Recap: Naive Bayes classifier

* f(X) =argmax,P(y|X)
= argmax,P(X|y)P(y)

V
—T
=1

[\

Class conditional density ~ Class prior

#parameters: Y| xV Y| —1

V.S. \
Computationally feasible

Y| x (2" —1)



Logistic Regression

Hongning Wang
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Today’s lecture

e Logistic regression model
— A discriminative classification model
— Two different perspectives to derive the model

— Parameter estimation



Review: Bayes risk minimization

e Risk —assign instance to a wrong class

_ y* — argmaxyp (y |X) *Optimal Bayes decision boundary

" /
p(X,y) We have learned multiple

y=1 ways to estimate this

)
|
o

P

p(X|y = 0)p(y = 0) pXly =Dp(ly =1)

/ \ X
False negative False positive
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Instance-based solution

* k nearest neighbors

— Approximate Bayes decision rule in a subset of
data around the testing point
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Instance-based solution

* k nearest neighbors

— Approximate Bayes decision rule in a subset of
data around the testing point

— Let V be the volume of the m dimensional ball
around x containing the k nearest neighbors for x,

we have

k k k4 Ny

= — = = — =1) =—— =1) =—

p(V =+ => p(x) 7 plxly =1) N.V py=1=—

"\ Total number of instances \

With Bayes rule: Ny kq Total number of

N "N,V ky instances in class 1
p(y =1lx) = —F——=—

NV \ Counting the nearest

neighbors from class1



Generative solution

* Naive Bayes classifier
—y* = argmax, P(y|X)

= argmax, P(X|y)P(y) ByBayesrule
|d]

= argmax, [ | Puly) P
=1

By independence
assumption

CS@UVa CS 6501: Text Mining



Estimating parameters

e Maximial likelihood estimator

Ya Y 8(X =xyya=Y)

— P(x;ly) =
L —
2q0(Va=y)
24 0(Ya=y)

— P —

text | information | identify | mining | mined | is | useful | to | from | apple | delicious | Y
D1 1 1 1 1 0 1 1 1 0 0 0 1
D2 1 1 0 0 1 1 1 0 1 0 0 1
D3| O 0 0 0 0 1 0 0 0 1 1 0




Discriminative v.s. generative models

. . Discriminative model
All instances are considered for

- : L = f(x
probability density estimation v ° ° ’R)’/f( )
o O »
@] © //
Generative model °° e .
/, *
o0 7/ N
&
Y e 0 o ° /// . ot
OO @] ° * // ¢ :
Ve
/’—.—H\
o0 * 7 . X
/ * * /
. I ¢ . .
° AR More attention will be put
T onto the boundary points




Parametric form of decision boundary
In Naive Bayes

e For binary cases
— f(X) = sgn(log P(y = 1|X) —log P(y = 0]X))

]|

= sgn (logpg — O% + Z c(x;,d) logpgl i — O;
i=1 y

= sgn(w™X)

where “—— Linear regression?

_ (i Py=1) _  P(yly=1) | P(x,ly =1)
T T\PPO =0 PGl =0)" " PGy = 0)

X =01,c(xy,d), ..., c(x, d))



Regression for classification?

* Linear regression
—y «wlX
— Relationship between a scalar dependent variable
y and one or more explanatory variables

15}
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Regression for classification?

* Linear regression

-y wlX

y = 1 wlX >0.5
0 wlX <0.5

What if we have
an outlier?

—
—
-

Yis discrete in a

/ classification problem!

— Relationship between a scalar dependent variable
y and one or more explanatory variables

AAAAA

-
-
—
=
=
=
=
—
—
-
=

regression model
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Regression for classification?

o LogIStIC regressmAn/ Sigmoid function

—p(ylx) = o(WTX) = ——

1+exp(—wTX)
— Directly modeling of class posterior

, Ply[x)
1.00 A
0.75 1
What if we have 0.5
an outlier?
/ . 5 B
| 0.00 X
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Logistic regression for classification

 Why sigmoid function?

