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Abstract 

Stigmergic systems solve global problems by 
using indirect communication mediated by an 
environment. Because they are localized and 
dynamic, stigmergic systems are self-organizing, 
robust and adaptive. These properties are useful 
for creating survivable systems, but stigmergic 
systems also raise new security concerns. 
Indirect communication makes systems more 
vulnerable in an open and hostile environment, 
and feedback mechanisms common to stigmergic 
algorithms can be exploited by attackers.  In this 
paper we use AntNet, an adaptive routing 
algorithm inspired by biological ant foraging, to 
explore some of the security issues for stigmergic 
systems. We identify possible attacks and analyze 
their potency.  We propose and evaluate 
mechanisms for defending against these attacks. 
 
1 Introduction 
Large-scale complex distributed systems, 
such as peer-to-peer Intenet applications, 
wireless ad hoc networks and distributed 
sensor networks present both new problems 
and opportunities. Stigmergic systems build 
these applications by using indirect 
communication mediated by a shared envi-
ronment [Grassé59].  These systems involve 
many independent units interacting to 
achieve global tasks. 
 
Biology provides much inspiration for the 
design of robust systems [Bonabeau99]. 
Social insects are well known for their 
complex group behaviors emerging from the 
cooperative behaviors of many small and 
simple members. Without any leader or 
centralized control, an insect colony solves 
problems that are far beyond the capability 
of any individual insect, such as finding 
food or building nest. The intelligence of 
social insect groups lies in their interactions, 
which are achieved by altering and sensing 
the concentration of chemical pheromones 

in the common environment.  Biologically 
inspired algorithms have been developed for 
many problems including communication 
network routing problems [DiCaro98a, 
DiCaro98b, Scho96, White97], distributed 
intrusion detection and response [Fenet01], 
graph exploration [Yanovski01], terrain 
coverage [Koenig01] and designing peer-to-
peer applications [Montresor01]. All of 
these use independent agents interacting in a 
common environment to achieve global 
properties.  
 
The adaptability and decentralization of stig-
mergic systems make them intrinsically 
resilient to certain classes of attacks.  
Several researchers have argued for the 
survivability of distributed, decentralized 
systems. Fisher and Lipson propose using 
emergent algorithms as a way to build 
survivable systems and present an Internet 
routing protocol based on this approach 
[Fisher98].  They define emergent algor-
ithms as any computation that achieves 
predictable global effects by communication 
directly with only a bounded number of 
immediate neighbors and without any cen-
tral control or global knowledge.  
Stigmergic algorithms are a class of emer-
gent algorithms.  
 
On the other hand, stigmergic systems offer 
malicious intruders opportunities to wreak 
havoc not available with traditional systems.  
To our knowledge, this is the first work to 
study security vulnerabilities of stigmergic 
systems. In this paper, we study the security 
issues and opportunities for AntNet 
[DiCaro98a, DiCaro98b], an adaptive rou-
ting algorithm inspired by the stigmergic 
model of ant foraging behaviors.  The next 
section describes AntNet.  Section 3 analy-
zes vulnerabilities of AntNet and identifies 
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three classes of attacks. The rest of the paper 
analyzes those attacks and suggests 
defensive mechanisms.  
 
2 AntNet 
AntNet [DiCaro98a, DiCaro98b] is an 
adaptive routing algorithm inspired by ant 
colonies. An AntNet node maintains 
probabilistic entries in the routing table, 
indicating the goodness of each output link 
for each destination. AntNet nodes 
periodically send out mobile agents known 
as ant packets to explore paths to a specified 
destination. There are two kinds of ant 
packets: forward ants and backward ants. 
Forward ants explore the network to find a 
feasible and low-cost path, recording every 
node it visits. Once it arrives at the 
destination, it is converted into a backward 
ant. The backward ant returns to the source 
node following the path in reverse. At each 
node, it measures the goodness of this path 
based on ant trip time and increases the 
corresponding goodness values associated 
with the link that it comes from in the local 
routing table.  
 
Ants interact and communicate indirectly by 
updating the routing tables, thus 
collaboratively solve the global network 
routing optimization problem.  With ants 
continuously collecting path information and 
exploring new paths, AntNet is able to adapt 
to changes in network topology and traffic 
load. The decentralized and adaptive nature 
of AntNet make it tolerate to faults and 
resilient under traditional network attacks.  
 
