v

u
ln

e
ra

b
le

(a) Facebook SSO support

(c) Credential leakage vulnerabilities (b) Credential misuse vulnerabilities

Site rank (100 equally sized buckets, each containing 1% (179) of all valid test sites)

1 10 20 30 40 50 60 70 80 90 100

1 10 20 30 40 50 60 70 80 90 100 1 10 20 30 40 50 60 70 80 90 100

Each bucket represents all sites using Facebook SSO that are ranked in the corresponding range in (a)

Figure 7: Facebook integration results by site rank

never actually bothered to implement it, or the develop-
ers simply copied and pasted an SSO snippet customized
for another application without ever testing it.

Vulnerability trends. We found 202 sites (12.1%) that
misuse credentials (126 of which are misusing both ac-
cess token and signed request) and 146 sites (8.6%) that
leak Facebook SSO credentials (of which 72 sites are
leaking through both referrer headers and DOM). A to-
tal of 345 sites (20.3%) suffered from at least one of the
five tested vulnerabilities, and 3 sites suffered from both
credential misuse and leakage problems.

It is also worth noting that SSOScan did not find any
sites leaking their app secret to the public by calling the
token exchange API on the client side. To verify that
we implemented the check correctly, we have confirmed
that SSOScan does correctly identify this vulnerability
on our manually-crafted faulty application. This is an in-
teresting result, especially compared to the high number
of sites that have at least one of the other vulnerabilities.
We suspect this is partly due to explicit warnings in the
documentation and the increased effort required to actu-
ally implement the token exchange on the client side.

As shown in Figure 7 (b) and (c), more popular sites
appear to be more likely to have credential misuse vul-
nerabilities, while less popular sites tend to have more
credential leakage problems. This fact certainly raises
concern — credential leakage could potentially do dam-
age to users’ Facebook accounts, and it would be hard to
contact numerous low-profile problematic sites to have
them all fixed. The victim’s Facebook account is in jeop-
ardy if any of the applications he or she uses have such
problem. Even though credential misuse cannot harm

Facebook accounts directly, the fact that such vulnera-
bilities exist in high-profile websites is worrisome, as im-
personation attacks carried against sites with millions of
users have more severe consequences thank similar at-
tacks on lower-profile sites.

Of the top-1000-ranked sites, 60 of the 270 (22.2%)
that support Facebook SSO are found to have at least one
vulnerability. The vulnerability rate is 21.3% across all
sites in the top 10,000 and 18.5% for sites ranked from
10,001 to 20,000. This overal vulnerability rate suggests
that development practices at larger companies do not ap-
pear to be more stringent (at least with respect to SSO)
than they are at less popular sites.

As we do not have access to server side source code,
we cannot measure how reusing code may positively or
negatively affect the vulnerability trend. However, we
did notice that some sites use fourth party services (e.g.
Janrain, Gigya) to implement the Facebook SSO. In such
scenarios, the user effectively does two SSO processes
during authentication — the user, Facebook (IdP) and
Janrain (RP) initially; the user, Janrain (IdP) and the true
relying party afterwards. As the Facebook SSO process
is entirely handled by the fourth party and is hidden to the
relying party, the RP’s behavior is not relevant to this vul-
nerability. We have manually tested both Janrain and Gi-
gya’s Facebook SSO implementation for credential mis-
use vulnerabilities and confirmed that both of them cor-
rectly implement the process by only using code flow to
authenticate users. As a result, sites using these services
contribute to a lower vulnerability rate. Note that the RP
would still need to implement the second SSO process
correctly to avoid vulnerabilties, but SSOScan currently
does not check IdPs other than Facebook.

7

4.1.1 Front-end Integration

There are three basic client-side methods to integrate
Facebook SSO: a JavaScript SDK, a pre-configured wid-
get, or a custom implementation. (We have no way to
determine how the developers are integrating Facebook
SSO at the back end.) We used SSOScan to aggregate
front-end integration choices and compare them with
vulnerability reports. Table 1 summarizes the results.
Websites using client side SDKs and pre-configured wid-
gets are more likely to misuse credentials (29.1% and
15.5% vs. 1.3% in non SDK/widget implementations).
Our guess is that this is due to the way SDKs and widgets
conveniently expose raw access token, signed request,
or even user name Facebook ID values. This convenience
may lead to the developers to neglect to check the signa-
ture and the intended audience of the credential. How-
ever, our results also show that websites using SDKs and
widgets are better in hiding credentials (3.6% and 2.2%
compared to 12.4% vulnerable rate in SDK/widget im-
plementations). This is likely because such applications
use the Facebook-provided landing page which has safe
redirect URLs and no third-party content. Applications
built this way are secure unless the developers explicitly
add the credentials in the page content or URL.

4.1.2 Examples

We describe two examples of vulnerabilities found by
SSOScan here to illustrate the potential risks. Section 6
discusses our experiences reporting vulnerabilities to site
owners and Facebook.

Match.com. Ranked 118th on the list, Match.com is a
popular online dating website. SSOScan revealed that
match.com is also vulnerable to signed request replace-
ment attacks. To use match.com services, users need
to provide sensitive information including their birthday,
location, photos, personal interests, and sexual orienta-
tion. Impersonators will not only have access to this in-
formation, but also learn whom the victim is dating and
possibly the time and location of the dates.

