

When Ants Attack: Security Issues for Stigmergic Systems

Weilin Zhong and David Evans
University of Virginia, Department of Computer Science

[weilin, evans]@virginia.edu

Abstract

Stigmergic systems solve global problems by
using indirect communication mediated by an
environment. Because they are localized and
dynamic, stigmergic systems are self-organizing,
robust and adaptive. These properties are useful
for creating survivable systems, but stigmergic
systems also raise new security concerns.
Indirect communication makes systems more
vulnerable in an open and hostile environment,
and feedback mechanisms common to stigmergic
algorithms can be exploited by attackers. In this
paper we use AntNet, an adaptive routing
algorithm inspired by biological ant foraging, to
explore some of the security issues for stigmergic
systems. We identify possible attacks and analyze
their potency. We propose and evaluate
mechanisms for defending against these attacks.

1 Introduction
Large-scale complex distributed systems,
such as peer-to-peer Intenet applications,
wireless ad hoc networks and distributed
sensor networks present both new problems
and opportunities. Stigmergic systems build
these applications by using indirect
communication mediated by a shared envi-
ronment [Grassé59]. These systems involve
many independent units interacting to
achieve global tasks.

Biology provides much inspiration for the
design of robust systems [Bonabeau99].
Social insects are well known for their
complex group behaviors emerging from the
cooperative behaviors of many small and
simple members. Without any leader or
centralized control, an insect colony solves
problems that are far beyond the capability
of any individual insect, such as finding
food or building nest. The intelligence of
social insect groups lies in their interactions,
which are achieved by altering and sensing
the concentration of chemical pheromones

in the common environment. Biologically
inspired algorithms have been developed for
many problems including communication
network routing problems [DiCaro98a,
DiCaro98b, Scho96, White97], distributed
intrusion detection and response [Fenet01],
graph exploration [Yanovski01], terrain
coverage [Koenig01] and designing peer-to-
peer applications [Montresor01]. All of
these use independent agents interacting in a
common environment to achieve global
properties.

The adaptability and decentralization of stig-
mergic systems make them intrinsically
resilient to certain classes of attacks.
Several researchers have argued for the
survivability of distributed, decentralized
systems. Fisher and Lipson propose using
emergent algorithms as a way to build
survivable systems and present an Internet
routing protocol based on this approach
[Fisher98]. They define emergent algor-
ithms as any computation that achieves
predictable global effects by communication
directly with only a bounded number of
immediate neighbors and without any cen-
tral control or global knowledge.
Stigmergic algorithms are a class of emer-
gent algorithms.

On the other hand, stigmergic systems offer
malicious intruders opportunities to wreak
havoc not available with traditional systems.
To our knowledge, this is the first work to
study security vulnerabilities of stigmergic
systems. In this paper, we study the security
issues and opportunities for AntNet
[DiCaro98a, DiCaro98b], an adaptive rou-
ting algorithm inspired by the stigmergic
model of ant foraging behaviors. The next
section describes AntNet. Section 3 analy-
zes vulnerabilities of AntNet and identifies

 2

three classes of attacks. The rest of the paper
analyzes those attacks and suggests
defensive mechanisms.

2 AntNet
AntNet [DiCaro98a, DiCaro98b] is an
adaptive routing algorithm inspired by ant
colonies. An AntNet node maintains
probabilistic entries in the routing table,
indicating the goodness of each output link
for each destination. AntNet nodes
periodically send out mobile agents known
as ant packets to explore paths to a specified
destination. There are two kinds of ant
packets: forward ants and backward ants.
Forward ants explore the network to find a
feasible and low-cost path, recording every
node it visits. Once it arrives at the
destination, it is converted into a backward
ant. The backward ant returns to the source
node following the path in reverse. At each
node, it measures the goodness of this path
based on ant trip time and increases the
corresponding goodness values associated
with the link that it comes from in the local
routing table.