3 Vulnerabilities and Attacks 
Much work has been done on the 
vulnerabilities, attacks and defenses on 
traditional routing protocols. [Vetter97, 
Perlman88, Zhang98, Hauser99].  We focus 
on the new vulnerabilities particular to the 
stigmergic properties of AntNet. 
 
AntNet includes no mechanisms to protect 
and verify the routing information carried by 
the ant agents. Nodes completely trust 

information in all backward ants they 
receive and update their routing tables 
accordingly. AntNet would be vulnerable to 
various attacks when operating in a hostile 
environment. In particular, we consider 
threats due to a compromised node.  Similar 
threats would result if a link was compro-
mised and an intruder was able to inject or 
tamper with ant packets on the wire. We 
assume that a node subverted by an intruder 
can monitor, fabricate, replay, modify and 
delete ant packets. The routing information 
itself is not considered confidential so we 
ignore routing information disclosure threats 
and focus on integrity.  
 
A successful attack perturbs the goodness 
values in routing tables of other nodes. 
These attacks lead to changes in packet 
latency and throughput. The three most 
basic attack mechanisms are to: fabricate ant 
packets, drop ant packets, and tamper with 
information in ant packets.  

3.1 Fabrication Attacks 
An attacker who compromises a node or link 
can inject fabricated ant packets into the 
system or replay observed ants. We simulate 
this attack using the network topology 
shown in Figure 1.  We use the simple 
network topology shown in Figure 1. Each 
link is bi-directional and all link parameters 
(transmission rate and propagation delay) 
are identical. The network flows and ants are 
generated by node 0 only and destined for 
node 4. Ants are generated every 100ms and 
contain 192 bits.  Data packets are generated 
at a constant rate with an average size of 
1024 bits.  We simulate AntNet using 
OMNET++ [Varga01].   
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Figure 1.  Experimental Network 
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A subverted node 2 begins generating bogus 
ants at the 200th second. It injects ten bogus 
backward ants for every incoming backward 
ant to falsely promote the link 0→2. The 
bogus ant has a path 0234 and a trip time 
4.8ms, which is the optimal trip time of path 
0234 without congestion. We can see from 
Figure 2 that node 2 can easily deceive node 
0 into believing link 0→2 was the best link 
towards node 4. 
 
The easiest way to defend against a 
fabricated or replayed ant attack is to simply 
record legitimate ant packets by assigning 
them unique identifiers.  We can uniquely 
identify each ant by the tuple <source, id > 
where source uniquely identifies the node 
that generates the ant and the unique id is a 
local counter on the generating node. Each 
node maintains a list of all passing forward 

ants and only accepts those backward ants 
whose identity tuple is contained in that list. 
Once a legitimate backward ant arrives, its 
identifier is deleted from the list, thereby 
preventing replay attacks. Backward ants 
that do not have a valid ID are dropped and 
ignored. Entries in the list expire and are 
removed if a corresponding backward ant 
does not arrive within a threshold time. 
Figure 3 demonstrates that the ant ID 
mechanism effectively defends AntNet from 
a bogus attack.   

3.2 Dropping Attacks 
Dropping ant packets is not easy to detect 
and is often indistinguishable from real 
network failure. But the effectiveness of 
dropping ant attacks is limited by the 
location of the compromised node. 
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Figure 2. Node 2 generates bogus ants with path 0234 starting from 200th sec. Link 0→2 achieves goodness 
value higher than threshold value 0.7 soon and becomes the chosen path.  
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Figure 3. Average packet latency of two scenarios: bogus attack, and attack with defense method. 
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When an attacker subverts a node on the 
best path between two points, it can discredit 
good paths by selectively dropping ant 
packets.  If the compromised node is not on 
the best path, dropping ant packets is not an 
effective attack, since it would just repel the 
traffic from this path, which would make 
AntNet find the best path more quickly.  
 
To illustrate how dropping ant packets can 
be effective, we use a revised network 
topology shown in Figure 4 with both data 
and ants flowing from node 0 to node 5. We 
simulate the attack where node 4 selectively 
drops ant packets that have visited node 1. 
Under this attack, path 014 is not reinforced 
and will soon be abandoned. Data packets 
will all be routed through path 0234. The 
average packet latency under attack 
compared with packet lantency without 
attack is shown in Figure 5.  Node 4 could 
use this attack to usurp the link between 

itself and node 1. Instead of just harming 
another node, this attack directly benefits the 
attacker by removing competition for net-
work resources. 
 