Fodors.com. Fodor’s is a travel advice website that is
the 217th-ranked US site. Its redirection landing page
contains access token information along with some other

Method Number Misuse Leakage
SDK 578 29.1% 3.6%

Widget 132 15.5% 2.2%
Custom Code 950 1.3% 12.4%

All 1660 12.1% 8.6%

Table 1: Rate of credential misuse and credential leakage
for different Facebook SSO front-end implementations

third-party scripts in its content. The scripts come from
various sources including quantserve.com, fonts.com,
yahooapis.com, and multiple domains owned by Google.
The permission Fodor’s requests includes user’s basic in-
formation, email address, and more importantly, permis-
sion to post to user’s wall on the his or her behalf. This
means if the access token is leaked to a malicious party,
it can post to a user’s Facebook wall without consent in
addition to accessing the user’s basic information.

4.2 Detection Accuracy
To evaluate the detection accuracy of SSOScan, we sam-
pled test cases from all results (including sites reported
to have no Facebook SSO support, secure and vulnera-
ble cases) and manually examined them. We consider
two types of mistakes: misreporting whether the site
integrates Facebook SSO, and incorrectly determining
whether or not a Facebook SSO-enabled website exhibits
a vulnerability.

Facebook Login Detection Correctness. SSOScan
searches SSO button based on heuristics and cannot
guarantee success for all websites. Indeed, it is not possi-
ble for anyone to determine with complete confidence if
a website uses Facebook SSO by just browsing the site.
To roughly measure how many Facebook SSO-enabled
websites were missed by SSOScan, we randomly sam-
pled the 100 sites that were reported by SSOScan to have
no Facebook SSO support and manually examined them.
To make the samples representative of the whole set, we
picked one site out of every 200 sites ordered by their
rank. From manually investigating these 100 sites, we
could only find one site that included Facebook SSO but
was missed by SSOScan. As we introduce later in Sec-
tion 6, we also deployed SSOScan as a web service that
is made available to use in our research group. The web
service has received a total of 69 valid submissions so far
and we have also manually examined the vulnerability
reports.2 We found four cases (5.8%) where a submitted
site included Facebook SSO but SSOScan was not able
to trigger it.

The sites that SSOScan fails to find Facebook lo-
gin present unusual interfaces which our heuristics are
not able to navigate to. Specifically, oovoo.com and
bitdefender.com do not show any login button on its
homepage, but instead the user needs to click a ‘my ac-
count’ button to initiate the login process. The sears.com
site displays a login button on its homepage, but the SSO
process is not initiated until the user interacts with the
popup window three times, which exceeds the maximum

2These have mostly been sites suggested by people we have demoed
SSOScan scan to, since the service has not yet been publicized. Hence,
it is a small and non-representative sample, so not clear what we can
conclude from this at this point.

8

click depths (two) in this evaluation. We have also seen
one case (coursesmart.com) in which the login process is
rather typical, but SSOScan still missed the correct login
button (that button is scored the 4th highest while SSO-
Scan only attempts to click the top 3 candidates.). Most
of these issues may be addressed with more relaxed re-
strictions and more regular expression matching as de-
scribed in Section 5.2. Finally, our prototype implemen-
tation is limited to English-language websites due to its
string matching algorithm, but could be extended to in-
clude keywords in other languages.

SSOScan may also incorrectly conclude that a web-
site supports Facebook SSO when it does not. We
have seen sites (e.g., msn.com) that only use Facebook
SSO to download user activities and display them on
the page, but do not integrate their identity system with
Facebook SSO. Although SSOScan is designed to skip
searching on typical Facebook-provided social plugins
and widgets, non-standard integration of such function-
alities may rarely lead to false positives.

Vulnerability Status Correctness. Since SSOScan sim-
ulates potential attacks and verifies their success or fail-
ure, detection is likely to be highly accurate. Never-
theless, we consider several possible reasons that might
cause false positives/negatives to be reported.

SSOScan should be able to capture all credential leak-
age vulnerabilities with no false positives. A false neg-
ative may occur since SSOScan only looks for exact
matches to the original OAuth credential string, so it will
not report a leakage if the credential is slightly trans-
formed or encoded. Further, SSOScan only observes
traffic involving the web client, so does not detect appli-
cation that leak OAuth credentials outside the SSO pro-
cess.

SSOScan only reports a credential misuse vulnerabil-
ity when it can successfully execute an impersonation
attack. So, the only risk for incorrect reports is if the
Oracle incorrectly determines the session identity. We
designed the Oracle to minimize this risk. For example,
information for the test account is chosen carefully to
be unlikely to appear otherwise but to be close enough
to real names to pass sanity checks. For example, the
randomly generated name “Syxvq Ldswpk” was rejected
by a small number of websites, but “Jiskamesda Qua-
narista” always passed sanity checks and only appeared
in an authenticated session in all of our tests. Barring an
unlikely name collision, there does not appear to be any
way SSOScan would produce a false positive credential
misuse report.