Ants interact and communicate indirectly by
updating the routing tables, thus
collaboratively solve the global network
routing optimization problem. With ants
continuously collecting path information and
exploring new paths, AntNet is able to adapt
to changes in network topology and traffic
load. The decentralized and adaptive nature
of AntNet make it tolerate to faults and
resilient under traditional network attacks.

3 Vulnerabilities and Attacks
Much work has been done on the
vulnerabilities, attacks and defenses on
traditional routing protocols. [Vetter97,
Perlman88, Zhang98, Hauser99]. We focus
on the new vulnerabilities particular to the
stigmergic properties of AntNet.

AntNet includes no mechanisms to protect
and verify the routing information carried by
the ant agents. Nodes completely trust

information in all backward ants they
receive and update their routing tables
accordingly. AntNet would be vulnerable to
various attacks when operating in a hostile
environment. In particular, we consider
threats due to a compromised node. Similar
threats would result if a link was compro-
mised and an intruder was able to inject or
tamper with ant packets on the wire. We
assume that a node subverted by an intruder
can monitor, fabricate, replay, modify and
delete ant packets. The routing information
itself is not considered confidential so we
ignore routing information disclosure threats
and focus on integrity.

A successful attack perturbs the goodness
values in routing tables of other nodes.
These attacks lead to changes in packet
latency and throughput. The three most
basic attack mechanisms are to: fabricate ant
packets, drop ant packets, and tamper with
information in ant packets.

3.1 Fabrication Attacks
An attacker who compromises a node or link
can inject fabricated ant packets into the
system or replay observed ants. We simulate
this attack using the network topology
shown in Figure 1. We use the simple
network topology shown in Figure 1. Each
link is bi-directional and all link parameters
(transmission rate and propagation delay)
are identical. The network flows and ants are
generated by node 0 only and destined for
node 4. Ants are generated every 100ms and
contain 192 bits. Data packets are generated
at a constant rate with an average size of
1024 bits. We simulate AntNet using
OMNET++ [Varga01].

0

1

2 3

4

Figure 1. Experimental Network

 3

A subverted node 2 begins generating bogus
ants at the 200th second. It injects ten bogus
backward ants for every incoming backward
ant to falsely promote the link 0→2. The
bogus ant has a path 0234 and a trip time
4.8ms, which is the optimal trip time of path
0234 without congestion. We can see from
Figure 2 that node 2 can easily deceive node
0 into believing link 0→2 was the best link
towards node 4.

The easiest way to defend against a
fabricated or replayed ant attack is to simply
record legitimate ant packets by assigning
them unique identifiers. We can uniquely
identify each ant by the tuple <source, id >
where source uniquely identifies the node
that generates the ant and the unique id is a
local counter on the generating node. Each
node maintains a list of all passing forward

ants and only accepts those backward ants
whose identity tuple is contained in that list.
Once a legitimate backward ant arrives, its
identifier is deleted from the list, thereby
preventing replay attacks. Backward ants
that do not have a valid ID are dropped and
ignored. Entries in the list expire and are
removed if a corresponding backward ant
does not arrive within a threshold time.
Figure 3 demonstrates that the ant ID
mechanism effectively defends AntNet from
a bogus attack.

3.2 Dropping Attacks
Dropping ant packets is not easy to detect
and is often indistinguishable from real
network failure. But the effectiveness of
dropping ant attacks is limited by the
location of the compromised node.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 100 200 300 400 500 600 700 800 900 1000

G
oo

dn
es

s

Simulation Time (Sec)

Node 0 Routing Table

0 →1

0 → 2 0 → 1

0→2

Figure 2. Node 2 generates bogus ants with path 0234 starting from 200th sec. Link 0→2 achieves goodness
value higher than threshold value 0.7 soon and becomes the chosen path.

