

Frosting: Doing Cool Stuff with Computers

NCAA Definition

The current core-curriculum areas were legislated in the early 1980's. At that time, computer-science courses were programming based and academic in nature. In today's secondary education environment, the vast majority of computer courses no longer contain programming elements but teach life skills, such as the use of a desktop computer and software applications. Although these software and keyboarding skills may be beneficial to college-bound students, they are not academic in nature. ... It should be noted that computer courses that include a significant element of programming might be encompassed in the mathematicscurriculum requirement.

Revision of NCAA Eligibility Requirements, August 2005

Longest Words?

honorificabilitudinitatibus (27 letters, longest by Shakespeare) With honor.
antidisestablishmentarianism (28 letters)
Movement against division of church and state.
hippopotomonstrosesquipedaliophobia (35 letters)
Fear of long words.
pneumonoultramicroscopicsilicovolcanoconiosis (45 letters) (longest word in most dictionaries)
Lung disease contracted from volcanic particles.
Like all words, these words are "made up".

Language is Recursive

No matter what word you think is the longest word, I can always make up a longer one!

$$
\text { word }::=\text { anti-word }
$$

By itself, this definition of word is circular.

Making Longer Words

antihippopotomonstrosesquipedaliophobia
Against the fear of long words.
antiantihippopotomonstrosesquipedaliophobia
Against a thing against the fear of long words.

Recursive Definitions Everywhere

- Language
- Words, Sentences, Structures
- Nature
- Plant Growth, Quantum Physics, DNA
- Mathematics
- Numbers, Arithmetic Algorithms
- Music
- Harmony, structure
- Computing
- Data, procedures

Wes Weimer may talk more about this tomorrow!

Biggest Number Game

- When I say "GO", write down the biggest number you can in 30 seconds.
- Requirement:
- Must be an exact number
- Must be defined mathematically
- Biggest number wins!

Modeling Computers

- Input
- Without it, we can't describe a problem
- Output
- Without it, we can't get an answer
- Processing
- Need some way of getting from the input to the output
- Memory
- Need to keep track of what we are doing

Turing's Model

"Computing is normally done
 by writing certain symbols on paper. We may suppose this paper is divided into squares like a child's arithmetic book."

Alan Turing, On computable numbers, with an application to the Entscheidungsproblem, 1936

Modeling Pencil and Paper

How long should the tape be?

Modeling Output

- Blinking lights are cool, but hard to model
- Use the tape: output is what is written on the tape at the end

Modeling Processing

- Evaluation Rules
- Given an input on our tape, how do we evaluate to produce the output
- What do we need:
- Read what is on the tape at the current square
- Move the tape one square in either direction
- Write into the current square

Modeling Processing (Brains)

Questions about Turing's Model

- How well does it match "real" computers?
- Can it do everything they can do?
- Can they do everything it can do?
- Does it help us understand and reason about computing?

Church-Turing Thesis

- All mechanical computers are equally powerful*
*Except for practical limits like memory size, time, display, energy, etc.
- There exists some Turing machine that can simulate any mechanical computer
- Any computer that is powerful enough to simulate a Turing machine, can simulate any mechanical computer

Performing Addition

- Input: a two sequences of digits, separated by + with \# at end.
e.g., \# 129352 + 63594 \#
- Output: sum of the two numbers
e.g., \# 192946 \#

Addition, Continued

Find the rightmost digit of the second number:

Universal Computing Machine

2-state, 3-symbol Turing machine proved universal by Alex Smith in 2007

Manchester Illuminated Universal Turing Machine, \#9 from http://www.verostko.com/manchester/manchester.html

What This Means

- Your cell phone, watch, iPod, etc. has a processor powerful enough to simulate a Turing machine
- A Turing machine can simulate the world's most powerful supercomputer
- Thus, your cell phone can simulate the world's most powerful supercomputer (it'll just take a lot longer and will run out of memory)

Are there problems computers can't solve?