The Oracle checks the whole response for identifying
information instead of only the DOM content to han-
dle sites which only embed such information in first-
party cookies after logging in. In some rare cases, these

cookies could be issued even before SSOScan finishes
registration forms. This means that before the Enroller
searches for registration forms to fill in, the Oracle deems
registration as unnecessary because it concludes that the
application is already in an authenticated state. Although
SSOScan is able to proceed and determine vulnerability
status, the application never enters an authenticated state
and false negatives might occur.

Trusted Third-Party Domains. For credential leakage
vulnerabilities, SSOScan reports an application as vul-
nerable if it identifies visible credentials co-existing with
any content or script that comes from any origin other
than the host or Facebook. This could overestimate the
vulnerable sites because the host may own other domains
and serve content over them, which should not be consid-
ered untrusted. For example, content delivery networks
and sub-company scenarios (e.g., cnn.com embedding
content from turner.com which owns CNN) are common
among popular websites.

4.3 Automation Failures

For about 19% of the top 10,000 tested site that include
functional Facebook SSO, SSOScan is not able to fully
automate the checking process. Figure 8 shows the dis-
tribution of rank of failed test websites.

To better understand the reasons why SSOScan fails,
we manually studied all 228 failed cases reported by
SSOScan for sites ranked in the top 10,000. We found
that although 47 out of these 228 cases set their Face-
book application configurations and SSO entry points
properly, they never respond to credentials returned by
Facebook SSO, which means no users would be able to
successfully log into these sites through Facebook SSO.
Excluding these 47 left us a total of 181 failure cases.

Registration automation failure. By far the most com-
mon reason for SSOScan to fail is due to complicated or
highly-customized registration process. We found 43.7%

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

%
 f

ai
le

d

Percentage of failed tests vs. Site rank

Overall:
19%

1 10 20 30 40 50 60 70 80 90 100

Site rank (100 equally sized bucket)

Figure 8: Failed tests rank distribution

9

Failure reason Number Percent
linking/subscription 51 28.1%

CAPTCHAs 34 18.8%
identity invisible to oracle 28 15.5%

atypical input elements 20 11.0%
atypical submit buttons 19 10.5%

email verification 10 5.5%
non-HTTPS submission forms 9 5.0%

other (e.g., timeouts) 10 5.5%
Total failures 181 100.0%

Table 2: Automation Failure Causes (top 10,000 sites)

of the sites that implement Facebook SSO still require
users to perform additional actions to complete the reg-
istration (roughly evenly distributed by site popularity).
SSOScan failed to complete registration on 143 (33.6%)
of them. Table 2 shows the major reasons contributing
to this failure ordered by their occurrences: 1) sites that
require SSO users to link to an existing account or pro-
vide payment information to subscribe to the service;
Currently SSOScan cannot handle the “linking” action:
automatically registering a “traditional” account and per-
form the linking poses an out-of-scope challenge — do-
ing so often requires solving CAPTCHAs3. 2) registra-
tion forms after the SSO process include CAPTCHAs;
3) special input elements (e.g. div, span or image as op-
posed to input) cannot be found automatically, or spe-
cial requirements for the input that cannot be fulfilled;
4) sites where the registration submission button cannot
be located; 5) sites that requires users to confirm email
addresses before continuing (usually this involves click-
ing a link in an email sent by the server to the user’s
email address); and 6) sites that insecurely send regis-
tration data using a non-HTTPS form which causes the
testing browser to pop up a warning and stall.

Oracle confusion. SSOScan may also fail because the
oracle reports failure (15.5%), which occurs when it de-
tects the login button no longer exists after Facebook
SSO but cannot identify the session identity. We man-
ually analyzed such cases and found the biggest obstacle
is that the application homepage does not include any
identifying information at all. For example, instead of
showing ‘Welcome, {username}’, it shows ‘Welcome,
customer’, or simply ‘Welcome’, and the user name is
only displayed when accessing the account information

3On the contrary, most tested applications (942 out of 973, see Sec-
tion 4.3) do not ask users to solve CAPTCHAs when an account is
created through SSO. This is a reasonable practice, since the user who
is able to provide a valid Facebook account should have already passed
Facebook’s requirements, and adding additional CAPTCHAs would be
unnecessarily annoying to the users.

page. In other cases, SSO authentication serves only a
sub-service of the website such as its affiliated forum,
but not the homepage which does not display any identi-
fying information.

Others. During the testing, we have also seen a number
of sites with extremely long loading time or inconsistent
network latencies after Facebook SSO or upon navigat-
ing to certain pages. While the latency spikes can likely
be resolved by re-running the tests, frequent long delays
which accumulate to SSOScan’s maximum timeout will
always halt the automation process. For example, this
happens when SSOScan accidentally triggers a browser
confirmation dialog that requires user interaction, or ask-
ing users to stop a busy script execution.

5 Heuristics Evaluation

The ability of SSOScan to successfully complete the
Facebook single sign-on and registration process de-
pends on heuristics it uses to find buttons and fill in regis-
tration forms. Since each attempted button click involves
a high-latency round-trip with the server, early pruning
of search space and prioritization of elements is impor-
tant for achieving successful completion within a reason-
able amount of time. This section describes and analyzes
the heuristics SSOScan uses. We analyze the click data
collected from the top 10,000 sites that use Facebook
SSO and show how tweaking the heuristics significantly
improves performance.