P(X|y = 1)p(y=1)
P(X|y = 1)P(1y:1)+P(X|y = 0)p(y=0)

P(X|ly =0)P(y = 0),

- Py =11X) =

1+

Binomial \ P(y|x)

0.75 P(X|y =1) = N(uq, 6%)

P(X|y = 0) = N(ug,6%) _ 0.50

@ -~ Normal with identical variance
0.00 X
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Logistic regression for classification

 Why sigmoid function?

P(X|y = 1)p(y=1)

P(X|y = 1)P(1y:1)+P(X|y = 0)p(y=0)
APy = 0P(y = 0),
PX|ly=1DP(y =1)!

1

- Py =11X) =

1

L PXly=DPHy =1
1+ eXp( In 5 Xy = )P (v =)




Logistic regression for classification

1 _(x-w?
e Why sigmoid function? POly) =5m=e 20
. WPy = D=1 | P=1) L Pily=1)
lnP(X vy = 0)p(y=0) lnP(y o Vi T xly=0)

I
=3

4 _ 2 _ 2
a " z Hii — Hoi . — Hii — Hoi
1 — 52 | 267

______,__.-_

II
M_

JF

5

Origin of the name: =wy +w Ty

logit function
\ _ TX

I
|
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Logistic regression for classification

 Why sigmoid function?

- P(y=1IX) =

CS@UVa

P(X|y = 1)p(y=1)
P(X|y = 1)P(1y:1)+P(X|y = 0)p(y=0)

P(X|ly =0)P(y = 0),

1+

1
PXly=DPly=1)
1+ exp <_ N s Xy =0 Py =0)
_ 1
14 exp(—wTX)
\ Generalized Linear Model

Note: it is still a linear relation among the features!
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Logistic regression for classification

For multi-class categorization

exp (WZX )
K exp(wlx)

- P(y = k|X) =

- P(y = kIX) o« exp(wfX) .
Warning: redundancy in model parameters,
When K=2,
exp(w! X)
exp(w{ X) + exp(w{ X)
1

1 + exp(—(w; — wy)TX) -
N —

P(y = 1|X) =




Logistic regression for classification

e Decision boundary for binary case

= {1,p(y =1]X) > 0.5

0, otherwise
1
=1|X) = 5
) Py 1) 1+ exp(—w'X) >0
i.f.f.
exp(—wTX) <1
i.f.f.

wliX >0

(@)

~ )1, wlx > 0 «——— Alinear model!
0, otherwise



Logistic regression for classification

e Decision boundary in general
-y = argmax,p(y|X)
= argmax,, exp(wy, X)

A linear model!

= argmax,wy X



Logistic regression for classification

e Summary

P(X|y = 1)p(y=1)
P(X|y = 1)P(1y:1)+P(X|y = 0)p(y=0)

P(X|ly =0)P(y = 0),

- Py =11X) =

1+

Binomial \ P(y|x)

0.75 P(X|y =1) = N(uq, 6%)

P(X|y = 0) = N(uo,6%) __0.50 /
@ -~ Normal with identical variance
0.00 XV
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A different perspective

* Imagine we have the following

Documents Sentiment

V{4

“happy’, “good”,

/4

‘burchase”, “item”, “indeed” positive

p(x = "happy",y = 1) + p(x = "good",y = 1) + p(x = "purchase",y = 1)
+p(x ="item",y = 1) + p(x = "indeed",y =1) =1

Question: find a distribution p(x, y) that satisfies this observation.
Answerl: p(x ="item",y = 1) =1, and all the others 0

Answer2: p(x ="indeed",y = 1) = 0.5, p(x = "good",y = 1) = 0.5, and all the others 0

We have too little information to favor either one of them.