4 Tampering Attacks 

A backward ant records the path trip time by 
maintaining the sum of the local link latency 
estimated along the reverse path. Beginning 
at the destination node, the trip time is set to 
0. When a backward ant arrives at a node x 
coming from an adjacent node y, the link 
latency L(x, y) of the link x→y  is estimated 
based on the local workload and queue 
length and added to the trip time Ty→dest 
carried by this ant to get Tx→dest = L(x, y) + 
Ty→dest. When a backwards ant reaches the 
source node, the whole trip time of source 
node to destination node, Tsrc→dest is known.  
 
Given network topology as in Figure 1 using 
setup described in 3.1, the uncongested 
single link latency is 1.6ms. Suppose a 
malicious attacker compromises node 2 and 
can tamper with passing backward ants, 
setting up the trip time T2→4 to 0ms (or a 
negligibly small value; a negative value may 
also be possible but can be easily detected). 
At node 0 the trip time of path 0234 is 
calculated as 1.6ms instead of 4.8ms, 
making path 0234 appear faster than path 
014. The experiment shown in Figure 6 
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Figure 5. Average Packet Latency. Node 4 drops forward ants that have visited node 1. Packet 
latency under attack will soon approach 6.4ms, the trip time of path 02345. 
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illustrates what happens when node 2 
tampers with the trip time information 
carried by passing ants from 200th second in 
the simulation. This attack is effective in 
switching the routing probabilities at node 0 
to direct all data packets through the 
compromised node. Next we discuss the 
locality properties of AntNet which help to 
limit the effectiveness of tampering attacks, 
and then consider some cryptographic 
defenses. 

4.1 Locality of Damages 
Consider an attacker who wants to prevent 
data packets from being routed through the 
best path. A compromised node on the best 
path between source and destination nodes 
can easily achieve that by lying that the best 
path takes extremely long time. Hence, we 
only consider compromised node not along 
the best path. In this case, the attacker’s goal 
is to attract packets towards that inferior 
path. The attacker can achieve this in two 
ways:  modifying trip time information 
carried by ants or injecting bogus ants to 
promote this path. As discussed in Section 
3.1, bogus ants can be easily detected using 
ant identifiers, so the only attack likely to 
succeed is to modify recorded trip times. We 
should see that the capability of a malicious 
node to succeed with the tampering attack is 
highly location dependent.  

 
When a backward ant arrives at each node, 
the path latency from current node to the 
ant’s destination is estimated by adding 
locally estimated link latency to the trip time 
information carried by this backwards ant.  
A malicious node can alter the trip time 
from itself to the target destination. The 
maximal lie is to record the trip time as 0. 
The malicious node can do nothing to alter 
the trip time for the remaining part of the 
path.  
 
Consider the network in Figure 7. Suppose 
link latency is 1 for all links. The best path 
is 014 with a trip time 2. The maximal lie 
that malicious node 2 can tell is that the trip 
time from itself to node 4 is 0. So malicious 
node 2 can make node 0 believe that path 
0234 has a trip time 1, which is better than 
path 014. Instead, if node 3 were malicious, 
it could not tamper with the trip time on the 
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Figure 6. Tampering Attack Effectivness. Node 2 tampers with passing ants stating as time 200s.  
Packet latency gradually increases from 3.2ms (path 014) to 4.8ms (path 0234). 
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return path from 3→0, which has a trip time 
2, so it can only make path 0234 as good as 
path 014, hence, 50% of network traffic will 
go through this link. A compromised node 5 
can do nothing to make the path 02354 
better than the best path 014.  
 
Intuitively, those nodes that have a distance 
coming from source node S shorter than the 
shortest distance from S to D can perturb 
flows between a source and destination node 
by tampering attacks. They form a critical 
region:  
 

In a network N, the critical region for 
S and D is the set of all nodes x where 
there is a path S→x with latency less 
than or equal to the latency of the best 
path S→D. 

 
We can visualize the critical region as a 
circle centered at source node S, with a 
radius of the best path latency shown in 
Figure 8. Since the latency of the best path 
changes according to network situation, 
membership in the critical region is 
dependent on current network conditions.  
 
In order to carry out effective tampering 
attacks on a pair of notes, a compromised 
node must be in the critical region. An 
external node cannot influence the traffic 
flows between the source and destination 
node by tampering, although it could 
attempt to increase the latency (and hence, 
the size of the critical region) by network 
flooding attacks.   An external node may be 
able to introduce some traffic congestion on 

the best path to enlarge the radius of the 
critical region to include itself.  This attack 
requires the external node to transmit a large 
number of packets, and is highly dependent 
on the network topology and location of 
malicious node.  Once the critical region has 
grown to include the external node, it must 
continue to create the network congestion 
otherwise the routing information will 
quickly recover to the original best path. 