5.1 Options

Each step in the automation process can be controlled
by many options, including filters that can be enabled to
eliminate candidate elements that are unlikely to be the
correct target, weightings that adjust the contribution of
different element properties to its score, and other behav-
ior modifiers. The ones SSOScan used when running the
Section 4 study are described below; additional options
are described in our tech report [33].

Candidate rank. The button finder produces a candidate
element list ranked by score. SSOScan will first attempt
clicking on the highest-ranked element, but sometimes

Figure 9: Example corner cases

10

the correct element is ranked lower. This option controls
the maximum number of click attempts SSOScan makes
before succeeding or giving up. For Section 4’s experi-
ment, the lowest ranked element SSOScan clicks is the
third.

Visibility filter. Most websites only expect users to click
on UI elements that are visible, so the button finder in-
cludes a filter that ignores all invisible elements (e.g., el-
ements with zero height or width, shadowed in the back-
ground layer, or those which appear only when the user
scrolls the initial screen position).

Position filter. We noticed that SSOScan sometimes gets
distracted by a search box submit button when complet-
ing the registration form, even if it is able to correctly
fill in the required information in all input elements. To
eliminate these misclicks, the position filter eliminates
the submit buttons which are displayed above any inputs
based on our observation that submit buttons nearly al-
ways come last in a registration form.

Registration form filter. As mentioned earlier in Sec-
tion 4.3, many websites provide two actions for the user
after SSO is completed: ‘create new account’ or ‘link an
existing account’. The latter option requires the user to
enter the user name and password of an existing account
to finish the enrollment process. To avoid these, the reg-
istration form filter rejects a candidate submit button if
its parent form contains only two visible text inputs, one
has the meaning of ‘name’ or ‘email’ and the other is of
type password, since such an element is most likely to be
a submit button of a linking form.

Element content matching. SSOScan searches for ele-
ments whose labels are close to “login with Facebook”
for SSO buttons by default. However, quite a few pop-
ular websites (e.g. coupons.com, right side of Figure 9)
only allow users to “sign up with Facebook” first before
logging in with Facebook. If the user has yet to do this,
attempting to login with Facebook will produce an er-
ror. To handle this situation, SSOScan will search for
elements with semantics similar to “sign up with Face-
book” when it fails to register using the “login” buttons.

A filter may significantly reduce the number of mis-
clicks. However, it may also occasionally exclude cor-
rect elements. For example, not every correct submit
button is below all inputs (e.g., left of Figure 9, and
expedia.com’s submit button would have been missed
with the element position filter enabled).

Hence, SSOScan is designed to explore target sites us-
ing different option settings if enrollment does not suc-
ceed with the initial settings. It will continue to attempt
to complete the enrollment process using different set-
tings until either all configurations have been exhausted
or the timeout threshold is reached. SSOScan avoids do-

ing duplicate work by detecting if a click attempt has
resulted in a previously visited or completely explored
state (see our tech report for details [33]).

5.2 Experiment Setup

In theory, SSOScan could exhaustively trigger clicks on
every element on the page (and on all response pages up
to some maximum depth), which would result in nearly
100% success rate. This would be prohibitively slow in
practice, though, so the number of attempted clicks must
be limited for any realistic test. Given the time needed
for each click attempt, it is important to configure our
scoring heuristics well to maximize the probability of a
successful enrollment in the minimum amount of time.

To gather statistics about the candidate elements, we
modified SSOScan to try all possible strategies even if it
has already found the correct login button and to record
information about all attempted clicks, including for ex-
ample their size, position, visibility to the user, content
string feature and whether it is successful. We define a
click as successful if it is included in any sequence of
clicks from the start page to triggering the SSO process,
regardless of whether it appeared in an attempt that failed
to trigger the process. Because SSOScan skips previ-
ously explored states to avoid redundant effort, it auto-
matically rejects click sequences which involves cyclic
state transitions such as clicking on an irrelevant link and
then clicking on a logo which returns to the initial state.

We set up SSOScan to expand the candidate pool size
for each configuration from 3 to 8, add more matching
regular expressions (e.g., to match the string “forum”
which occasionally leads to a login page on sites where
no login is visible on the start page), and use equal weight
for each of them. We also removed all candidate filters
described in Section 5.1. Our goal is to capture as many
ways to trigger the SSO process as possible by doing
as close to an exhaustive search as is feasible. This in-
creases the time required to scan a typical site to almost
an hour (compared to a few minutes with the setup used
in the full study).

We ran the test on the 973 sites from the top-10,000
ranked sites that were detected by SSOScan to support
Facebook SSO in our main study (Section 4). This bi-
ases the study slightly, since it only includes sites where
the configuration used in the initial study was able to
find Facebook SSO. Ideally we would like to run all top-
10,000 sites to avoid any bias introduced by the data set,
but the significantly increased testing time prohibits us to
do so, and the result of our subsequent study on a random
sample of sites (Section 5.4) supports the claim that only
few sites containing Facebook SSO were missed by the
main study.

11

5.3 Results
The experiment recorded 29,539 unique4 click attempts,
of which 5086 (17.2%) are successful (that is, they either
directly trigger SSO, or lead to subsequent clicks that
trigger SSO). This amounts to approximately 30 unique
clicks attempted per site, but the number varies signifi-
cantly based on the site design, from a few up to 109.