Occam's razor

* A problem-solving principle
— “among competing hypotheses that predict
equally well, the one with the fewest assumptions
should be selected.”
e William of Ockham (1287-1347)

— Principle of Insufficient Reason: "when one has no
information to distinguish between the probability
of two events, the best strategy is to consider
them equally likely”

e Pierre-Simon Laplace (1749-1827)



A different perspective

* Imagine we have the following

Documents Sentiment

V{4

“happy”, “good”, “purchase”, “item”, “indeed” positive

p(x = "happy",y = 1) + p(x = "good",y = 1) + p(x = "purchase",y = 1)
+p(x ="item",y = 1) + p(x = "indeed",y =1) =1
Question: find a distribution p(x, y) that satisfies this observation.

As a result, a safer choice would be:

px=""y=1)=0.2

\

Equally favor every possibility



A different perspective

* Imagine we have the following

Observations Sentiment
“happy”, “good”, “purchase”, “item”, “indeed” positive
30% of time “good”, “item” positive

p(x = "happy",y = 1) + p(x = "good",y = 1) + p(x = "purchase",y = 1)
+p(x ="item",y = 1) + p(x = "indeed",y =1) =1
p(x ="good",y =1) + p(x = "item",y = 1) = 0.3

Question: find a distribution p(x, y) that satisfies this observation.
Again, a safer choice would be:
p(x ="good",y = 1) = p(x = "item",y = 1) = 0.15, and all the others%

\

Equally favor every possibility



A different perspective

* Imagine we have the following

Observations Sentiment
“happy”, “good”, “purchase”, “item”, “indeed” positive
30% of time “good”, “item” positive
50% of time “good”, “happy” positive

p(x = "happy",y = 1) + p(x = "good",y = 1) + p(x = "purchase",y = 1)
+p(x ="item",y = 1) + p(x = "indeed",y =1) =1
p(x = "good",y =1) + p(x ="item",y =1) = 0.3
p(x ="good",y = 1) + p(x = "happy",y =1) = 0.5
Question: find a distribution p(x, y) that satisfies this observation.
Time to think about:
1) what do we mean by equally/uniformly favoring the models?
2) given all these constraints, how could we find the most preferred model?
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Maximum entropy modeling

A measure of uncertainty of random events
—H(X) = E[I(X)] = — Xxex P(x) log P(x)

|

Maximized when P(X) is 1
uniform distribution

0.5
=0
.
DU Question 1 is answered, then

0.5
Pr(X=1) how about question 2?



Represent the constraints

* |Indicator function

— E.g., to express the observation that word ‘good’
occurs in a positive document

. |1 ify=1andx = ‘good’
floy) = {O otherwise

— Usually referred as feature function



Represent the constraints

 Empirical expectation of feature function over
a corpus

—E[P(F)] = Zxy DX, ¥) f(x,¥)

c(f(x,y)) i.e., frequency of observing
N f(x,y) in a given collection.

e Expectation of feature function under a given
statistical model

- E[p(f)] = XxyPX) oy |x)f (x,¥)
AR

Empirical distribution of x Model’s estimation of
in the same collection. conditional distribution.

where p(x,y) =




Represent the constraints

e \When a feature is important, we require our
preferred statistical model to accord with it

—C = € PIE[p(f)] = E[p(f)]. Vi €{1,2,...,n}}
- E[p(f)] = E[B(f)]

D ) B fitey) = ) BRI Y)
X,y

X,y \

- We only need to specify this in
\{;( our preferred model!

Is Question 2 answered?



