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Who Am I?

• Hongning Wang
– Assistant professor in CS@UVa since August 2014
– Research areas

• Information retrieval
• Data mining
• Machine learning
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Who Am I?

• Hongning Wang
– Assistant professor in CS@UVa since August 2014
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What Am I Doing at UVa?

• Sentiment analysis with topic modeling
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What Am I Doing at UVa?

• Interactive online recommendation
– Modeling recommendation as a two-party game
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Goal:

Strategy?

Challenge:
1) Unknown preference;
2) Feedback is acquired on the 

fly, and it is not free!



What Am I Doing at UVa?

• Yahoo frontpage news recommendation
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18,882 users, 188,384 articles, and 9,984,879 logged 
events segmented into 1,123,583 sessions.



What Am I Doing at UVa?

• Personalization techniques raise serious public 
concerns about privacy infringement
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No means for users to opt-out data collection!



What Am I Doing at UVa?

• Privacy-preserving personalization
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Stronger privacy guarantee than k-anonymity



What are about you?

• Why do you choose this course?
• Anything specific you want me to know? 
• What type of text data do you often 

encounter in your projects? 
• What kind of knowledge do you want to 

extract from it?
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What is “Text Mining”?

• “Text mining, also referred to as text data 
mining, roughly equivalent to text analytics, 
refers to the process of deriving high-quality 
information from text.”  - wikipedia

• “Another way to view text data mining is as a 
process of exploratory data analysis that 
leads to heretofore unknown information, or 
to answers for questions for which the answer 
is not currently known.” - Hearst, 1999
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Two different definitions of mining

• Goal-oriented (effectiveness driven)
– Any process that generates useful results that are non-

obvious is called “mining”. 
– Keywords: “useful” + “non-obvious”
– Data isn’t necessarily massive

• Method-oriented (efficiency driven)
– Any process that involves extracting information from 

massive data is called “mining” 
– Keywords: “massive” + “pattern”
– Patterns aren’t necessarily useful

11CS@UVa CS6501: Text Mining



Knowledge discovery from text data

• IBM’s Watson wins at Jeopardy! - 2011
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https://www.youtube.com/watch?v=P18EdAKuC1U
https://www.youtube.com/watch?v=P18EdAKuC1U


An overview of Watson
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What is inside Watson?

• “Watson had access to 200 million pages of 
structured and unstructured content consuming 
four terabytes of disk storage including the full 
text of Wikipedia” – PC World

• “The sources of information for Watson include 
encyclopedias, dictionaries, thesauri, newswire 
articles, and literary works. Watson also used 
databases, taxonomies, and ontologies. 
Specifically, DBPedia, WordNet, and Yago were 
used.” – AI Magazine
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What is inside Watson?

• DeepQA system
– “Watson's main innovation was not in the creation 

of a new algorithm for this operation but rather its 
ability to quickly execute hundreds of proven 
language analysis algorithms simultaneously to 
find the correct answer.” – New York Times

– The DeepQA Research Team
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http://researcher.watson.ibm.com/researcher/view_group_pubs.php?grp=2099


Text mining around us

• Sentiment analysis
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Text mining around us

• Sentiment analysis
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Text mining around us

• Document summarization
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Text mining around us

• Document summarization
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Text mining around us

• Movie recommendation
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Text mining around us

• Restaurant/hotel recommendation
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Text mining around us

• News recommendation
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Text mining around us

• Text analytics in financial services
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Text mining around us

• Text analytics in healthcare
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How to perform text mining?

• As computer scientists, we view it as
– Text Mining = Data Mining + Text Data
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Text mining v.s. NLP, IR, DM…

• How does it relate to data mining in general?
• How does it relate to computational 

linguistics?
• How does it relate to information retrieval?