Element type and content. Figure 10 shows how dif-
ferent button types and properties impact success rates.
We report the success rate as the number of times that
element appeared as a successful click divided by the to-
tal number of clicks attempted on elements of that type.
The number beneath the element feature gives the total
number of times that type of element occurred as a suc-
cessful click target across all the test sites. For exam-
ple, the BUTTON element type has an excellent success
rate — 60% of all BUTTON candidates are true positives
for the Facebook SSO button. But since it only appears
as a successful click on 78 out of 973 sites in our sam-
ple, it is rarely useful. By contrast, clicking on DIV ele-
ments are much less likely to trigger the Facebook login,
but such elements are more common. The right side of
Figure 10 shows that elements that are directly visible
to the user has a higher success rate than invisible ones,
and elements residing in iframes are twice as likely to be
the correct target as their counterparts in the main page.
These results suggest ways of weighting element types to
improve the scoring function and increase the likelihood
of finding successful clicks early.

4If two clicks happens on pages with the same URL, same element
XPath and same element outerHTML, we consider them the same click.

Tr
u

e
p

o
si

ti
ve

s
/

al
l c

lic
ks

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Type: A DIV SPAN IMG BTN INPUT IFRM LI visible invisible main iframe

Occurrences as
successful clicks 1556 266 204 188 78 64 9 1 1223 1144 2330 37

properties:

:

Figure 10: Login button type statistics

Content:

Tr
u

e
p

o
si

ti
ve

s
/

al
l c

lic
ks

0

0.1

0.2

0.3

0.4

0.5

0.6

 logion Facebook FB signion account connect forum oauth

2816 1398 1196 896 422 297 218 74
Occurrences as
successful clicks

:

Figure 11: Login button content statistics

Pixels

0

100

200

300

400

Width, FP

Width, TP

Height, FP

Height, TP

0 10 20 30 40 50 60 70 80 90 99 Percentile

Figure 12: Impact of Login Button Size

Figure 11 shows how the success rate varies with at-
tribute content (matched by the given regular expres-
sion). The keyword “oauth” rarely exists in any content,
but when it appears it is very likely to identify the target
element. The result also shows that “FB” is not a good
indicator to predict the target, and we think this is proba-
bly because it is very short and may be used for similarly
named JavaScript variables or random abbreviations.

Both figures include data for the first click only (but do
measure first click success based on subsequent clicks).
Data for the second clicks are noticeably different from
the first, and overall success rates are lower on second
clicks. The most interesting fact we found is that “con-
nect” (39%) and “Facebook” (36%) become the most
successful matches of all regular expressions, followed
by “oauth” at (26%). No other regular expressions ex-
ceed 20% success for the second click.

Element size. Figure 12 gives the cumulative distribu-
tion function of the width and height of target elements.
For example, the 80th percentile width of the true positive
elements is approximately 150px, compared to 300px for
false positive elements. We did not find any significant
difference between first and second clicks, so the figure
combines data from all clicks. The key result is that wide
elements are less likely to be true positives, possibly due
to SSOScan incorrectly including many large underlay
elements as candidates. The result is similar for element
height (the lower two lines in the figure). This suggests
that it would be useful to add a filter function that ex-
cludes candidates whose width is greater than 300px. We
would expect it to eliminate 20% of the false positives
while hardly missing any of the true positives. Alterna-
tively, SSOScan could adjust the final score of a node
according to its size based on these results.

Element position. Figure 13 shows the heatmap of the
login button’s position in a page. The intensity at a lo-
cation indicates the number of elements found there sat-
isfying the property. Only visible elements are shown,
and each successful click only attributes to the intensity
once. All four figures are normalized with respect to their
maximum intensity (i.e., element density).

The figures show an interesting distinction from first
click to second click: successful first clicks almost ex-

12

First Click, True Positive First Click, False Positive

Second Click, False Positive Second Click, True Positive

Figure 13: Login button location heatmap

clusively appear in the upper right corner of the page,
while the second click appears generally in the upper-
middle part of a page. The false positives are relatively
more scattered everywhere on the page5. This result sug-
gest we should assign a higher weight for elements for
these locations, and focus on elements in the vicinity of
the upper right corner for the first click. We could po-
tentially even ignore the other criteria and only consider
position to find login buttons on foreign-language sites.

5.4 Validation
After incorporating what we learned from these results
(e.g., weight adjustment for different button sizes and
types), we reran the SSOScan with the new heuristics
on the sites ranked from 10,000 to 20,000 that SSOScan
determined to support Facebook in the original study,
which were not included in the heuristics evaluation. We
compare the results with those obtained by using a “con-
trol” version of SSOScan, with equal weights on all fea-
tures and no candidate filtering. All other settings such as
candidate pool size are the same between two versions.

The results support the hypothesis that adjusting heu-
ristics according to the results of the evaluation can im-
prove the speed and robustness of detection of Facebook
SSO integrations. The naı̈ve control version missed 72
out of the 601 sites while the new heuristics missed only
two. The average rank of correct candidate elements for
the first and second click is 1.32 and 1.23 for the con-
trol experiment, which improves to 1.23 and 1.17 respec-
tively with the new heuristics.