3.2

3.4

3.6

3.8

4.0

4.2

4.4

4.6

4.8

0 100 200 300 400 500 600 700 800 900 1000

A
ve

ra
ge

 P
ac

ke
t L

at
en

cy
 (

m
s)

Simulation Time (Sec)

AntNet Packet Latency

bogus ants

defense bogus ants

Figure 3. Average packet latency of two scenarios: bogus attack, and attack with defense method.

 4

When an attacker subverts a node on the
best path between two points, it can discredit
good paths by selectively dropping ant
packets. If the compromised node is not on
the best path, dropping ant packets is not an
effective attack, since it would just repel the
traffic from this path, which would make
AntNet find the best path more quickly.

To illustrate how dropping ant packets can
be effective, we use a revised network
topology shown in Figure 4 with both data
and ants flowing from node 0 to node 5. We
simulate the attack where node 4 selectively
drops ant packets that have visited node 1.
Under this attack, path 014 is not reinforced
and will soon be abandoned. Data packets
will all be routed through path 0234. The
average packet latency under attack
compared with packet lantency without
attack is shown in Figure 5. Node 4 could
use this attack to usurp the link between

itself and node 1. Instead of just harming
another node, this attack directly benefits the
attacker by removing competition for net-
work resources.

4 Tampering Attacks

A backward ant records the path trip time by
maintaining the sum of the local link latency
estimated along the reverse path. Beginning
at the destination node, the trip time is set to
0. When a backward ant arrives at a node x
coming from an adjacent node y, the link
latency L(x, y) of the link x→y is estimated
based on the local workload and queue
length and added to the trip time Ty→dest
carried by this ant to get Tx→dest = L(x, y) +
Ty→dest. When a backwards ant reaches the
source node, the whole trip time of source
node to destination node, Tsrc→dest is known.

Given network topology as in Figure 1 using
setup described in 3.1, the uncongested
single link latency is 1.6ms. Suppose a
malicious attacker compromises node 2 and
can tamper with passing backward ants,
setting up the trip time T2→4 to 0ms (or a
negligibly small value; a negative value may
also be possible but can be easily detected).
At node 0 the trip time of path 0234 is
calculated as 1.6ms instead of 4.8ms,
making path 0234 appear faster than path
014. The experiment shown in Figure 6

0

1

2 3

4 5

Figure 4. Network topology for drop ant

packets experiment.

5

5.5

6.0

6.5

7.0

7.5

8.0

0 100 200 300 400 500 600 700 800 900 1000

A
ve

ra
ge

 P
ac

ke
t L

at
en

cy
 (

m
s)

Simulation Time (Sec)

AntNet Packet Latency

Drop Ants

No Attack

Figure 5. Average Packet Latency. Node 4 drops forward ants that have visited node 1. Packet
latency under attack will soon approach 6.4ms, the trip time of path 02345.

 5

illustrates what happens when node 2
tampers with the trip time information
carried by passing ants from 200th second in
the simulation. This attack is effective in
switching the routing probabilities at node 0
to direct all data packets through the
compromised node. Next we discuss the
locality properties of AntNet which help to
limit the effectiveness of tampering attacks,
and then consider some cryptographic
defenses.

4.1 Locality of Damages
Consider an attacker who wants to prevent
data packets from being routed through the
best path. A compromised node on the best
path between source and destination nodes
can easily achieve that by lying that the best
path takes extremely long time. Hence, we
only consider compromised node not along
the best path. In this case, the attacker’s goal
is to attract packets towards that inferior
path. The attacker can achieve this in two
ways: modifying trip time information
carried by ants or injecting bogus ants to
promote this path. As discussed in Section
3.1, bogus ants can be easily detected using
ant identifiers, so the only attack likely to
succeed is to modify recorded trip times. We
should see that the capability of a malicious
node to succeed with the tampering attack is
highly location dependent.

When a backward ant arrives at each node,
the path latency from current node to the
ant’s destination is estimated by adding
locally estimated link latency to the trip time
information carried by this backwards ant.
A malicious node can alter the trip time
from itself to the target destination. The
maximal lie is to record the trip time as 0.
The malicious node can do nothing to alter
the trip time for the remaining part of the
path.