The "Busy Beaver" Game

- Design a Turing Machine that:
- Uses two symbols (e.g., " 0 " and " 1 ")
- Starts with a tape of all " 0 "s
- Eventually halts (can't run forever)
- Has N states
- Goal: machine runs for as many steps as possible before eventually halting

Busy Beaver: $\mathrm{N}=1$

$$
0 \quad 0
$$

$B B(1)=1 \quad$ Most steps a 1-state machine that halts can make

Best found before 2001, only 925 digits!

In Dec 2007, Terry and Shawn Ligocki beat this: 2879 digits!

300232771652356282895510301834134018514775433724675250037338 180173521424076038326588191208297820287669898401786071345848 280422383492822716051848585583668153797251438618561730209415 487685570078538658757304857487222040030769844045098871367087 ${ }^{6150791383110343531646410779192098908371644773632893774225531}$ 955126023251172259034570155087303683654630874155990822516129
938425830691378607273670708190160525534077040039226593073997 923170154775358629850421712513378527086223112680677973751790 032937578520017666792246839908855920362933767744760870128446 883455477806316491601855784426860769027944542798006152693167
45282133668991746088610648574189015401194034857577718253055 452821336689917460886106486574189015401194034857577718253065 541632656334314242325592486700118506716581303423271748965426 3060024746589681087933819123818123396257905928175254048321109 853176574702775062858289156568392295963586263654139383856764 728051394965554409688456578122743296319960808368094536421039 149584946758006509160985701328997026301708760235500239558119
41059214262166961455282724429217416465494363891697113965316 892660611709290048580677566178715752354594049016719278069832 866522332923541370293059667996001319376698551683848851474625 152094567110615451986839894490885687082244978774551453204358 ${ }^{588661593979763935102896523295803940023673203101744986550732}$ ${ }^{49241054548494658410961574031211440611088975349389991567148886881}$ 952366018086246687712098553077054825367434062671756760070388 922117434932633444773138783714023735898712790278288377198260 380065105075792925239453450622999208297579584893448886278127
629044163292251815410053522246084552761513383934623129083266 629044163292251815410053522246084552761513383934623129083266
9493773095046643121689746511996847681275076313206
(1730 digits)

Busy Beaver Numbers

[^0]
Computing Busy Beaver Numbers

- Input: N (number of states)
- Output: BB(N)
- The maximum number of steps a Turing Machine with N states can take before halting

Is it possible to design a Turing Machine that solves the Busy Beaver Problem?

The Halting Problem

- Input: a description of a Turing Machine
- Output: " 1 " if it eventually halts, " 0 " if it never halts, starting on a tape full of " 0 "s.

Is it possible to design a Turing Machine that solves the Halting Problem?
"Solves" means for all inputs, the machine finishes and produces the right answer.

Impossible to make Halting Problem Solver

- If it outputs " 0 " on the input, the input machine would halt (so " 0 " cannot be correct)
- If it outputs " 1 " on the input, the input machine never halts (so " 1 " cannot be correct)

If it halts, it doesn't halt!
If it doesn't halt, it halts!

Busy Beaver is Impossible Too!

- If you could solve it, could solve Halting Problem:
- Input machine has N states
- Compute BB(N)
- Simulate input machine for $B B(N)$ steps
- If it ever halts, it must halt by now
- ... but we know that is impossible, so it must be impossible to computer $\mathrm{BB}(\mathrm{N})$

The BB numbers are so big you can't even compute them!

Recap

- A computer is something that can carry out well-defined steps:
- Read and write on scratch paper, follow rules, keep track of state
- All computers are equally powerful
- If a machine can simulate any step of another machine, it can simulate the other machine (except for physical limits)
- What matters is the program that defines the steps

You can have your frosting and eat cake too!

Questions

David Evans
evans@cs.virginia.edu

Some Sources:
Matthias Felleisen, Shriram Krishnamurthi,
Why Computer Science Doesn't Matter,
Communications of the ACM July 2009.
Scott Aaronson, Who Can Name the Bigger
Number?,
http://www.scottaaronson.com/writings/
bignumbers.html

[^0]: Winning the "Biggest number" game: $\mathrm{BB}(\mathrm{BB}(\mathrm{BB}(\mathrm{BB}(111111111))))$