Represent the constraints

e Let’s visualize this

(a) No constraint

How to deal with
these situations?
g

(c) Feasible constraint (d) Over constrained
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Maximum entropy principle

 To select a model from a set C of allowed
probability distributions, choose the model
p* € C with maximum entropy H(p)

p” = argmaxyecH(p)

& \

(e
LIJ!:;P“
Both questions are answered!

p(y|x)



Maximum entropy principle

e Let’s solve this constrained optimization
problem with Lagrange multipliers

Primal: .

p- = argmaxyecH(p)

a strategy for finding the local
Lagrangian: maxima and minima of a function
8 & ) / subject to equality constraints

Lp, D) = HR) + ) 4 (f) = B()



Maximum entropy principle

e Let’s solve this constrained optimization
problem with Lagrange multipliers

Lagrangian:

L(p,2) = H(p) + 2 M) = BU)

Dual:

PAOI) = 7 exp (Z AifiCx y))

W) == ) p)10gZy(®) + ) LiB(f)




Maximum entropy principle

e Let’s solve this constrained optimization

problem with Lagrange multipliers
Dual:

Y() = - ) p)10gZy(@) + ) LB

where

=), ew (Z Aifi(x y))



Maximum entropy principle

e Let’s take a close look at the dual function

Y() == ) p)10gZy(@) + ) LiB(f)

where

=), ew (Z Aifi(x y))



Maximum entropy principle

e Let’s take a close look at't

OEEPY 169

= z p(x) log

i S
= Ep(x) logp(y|x)

CS@UVa

log Z, (x)|+

ne dual function

2 p(x)

exp(X; Alp(fl))

'Z5(x)

Z&-ﬁ(ﬁ-)

\ Maximum likelihood estimator!

CS 6501: Text Mining




Maximum entropy principle

 Primal: maximum entropy
—p" = argmaxyecH(p)
e Dual: logistic regression

— exp(T; Lifi (%, ¥))

Z(x)

where 7. _ zy exp (z A‘<(x y))

A" is determined by W(1)

—-pa(ylx) =



Questions haven’t been answered

e Class conditional density

— Why it should be Gaussian with equal variance?

e Model parameters

— What is the relationship between w and 17
— How to estimate them?



Maximum entropy principle

e The maximum entropy model subject to the
constraints C has a parametric solution

p,(y|x) where the parameters 1* can be
determined by maximizing the likelihood

function of p, (y|x) over a training set

- With a Gaussian distribution, differential
(’"-,_ﬂ entropy is maximized for a given variance.

agles
‘m\k‘ -
‘. «# L Features follow Maximum entropy
Gaussian distribution model

& @

Logistic regression

CS@UVa CS 6501: Text Mining
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Parameter estimation

e Maximum likelihood estimation
n L(W) —
2aep Yalogp(ya = 11Xq) + (1 — ya) logp(ya = 0|Xqa)
= Take gradient of L(w) with respecttow

oLw) _ z 0logp(ya = 11Xa)| | (1—y,) dlogp(ya = 01X4)
ow Vd ow Ya/ ow

deD
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Parameter estimation

e Maximum likelihood estimation

_ 9logp(yq=1|Xgq) _ _ 0 log(1+exp(-wlXxy))
ow ow
exp(—w'X,)
Xq

1+ exp(—wTXy)
= (1 —-pWa = 11X5))Xq4

. 0108 Pp(ya=01Xa) _ 0 —p(yy = 1|1X)) X,

ow




Parameter estimation

e Maximum likelihood estimation
n L(W) —
2aep Yalogp(ya = 11Xq) + (1 — ya) logp(ya = 0|Xqa)
= Take gradient of L(w) with respecttow

6L(w) dlogp(yq = 1[Xy) dlogp(yqs = 0[Xy)
Yd W + (1 —y4) W

deD

B z Ya(1=p0a = 11X0))Xa + (1 = y2)(0 — p(va = 11X4)) X4
deb { Good news: neat format,

concave function for w

Z(Yd p(y = 11X4)) X4

deD T

Bad news: no close form solution

Can be easily generalized
to multi-class case
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Gradient-based optimization

e Gradient descent

__ OL(w) OL(w) IL(w) lterative updating
— VL(W) — [ dwy | ow, aWV] /

WD = O —OFLw)

/

Step-size, affects
convergence

)