Consider the network in Figure 7. Suppose
link latency is 1 for all links. The best path
is 014 with a trip time 2. The maximal lie
that malicious node 2 can tell is that the trip
time from itself to node 4 is 0. So malicious
node 2 can make node 0 believe that path
0234 has a trip time 1, which is better than
path 014. Instead, if node 3 were malicious,
it could not tamper with the trip time on the

0.0032

0.0034

0.0036

0.0038

0.004

0.0042

0.0044

0.0046

0.0048

0 100 200 300 400 500 600 700 800 900 1000

A
ve

ra
ge

 P
ac

ke
t L

at
en

cy
 (

S
ec

)

Simulation Time (Sec)

AntNet Packet Latency

pdel

Figure 6. Tampering Attack Effectivness. Node 2 tampers with passing ants stating as time 200s.
Packet latency gradually increases from 3.2ms (path 014) to 4.8ms (path 0234).

0

1

2 3

4

5

Figure 7. Network topology for locality.

 6

return path from 3→0, which has a trip time
2, so it can only make path 0234 as good as
path 014, hence, 50% of network traffic will
go through this link. A compromised node 5
can do nothing to make the path 02354
better than the best path 014.

Intuitively, those nodes that have a distance
coming from source node S shorter than the
shortest distance from S to D can perturb
flows between a source and destination node
by tampering attacks. They form a critical
region:

In a network N, the critical region for
S and D is the set of all nodes x where
there is a path S→x with latency less
than or equal to the latency of the best
path S→D.

We can visualize the critical region as a
circle centered at source node S, with a
radius of the best path latency shown in
Figure 8. Since the latency of the best path
changes according to network situation,
membership in the critical region is
dependent on current network conditions.

In order to carry out effective tampering
attacks on a pair of notes, a compromised
node must be in the critical region. An
external node cannot influence the traffic
flows between the source and destination
node by tampering, although it could
attempt to increase the latency (and hence,
the size of the critical region) by network
flooding attacks. An external node may be
able to introduce some traffic congestion on

the best path to enlarge the radius of the
critical region to include itself. This attack
requires the external node to transmit a large
number of packets, and is highly dependent
on the network topology and location of
malicious node. Once the critical region has
grown to include the external node, it must
continue to create the network congestion
otherwise the routing information will
quickly recover to the original best path.

4.2 Mitigating Tampering Attacks
Because of the locality properties, we need
only defend against tampering attacks from
nodes within the critical region. One way to
defend against tampering attacks is to use
cryptographic to verify the integrity of path
information carried by ants.

Public key signatures have been used to
provide authenticity and integrity for
traditional routing protocols [Murphy96,
Smith96]. Link state routing algorithms,
such as OSPF, flood routing information to
the whole network, so the source of the
routing information can be determined. Thus
public key signatures can provide the
required source authentication and integrity.
However, in distance-vector routing
algorithms, nodes integrate and propagate
routing updates so the original source of
information cannot be determined.

AntNet is similar to distance vector routing
protocols in that a node possesses only
knowledge of local links and receives
summaries of path latency information from
its neighbors. One proposed solution secures

Critical Region

External Node

External Node
Source

destination

Figure 8. Critical region. The shortest path is 3 hops. With no congestion, nodes further than 3 hops away
from source are external to the critical region between source and destination.

 7

distance-vector routing protocol by adding
predecessor information in routing updates
and using path traversal mechanisms to
verify the whole path [Smith96].