We also randomly picked 500 random sites from the
sites that SSOScan have yet to find Facebook support
in the experiment in Section 4. We tested the expanded

5The figures also show a clear width boundary. In the experiments
the browser resolution is 1920x1200, and it seems that most develop-
ers’ designs follow a standard width of approximately 960px, which is
why the density appears to be cut off.

heuristics on these sites, and further increased the max-
imum click depth to three to see if more SSO integra-
tions could be found. Individual tests took an average of
31 minutes to finish, but varies significantly from a few
minutes up to an hour (threshold) based on site content.

Four additional sites were found that support Face-
book SSO from this sample in total. Two are found due to
the added regular expression [Ff][Oo][Rr][Uu][Mm], one
of which required three clicks to trigger the SSO process.
Another site is found due to the improved candidate rank-
ing algorithm, and the fourth was found using the new
candidate selection method that includes all elements in
the right corner of the page, even if they do not match
any regular expressions. This provides a reasonable de-
gree of confidence that our original study found a large
enough fraction of all the popular sites using Facebook
SSO to be representative, although likely missed around
1% of Facebook SSO sites. We did not try click depths
greater than 3 because of the exponential time growth re-
quired to complete each test, but we feel confident that
the number of Facebook SSO interfaces that can only be
discovered by attempting more than 3 clicks is very low.

6 Discussion

This section concludes by discussing limitations of SSO-
Scan, sharing our experiences reporting vulnerabilities,
and suggesting ways SSOScan can be deployed to help
secure applications integrating SSO services.

6.1 Limitations
While SSOScan is able to automatically synthesize ba-
sic user interactions and analyze traffic patterns, this ap-
proach is not suitable for detecting all types of vulner-
abilities. It only works for vulnerabilities that can be
checked by observing traffic or simulating predictable
user events, and falls short if the vulnerability testing in-
volves deep server-side application scanning or compli-
cated interactions. For example, Wang et al. [27] point
out that the application’s app secret might be leaked to
arbitrary party if any page including Facebook’s PHP
SDK invokes two functions in a specific way. This
type of vulnerability could be checked at the developer
side using program analysis techniques, but cannot be
checked by an external tool with no awareness of the
sites’ implementation details or internal state.

6.2 Communication and Responses
We started contacting the site owners shortly after obtain-
ing our first list of vulnerable sites, manually sending out
notifications to 20 vulnerable websites that we thought
were interesting. We contacted them either by submitting

13

a form on their website or through email. The responses
were very disappointing, especially compared with our
previous experiences reporting SDK-level vulnerabilities
to identity providers who tend to respond quickly and ef-
fectively to vulnerability reports [27]. The vulnerabili-
ties found by SSOScan, on the other hand, are primar-
ily in consumer-oriented sites without dedicated security
teams or clear ways to effectively report security issues.

Of the 20 notifications, we only received eight re-
sponses, most of which appear to be automated. After the
initial response, three websites sent us follow-up status
updates. ESPN.com thanked us and told us the message
has been passed onto appropriate personnel, but no fol-
low up actions ensued. One of answers.com’s engineers
asked us for more details, but failed to respond again af-
ter we replied with proposed fix. As of July 2014, both
sites are still vulnerable. Four months after getting the
automated reply from ehow.com, we received a response
stating that they have removed Facebook SSO from their
website due to “content deemed inappropriate”, and we
have confirmed that the Facebook SSO button has in-
deed been removed. Sadly, we think their staff likely
did not (bother to) understand our explanation for the fix
and simply removed the feature.

The other instance where a reported vulnerability was
fixed was for hipmunk.com. Hipmunk was found to be
vulnerable to both the access token and signed request
replacement attacks. We did not get any response from
Hipmunk when the vulnerability was reported through
the normal channels, but through a personal connection
we were able to contact them directly. This led to a quick
response and series of emails with one of Hipmunk’s en-
gineers. We explained how to check the signature of
a signed request, which should fix both vulnerabilities.
However, when they got back to us believing that the fix
was complete, we re-ran SSOScan and found that Hip-
munk was still vulnerable to the access token replace-
ment attack. This meant Hipmunk checked the signa-
ture of signed request after the fix, but never decoded the
signed message body and compared its Facebook ID with
the one returned by exchanging access token. This sur-
prised us, as we implicitly assumed the developers will
consume the signed message body after verifying its sig-
nature, and thus only included ‘verifying signature’ in
the proposed fix. After further explanation, the site was
fixed and now passes all our tests.

Retesting vulnerable sites. We retested all 345 vulnera-
ble sites in May 2014, nine months after our initial exper-
iment, including the 20 websites we had notified directly.
SSOScan found that 48 of the sites had eliminated the
vulnerabilities (including one out of the 20 sites we con-
tacted, mapquest.com). Of the 48 fixed sites, 22 had pre-
viously been diagnosed as credential leaking sites, and

27 were misusing credentials (one site, trove.com, fixed
both problems). We further examined these sites man-
ually to investigate the possible reasons and measures
to fix the problems. As for sites that fixed credential
misuses, we found that many had abandoned the token
or signed request flow in favor of the more secure code
flow, which automatically protects them from credential
reuse attacks. For credential leakages, we found that
a number of sites redesigned their SSO process to fea-
ture a smoother user experience, e.g., replaced traditional
redirection flows with AJAX operations, which naturally
eliminated credential leakage via referer header.