4.2 Mitigating Tampering Attacks 
Because of the locality properties, we need 
only defend against tampering attacks from 
nodes within the critical region.  One way to 
defend against tampering attacks is to use 
cryptographic to verify the integrity of path 
information carried by ants.   
 
Public key signatures have been used to 
provide authenticity and integrity for 
traditional routing protocols [Murphy96, 
Smith96]. Link state routing algorithms, 
such as OSPF, flood routing information to 
the whole network, so the source of the 
routing information can be determined. Thus 
public key signatures can provide the 
required source authentication and integrity. 
However, in distance-vector routing 
algorithms, nodes integrate and propagate 
routing updates so the original source of 
information cannot be determined.  
 
AntNet is similar to distance vector routing 
protocols in that a node possesses only 
knowledge of local links and receives 
summaries of path latency information from 
its neighbors. One proposed solution secures 
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Figure 8. Critical region. The shortest path is 3 hops. With no congestion, nodes further than 3 hops away 
from source are external to the critical region between source and destination. 
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distance-vector routing protocol by adding 
predecessor information in routing updates 
and using path traversal mechanisms to 
verify the whole path [Smith96]. 
 
We can use similar technique to protect 
AntNet from tampering attacks as shown in 
Figure 9. Assume each node has a public-
private key pair whose public key can be 
securely obtained by all other nodes (note 
that the critical region limits the number of 
nodes to consider).  Along the forward path, 
every node signs the successor it chooses to 
prevent tampering of the path information. 
The signed proof contains the ant identifier 
n, the current node’s identity, and the 
identity of its successor. The destination 
node verifies the integrity of the whole path 
and signs the complete path. Assuming the 
destination node is trustworthy, the signed 
proofs generated by intermediate nodes can 
be removed from backward ant. On the 
returning path, each node signs the locally 
estimated link latency. The source node 
verifies the path by verifying the signature 
of destination node and verifies the trip time 
by verifying link latencies signed by all the 
intermediate nodes. The tampering of trip 
time is limited: a malicious node can only lie 
about the delay of the link between itself and 
its successor.  
 
The cryptographic technique discussed 
above is too expensive for many applica-
tions in which we wish to use stigmergic 
algorithms. It requires public key operations 

at every node on the path for both directions. 
A less expensive but less robust technique is 
to use verification ants whenever the 
goodness of a link goes up to the threshold.  
Before change the routings, the node sends 
out a verification ant containing a nonce to 
measure the trip time required to reach the 
destination node. The verification ant should 
go through the data queues and follows the 
best links along all intermediate nodes, 
trying to reach destination node as soon as 
possible. The destination node signs the 
verification ant and sends it back to the 
source node.  The source node only cares 
whether a link should be set up as the best 
link for specific destination, so it only wants 
to test whether going from the tested link 
can reach the destination within the ant 
estimated trip time. Therefore, source node 
does not care which path this test ant 
actually goes through as long as it reaches 
the destination node coming and returning 
from the tested link.  There are two options 
for calculating the one-way trip time from 
the source to the destination. The first option 
is to assume the time is similar in both 
directions, and just estimate the one-way trip 
time is half of the round-trip time. This 
assumption is often unrealistic for typical 
networks.  The second option is to assume 
clock synchronization among nodes. Clock 
synchronization can be achieved by some 
time synchronization protocols or GPS 
service [Tanenbaum95]. In this case, the 
destination node includes a signed 
timestamp in the return packet.  
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5 Summary  

Stigmergic systems offer new opportunities 
for building secure systems by taking advan-
tage of decentralized control and indirect 
communication. The decentralized and 
adaptive properties of AntNet, typical of 
stigmergic systems, provide desirable 
security properties without any crypto-
graphic mechanisms. AntNet can be made 
resilient to all except on of the attack classes 
we identified with simple, lightweight 
mechanisms.  The exception was tampering 
attacks, but locality properties limit the need 
for cryptographic defenses.  
 
Our work is a first step towards under-
standing some of the security risks associa-
ted with stigmergic systems.  As these types 
of systems become more widely used to 
develop survivable and adaptive systems, it 
is important that the new vulnerabilities they 
introduce are also considered. 
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