We can use similar technique to protect
AntNet from tampering attacks as shown in
Figure 9. Assume each node has a public-
private key pair whose public key can be
securely obtained by all other nodes (note
that the critical region limits the number of
nodes to consider). Along the forward path,
every node signs the successor it chooses to
prevent tampering of the path information.
The signed proof contains the ant identifier
n, the current node’s identity, and the
identity of its successor. The destination
node verifies the integrity of the whole path
and signs the complete path. Assuming the
destination node is trustworthy, the signed
proofs generated by intermediate nodes can
be removed from backward ant. On the
returning path, each node signs the locally
estimated link latency. The source node
verifies the path by verifying the signature
of destination node and verifies the trip time
by verifying link latencies signed by all the
intermediate nodes. The tampering of trip
time is limited: a malicious node can only lie
about the delay of the link between itself and
its successor.

The cryptographic technique discussed
above is too expensive for many applica-
tions in which we wish to use stigmergic
algorithms. It requires public key operations

at every node on the path for both directions.
A less expensive but less robust technique is
to use verification ants whenever the
goodness of a link goes up to the threshold.
Before change the routings, the node sends
out a verification ant containing a nonce to
measure the trip time required to reach the
destination node. The verification ant should
go through the data queues and follows the
best links along all intermediate nodes,
trying to reach destination node as soon as
possible. The destination node signs the
verification ant and sends it back to the
source node. The source node only cares
whether a link should be set up as the best
link for specific destination, so it only wants
to test whether going from the tested link
can reach the destination within the ant
estimated trip time. Therefore, source node
does not care which path this test ant
actually goes through as long as it reaches
the destination node coming and returning
from the tested link. There are two options
for calculating the one-way trip time from
the source to the destination. The first option
is to assume the time is similar in both
directions, and just estimate the one-way trip
time is half of the round-trip time. This
assumption is often unrealistic for typical
networks. The second option is to assume
clock synchronization among nodes. Clock
synchronization can be achieved by some
time synchronization protocols or GPS
service [Tanenbaum95]. In this case, the
destination node includes a signed
timestamp in the return packet.

A B C D

backward

1. {n,A,B}S A

forward
2.{n,B,C}S B
 {n,A,B}S A

3.{n,C,D}S C
 {n,B,C}S B
 {n,A,B}S A

4.{n,ABCD,0}S D

5.{n,ABCD,0}S D
 {n,C,D,T CD }S C

6.{n,ABCD,0}S D
 {n,C,D,T CD }S C
 {n,B,C,T BC }S B

7.{n,ABCD,0}S D
 {n,C,D,T CD }S C
 {n,B,C, T BC }S B
 {n,A,B, T AB }S A

{X}Si: X signed by node

Figure 9. Digital Signature Path Authentication

 8

5 Summary

Stigmergic systems offer new opportunities
for building secure systems by taking advan-
tage of decentralized control and indirect
communication. The decentralized and
adaptive properties of AntNet, typical of
stigmergic systems, provide desirable
security properties without any crypto-
graphic mechanisms. AntNet can be made
resilient to all except on of the attack classes
we identified with simple, lightweight
mechanisms. The exception was tampering
attacks, but locality properties limit the need
for cryptographic defenses.

Our work is a first step towards under-
standing some of the security risks associa-
ted with stigmergic systems. As these types
of systems become more widely used to
develop survivable and adaptive systems, it
is important that the new vulnerabilities they
introduce are also considered.

Acknowledgements

This work was funded in part by the National
Science Foundation (CCR-0092945). Gianni Di
Caro provided source code to an implementation
of AntNet, and graciously assisted us in adapting
it for our experiments.

References

[Bonabeau99] Eric Bonabeau, Marco Dorigo,
Guy Theraulaz. Swarm Intelligence: from
Natural to Artificial Systems, Santa Fe
Institute, Oxford University Press, 1999.

[DiCaro98a] Gianni Di Caro, AntNet:
Distributed Stigmergic Control for
Communications Networks, Journal of
Artificial Intelligence Research 9 (1998):
317-365.

[DiCaro98b] Gianni Di Caro. Two Ant Colony
Algorithms for Best-effort Routing in
Datagram Networks. 10th IASTED
International Conference on Parallel and
Distributed Computing and Systems
(PDCS’98). IASTED/ACTA Press, 1998.