Communication with Facebook. Due to the ineffec-
tiveness of our direct communication with site owners,
we contacted Facebook’s platform integrity team in May
2014. Facebook’s engineers indicated that they are par-
ticularly worried about access token leakage through ref-
erer headers (because a malicious party in possess of the
token may perform privileged Facebook actions on be-
half of the user, which potentially directly harms Face-
book), but are also concerned with the credential misuse
scenario. Facebook asked for a list of the vulnerable ap-
plications and contacted all the sites with access token
leakage and credential misuse vulnerabilities (a total of
95 sites that we were able to re-confirm at the time of re-
port), and informed us that they would “take enforcement
action as necessary” upon the ten sites that are leaking
access tokens in the referer headers. Facebook’s engi-
neers could not provide us with more information about
what this entails or any direct responses they received,
but an SSOScan re-run one month later (early July 2014)
revealed that only four out of the 95 sites had fixed their
problems (of the ten sites leaking access tokens, only
two had been fixed). Even for Facebook, it appears to be
difficult to convince consumer-focused websites to take
security vulnerabilities seriously.

6.3 Deployment

Our experiences reporting vulnerabilities found by SSO-
Scan suggest that notifying vendors individually will
have little impact, which is consistent with experiences
reported by Wang et al. with on-line stores [26]. Hence,
we consider two alternate ways of deploying SSOScan
to improve the security of integrated applications.

App center integration. We believe SSOScan would
be most effective when used by an application distribu-
tion center (e.g. Apple store, Google Play) or identity
provider (e.g., Facebook) as part of the application vali-
dation process. The identity provider has a strong moti-
vation to protect users who use its service for SSO, and
could use SSOScan to identify sites that can compro-
mise those users. It could then deliver warning messages

14

to visitors of vulnerable applications during the log in
through Facebook SSO process, or even go so far as to
shut down SSO logins for that application. We also be-
lieve our results can provide guidance to vendors devel-
oping SSO services. The results in Section 4.1 indicate
that sites are more likely to misuse credentials when us-
ing the Facebook JavaScript SDK. With Facebook’s help,
this problem could be mitigated by placing detailed in-
structions inside the SDK. The instructions could be pre-
sented as (non-executable) code in the SDK rather than
as comments, so that the developers cannot get by with-
out reading and removing them.

Checking-as-a-service. Without involving an central-
ized infrastructure, the best opportunity to deploy SSO-
Scan is as a vulnerability scanning service that devel-
opers can use to check their implementations before
their applications are launched (our prototype service at
http://www.ssoscan.org/ can be used for this now). For
a developer-directed test, it would be reasonable to ask
the developer to either guide the tool through the reg-
istration process or provide a special test account that
bypasses this step in cases where it cannot be fully au-
tomated. Even if we assume no aid from the developers,
they should at least be able to tolerate a longer testing
time than is feasible in doing a large-scale scan.

Availability

SSOScan is available at http://www.SSOScan.org/ as a
public web service. The source code is available (linked
from that site) under an open source license.

Acknowledgements

We thank Jonathan Burket, Longze Chen, Shuo Chen,
Steve Huffman, Jaeyeon Jung, Haina Li, Chris Slowe,
Ankur Taly, Rui Wang, Westley Weimer, Eugene
Zarakhovsky and anonymous reviewers for their valu-
able inputs and constructive comments. This work has
been supported by a Research Award from Google and
research grants from the National Science Foundation
and Air Force Office of Scientific Research.

References

[1] N. Alshahwan and M. Harman. Automated Web
Application Testing Using Search Based Software
Engineering. In 26th IEEE/ACM International Con-
ference on Automated Software Engineering, 2011.

[2] G. Bai, J. Lei, G. Meng, S. S. Venkatraman, P. Sax-
ena, J. Suny, Y. Liuz, and J. S. Dong. AuthScan:

Automatic Extraction of Web Authentication Pro-
tocols from Implementations. In 20th Network and
Distributed System Security Symposium, 2013.

[3] T. Ball and S. K. Rajamani. The SLAM Project:
Debugging System Software via Static Analysis. In
29th ACM Symposium on Principles of Program-
ming Languages, 2002.

[4] C. Bansal, K. Bhargavan, and S. Maffeis. Discover-
ing Concrete Attacks on Website Authorization by
Formal Analysis. In 25th Computer Security Foun-
dations Symposium, 2012.

[5] M. Benedikt, J. Freire, and P. Godefroid. VeriWeb:
Automatically Testing Dynamic Web Sites. In 11th

International World Wide Web Conference, 2002.

[6] BugBuster. BugBuster is a Software-as-a-Service
to Test Web Applications. http://bugbuster.com/.

[7] C. Cadar and D. Engler. Execution Generated Test
Cases: How to Make Systems Code Crash Itself. In
12th International Conference on Model Checking
Software, 2005.

[8] G. Di Lucca, A. Fasolino, F. Faralli, and U. De Car-
lini. Testing Web applications. In Journal of Soft-
ware Maintenance, 2002.