& & = =
L ] ? M -
i
=




Parameter estimation

e Stochastic gradient descent
— while not converge

randomly choose d € D
aLdON) aLdON) 6Ld(m0]

)

VLg(w) = [

) wwmn

dwy dw,
w*tD = yw®O — pOFL (W) e\
n*+D) = gn®

Gradually shrink the step-size

0.5
“i0o0  -500 0 500 1000 1500 2000
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Parameter estimation

e Batch gradient descent
— while not converge

Compute gradient w.r.t. all training instances
Vip(w) = [ owe  aws " ow, |
Compute step size n®

Line search is required to
wEtD) — (@) _ n(t) VL,(w) ensure sufficient decent

First order method 4 5o 04 order methods, e.g., quasi-

Newton method and conjugate
gradient, provide faster convergence



Model regularization

e Avoid over-fitting

— We may not have enough samples to well
estimate model parameters for logistic regression

— Regularization

e Impose additional constraints over the model
parameters

e E.g., sparsity constraint — enforce the model to have
more zero parameters



Model regularization

e L2 regularized logistic regression

— Assume the model parameter w is drawn from
Gaussian: w ~ N(0,0%)

- pa, wlXg) X p(yglXg, wp(w)

—L(w) = Xgeplyalogp(ya = 11Xy)
+(1 —yq)logp(yqs = 0|X4)] -

wlw

202

d

L2-norm of w



Generative V.S. discriminative models

Generative

Specifying joint distribution
— Full probabilistic specification
for all the random variables
Dependence assumption
has to be specified for

p(X|y) and p(y)

Flexible, can be used in
unsupervised learning

Discriminative

Specifying conditional
distribution
— Only explain the target
variable
Arbitrary features can be
incorporated for modeling

p(y1X)

Need labeled data, only
suitable for (semi-)
supervised learning



Naive Bayes V.S. Logistic regression

Naive Bayes Logistic Regression

e Conditional independence  No independence assumption
- p(Xly) =IL;ip(xily) * Functional form assumption

e Distribution assumption of of p(y|X) eXp(W;X)

. ggi\irlglrieters " #parameters
1) — (k-1DV+1)

e Model estimation
— Closed form MLE

e Asymptotic convergence rate

logV
=)

— €ENBn < €npoo T O

Need more training data

Model estimation
— Gradient-based MLE

Asymptotic convergence rate

%
— €1Rn = €LR o T 0(\/;)



error

error

Naive Bayes V.S. Logistic regression

pima (continuous) adult (continuous)
0.5 - - 0.5 - .
045_ ‘\‘ i 045
0.4;
0.4f .
£0.35
Q
0.35f
0.3
0.3 0.25}
0-2% 20 40 60 0% 10 20 30
m m
promoters (discrete) lymphography (discrete)
0.5 y : 0.5 - y
LR ——
0 y . ' ’ 0.1 : :
0 20 40 60 80 100 0 50 100 150
m m

0.45

0.35}

error

0.25¢

error

boston (predict if > median price, continuous)

0.4f

0.3}

0.2 20 40
m

60

breast cancer (discrete)
0.5 - -

0.45"
04|
0.35

0.3}

0.25

0 100 200
m

"On discriminative vs. generative classifiers: A comparison of logistic
regression and naive bayes.” — Ng, Jordan NIPS 2002, UCI Data set
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What you should know

 Two different derivations of logistic regression

— Functional form from Naive Bayes assumptions
* p(X|y) follows equal variance Gaussian
e Sigmoid function

— Maximum entropy principle
e Primal/dual optimization

— Generalization to multi-class

e Parameter estimation
— Gradient-based optimization
— Regularization

e Comparison with Naive Bayes



Today’s reading

e Speech and Language Processing

— Chapter 6: Hidden Markov and Maximum Entropy
Models
* 6.6 Maximum entropy models: background
e 6.7 Maximum entropy modeling
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