[Fenet01] Serge Fenet, Salima Hassas. A
distributed Intrusion Detection and
Response System Based on mobile
autonomous agents using social insects

communication paradigm. First
International Workshop on Security of
Mobile Multiagent Systems, 2001.

[Fisher98] David A. Fisher and Howard F.
Lipson. Emergent Algorithms - A New
Method for Enhancing Survivability in
Unbounded Systems. Proceedings of the
Thirty-second Annual Hawaii International
Conference on System Sciences. 1998.

[Grassé59] Grassé, P.-P. La Reconstruction du
nid et les Coordinations Inter-Individuelles
chez Bellicositermes Natalensis et
Cubitermes sp. La théorie de la
Stigmergie:Essai ďinterprétation du
Comportement des Termites Constructeurs.
Insect. Soc.6 (1959).

[Hauser99] Ralf Hauser, Tony Przygienda and
Gene Tsudik. Lowering security overhead
in link state routing. Computer Networks,
Volume 31 Number 8. 1999.

[Koenig01] Sven Koenig, B. Szymanski and Y.
Liu. Efficient and Inefficient Ant Coverage
Methods. Annals of Mathematics and
Artificial Intelligence. Vol 31, Issue 1/4.
2001.

[Kong01] Jiejun Kong, Petros Zerfos, Haiyun
Luo, Songwu Lu, Lixia Zhang. Providing
Robust and Ubiquitous Security Support for
Mobile Ad-hoc Networks. IEEE 9th
International Conference on Network
Protocols (ICNP). November 2001,

[Kurose01] James F. Kurose, Keith W.Ross.
Computer Networking: A Top-Down
Approach Featuring the Internet. Addison
Wesley, 2001

[Montresor01] Alberto Montresor. Anthill: a
Framework for the Design and Analysis of
Peer-to-Peer Systems. 4th European
Research Seminar on Advances in
Distributed Systems. May 2001.

[Murphy96] S. Murphy and M. Badger. Digital
Signature Protection of the OSPF Routing
Protocol. Internet Society Symposium on
Network and Distributed Systems Security,
1996.

[Perlman88] R. Perlman. Network Layer
Protocol with Byzantine Agreement. MIT
PhD Thesis (available as MIT LCS TR-
429). October 1998.

[Scho96] R.Schoonderwoerd, O.Holland,
J.Bruten and L.Rothkrantz. Ant-based load
balancing in telecommunications networks.
Adapt. Behav. 5 (1996): 169-207.

 9

[Smith96] Bradley R.Smith, Shree Murthy, J.J.
Garcia-Luna-Aceves. Securing Distance-
Vector Routing protocols. IEEE/ISOC
Symposiums on Network and Distributed
System Security, 1996.

[Tanenbaum95] Andrew S. Tanebaum,
“Distributed Operating Systems,” pp.118 –
133, 1995, Prentice-Hall, Inc.

[Varga01] András Varga. OMNeT++: a discrete
event simulation tool.
http://www.hit.bme.hu/phd/vargaa/omnetpp
.htm.

[Vetter97] Brian Vetter, Feiyi Wang and S. Felix
Wu. An Experimental Study of Insider
Attacks for the OSPF Routing Protocol.
5th IEEE International Conference on

Network Protocols, Atlanta, GA. IEEE
press, October 1997.

[White97] T. White. Routing with swarm
intelligence. Technical Report SCE97-15,
Systems and Computer Engineering
Department, Carleton University,
September, 1997.

[Yanovski01] Vladimir Yanovski, Israel A.
Wagner, Alfred M. Bruckstein. Computer
Vertex-Ant-Walk – A robust method for
efficient exploration of faulty graph.
Annals of Mathematics and Artificial
Intelligence. Volume 31, Issue 1/4. 2001.

[Zhang98] Kan Zhang. Efficient Protocols for
Signing Routing Messages. Symposium on
Network and Distributed Systems Security
(NDSS). 1998.