[9] S. Elbaum, S. Karre, and G. Rothermel. Improving
Web Application Testing with User Session Data.
In 25th International Conference on Software Engi-
neering, 2003.

[10] Y.-W. Huang, S.-K. Huang, T.-P. Lin, and C.-
H. Tsai. Web Application Security Assessment
by Fault Injection and Behavior Monitoring. In
12th International Conference on World Wide Web,
2003.

[11] F. Nentwich, N. Jovanovic, E. Kirda, C. Kruegel,
and G. Vigna. Cross-Site Scripting Prevention with
Dynamic Data Tainting and Static Analysis. In 14th

Network and Distributed System Security Sympo-
sium, 2007.

[12] G. Pellegrino and D. Balzarotti. Toward Black-Box
Detection of Logic Flaws in Web Applications. In
21st Network and Distributed System Security Sym-
posium, 2014.

[13] P. Pirolli, W.-T. Fu, R. Reeder, and S. K. Card. A
User-tracing Architecture for Modeling Interaction
with the World Wide Web. In First Working Con-
ference on Advanced Visual Interfaces, 2002.

15

[14] V. Rastogi, Y. Chen, and W. Enck. AppsPlay-
ground: Automatic Security Analysis of Smart-
phone Applications. In Third ACM Conference on
Data and Application Security and Privacy, 2013.

[15] Redspin Inc. Penetration Testing, Vulnerability As-
sessments and IT Security Audits. https://www.
redspin.com/.

[16] F. Ricca and P. Tonella. Analysis and Testing of
Web Applications. In 23rd International Confer-
ence on Software Engineering, 2001.

[17] P. Saxena, D. Akhawe, S. Hanna, F. Mao, S. McCa-
mant, and D. Song. A Symbolic Execution Frame-
work for JavaScript. In 31st IEEE Symposium on
Security and Privacy, 2010.

[18] R. Sekar. An Efficient Black-box Technique for De-
feating Web Application Attacks. In 16th Network
and Distributed System Security Symposium, 2009.

[19] Selenium development team. Selenium: Web ap-
plication testing system. https://selenium.org/.

[20] J. Somorovsky, A. Mayer, J. Schwenk, M. Kamp-
mann, and M. Jensen. On Breaking SAML: Be
Whoever You Want to Be. In 21st USENIX Secu-
rity Symposium, 2012.

[21] S. Sprenkle, E. Gibson, S. Sampath, and L. Pol-
lock. Automated Replay and Failure Detection
for Web Applications. In 20th IEEE/ACM Inter-
national Conference on Automated Software Engi-
neering, 2005.

[22] S. Sprenkle, E. Hill, and L. Pollock. Learning Ef-
fective Oracle Comparator Combinations for Web
Applications. In International Conference on Qual-
ity Software, 2007.

[23] S.-T. Sun and K. Beznosov. The Devil is in the
(Implementation) Details: An Empirical Analysis
of OAuth SSO Systems. In 19th ACM Conference
on Computer and Communications Security, 2012.

[24] TestingBot. Selenium Testing in the Cloud - Run
Your Cross Browser Tests in Our Online Selenium
Grid. http://testingbot.com/.

[25] R. Wang, S. Chen, and X. Wang. Signing Me
onto Your Accounts through Facebook and Google:
A Traffic-Guided Security Study of Commercially
Deployed Single-Sign-On Web Services. In 33rd

IEEE Symposium on Security and Privacy, 2012.

[26] R. Wang, S. Chen, X. Wang, and S. Qadeer. How
to Shop for Free Online – Security Analysis of

Cashier-as-a-Service Based Web Stores. In 32nd

IEEE Symposium on Security and Privacy, 2011.

[27] R. Wang, Y. Zhou, S. Chen, S. Qadeer, D. Evans,
and Y. Gurevich. Explicating SDKs: Uncover-
ing Assumptions Underlying Secure Authentica-
tion and Authorization. In 22nd USENIX Security
Symposium, 2013.

[28] Whitehat Security. Your Web Application Security
Company. https://www.whitehatsec.com/.

[29] Q. Xie and A. M. Memon. Model-Based Testing
of Community-Driven Open-Source GUI Applica-
tions. In 22nd IEEE International Conference on
Software Maintenance, 2006.

[30] L. Xing, Y. Chen, X. Wang, and S. Chen. In-
teGuard: Toward Automatic Protection of Third-
Party Web Service Integrations. In 20th Network
and Distributed System Security Symposium, 2013.

[31] Z. Yang, M. Yang, Y. Zhang, G. Gu, P. Ning, and
X. S. Wang. AppIntent: Analyzing Sensitive Data
Transmission in Android for Privacy Leakage De-
tection. In 20th ACM Conference on Computer and
Communications Security, 2013.

[32] C. Zheng, S. Zhu, S. Dai, G. Gu, X. Gong, X. Han,
and W. Zou. SmartDroid: An Automatic System
for Revealing UI-based Trigger Conditions in An-
droid Applications. In Second ACM Workshop on
Security and Privacy in Smartphones and Mobile
Devices, 2012.

[33] Y. Zhou and D. Evans. Technical Report: SSO-
Scan: Automated Testing of Web Applications
for Single Sign-On Vulnerabilities. https://www.
ssoscan.org/SSOScan-TR.pdf.

16