Finding Patterns Finding “Nuggets”

Novel Non-Novel

Non-textual data General
data-mining Exploratory 

data analysis

Database 
queries

Textual data Computational 
Linguistics

Information 
retrievalText Mining
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Text mining in general
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Access Mining

Organization

Filter
information

Discover knowledge

Add
Structure/Annotations

Serve for IR 
applications

Based on NLP/ML 
techniques

Sub-area of 
DM research



Challenges in text mining

• Data collection is “free text”
– Data is not well-organized

• Semi-structured or unstructured

– Natural language text contains ambiguities on many levels 
• Lexical, syntactic, semantic, and pragmatic

– Learning techniques for processing text typically need 
annotated training examples

• Expensive to acquire at scale

• What to mine? 
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Text mining problems we will solve

• Lexical semantics and word senses
– Identifying which sense of a word (i.e. meaning) is 

used in a sentence, when the word has multiple 
meanings
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Text mining problems we will solve

• Document categorization
– Adding structures to the text corpus
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Text mining problems we will solve

• Text clustering
– Identifying structures in the text corpus

CS@UVa CS6501: Text Mining 31



Text mining problems we will solve

• Topic modeling
– Identifying structures in the text corpus
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Text mining problems we will solve

• Social media and social network analysis
– Exploring additional structure in the text corpus
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We will also briefly cover

• Natural language processing pipeline
– Tokenization

• “Studying text mining is fun!” -> “studying” + “text” + 
“mining” + “is” + “fun” + “!”

– Part-of-speech tagging
• “Studying text mining is fun!” -> 

– Dependency parsing
• “Studying text mining is fun!” -> 

CS@UVa CS6501: Text Mining 34



We will also briefly cover

• Machine learning techniques
– Supervised methods

• Naïve Bayes, k Nearest Neighbors, Logistic Regression

– Unsupervised methods
• K-Means, hierarchical clustering, topic models

– Semi-supervised methods
• Expectation Maximization 
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Text mining in the era of Big Data

• Huge in size
– Google processes 5.13B queries/day (2013)
– Twitter receives 340M tweets/day (2012)
– Facebook has 2.5 PB of user data + 15 TB/day (4/2009) 
– eBay has 6.5 PB of user data + 50 TB/day (5/2009)

• 80% data is unstructured (IBM, 2010)

640K ought to be 
enough for anybody.
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Scalability is crucial

• Large scale text processing techniques
– MapReduce framework
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State-of-the-art solutions

• Apache Spark (spark.apache.org)
– In-memory MapReduce

• Specialized for machine learning algorithms

– Speed
• 100x faster than Hadoop MapReduce in memory, or 

10x faster on disk.
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http://spark.apache.org/


State-of-the-art solutions

• Apache Spark (spark.apache.org)
– In-memory MapReduce

• Specialized for machine learning algorithms

– Generality
• Combine SQL, streaming, and complex analytics
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http://spark.apache.org/


State-of-the-art solutions

• GraphLab (graphlab.com)
– Graph-based, high performance, distributed 

computation framework
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http://graphlab.com/


State-of-the-art solutions

• GraphLab (graphlab.com)
– Specialized for sparse data with local 

dependencies for iterative algorithms
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http://graphlab.com/


Text mining in the era of Big Data

42

Knowledge Discovery

Text data

Human-generated data

Behavior data

Knowledge service system

Human: big data producer and consumer

As data producer

Challenges:
1. Unstructured data
2. Rich semantic

As knowledge 
consumer
Challenges:
1. Implicit feedback
2. Diverse and dynamic
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Text books

• Introduction to Information Retrieval. 
Christopher D. Manning, Prabhakar Raghavan, 
and Hinrich Schuetze, Cambridge University 
Press, 2007.

• Speech and Language Processing. Daniel 
Jurafsky and James H. Martin, Pearson Education, 
2000.

• Mining Text Data. Charu C. Aggarwal and 
ChengXiang Zhai, Springer, 2012.
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Text Mining

What to read?

Library & Info
Science

Machine Learning
Pattern Recognition

Web Applications,
Bioinformatics…

Statistics
Optimization

Applications

Information Retrieval
SIGIR, WWW, WSDM, CIKM

ICML, NIPS, UAI

NLP
ACL, EMNLP, COLING

Data Mining
KDD, ICDM, SDM

• Find more on course website for resource
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Algorithms



Welcome to the class of “Text Mining”!
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