Part-of-Speech Tagging &
Sequence Labeling
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Why POS tagging?

e POS tagging is a prerequisite for further NLP analysis
— Syntax parsing
e Basic unit for parsing
— Information extraction
* |ndication of names, relations
— Machine translation
* The meaning of a particular word depends on its POS tag

— Sentiment analysis

e Adjectives are the major opinion holders
— Good v.s. Bad, Excellent v.s. Terrible



Challenges in POS tagging

 \Words often have more than one POS tag
— The back door (adjective)
— On my back (noun)
— Promised to back the bill (verb)
e Simple solution with dictionary look-up does
not work in practice

— One needs to determine the POS tag for a
particular instance of a word from its context



Define a tagset

 We have to agree on a standard inventory of
word classes
— Taggers are trained on a labeled corpora

— The tagset needs to capture semantically or
syntactically important distinctions that can easily
be made by trained human annotators



Word classes

 Open classes

— Nouns, verbs, adjectives, adverbs

* Closed classes
— Auxiliaries and modal verbs
— Prepositions, Conjunctions
— Pronouns, Determiners

— Particles, Numerals



Public tagsets in NLP

 Brown corpus - Francis and Kucera 1961

— 500 samples, distributed across 15 genres in rough
proportion to the amount published in 1961 in each of
those genres

— 87 tags
e Penn Treebank - Marcus et al. 1993

— Hand-annotated corpus of Wall Street Journal, 1M
words

— 45 tags, a simplified version of Brown tag set

— Standard for English now
* Most statistical POS taggers are trained on this Tagset



http://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html

How much ambiguity is there?

e Statistics of word-tag pair in Brown Corpus
and Penn Treebank

87-tag Original Brown 45-tag Treebank Brown

Unambiguous (1 tag) 44,019 38,857
Ambigli)us (2-7 tfgs'} 5,490 11% 8844 18%
Details: 2 tags 4,967 6,731
3 tags 411 1621
4 tags 91 357
5 tags 17 90
6 tags 2 (well, beat) 32
7 tags 2 (still, down) 6 (well, set, round,
open, fit, down)
8 tags 4 (’s, half, back, a)
9 tags 3 (that, more, in)
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Is POS tagging a solved problem?

e Baseline
— Tag every word with its most frequent tag
— Tag unknown words as nouns

— Accuracy

e Word level: 90%

e Sentence level
— Average English sentence length 14.3 words
— 0.91%3 = 22%

Accuracy of State-of-the-art POS Tagger
e Word level: 97%
 Sentence level: 0.97%43 = 65%



Building a POS tagger

e Rule-based solution

1. Take a dictionary that lists all possible tags for
each word

Assign to every word all its possible tags

3. Apply rules that eliminate impossible/unlikely
tag sequences, leaving only one tag per word

she PRP
ised VBN,VBD R1: Pronoun should be
Rules can be learned promise followed by a past tense verb
via inductive learning. to TO
back VB, JJ, RB, NN!!
the DT R2: Verb cannot follow

bill NN,VB\ determiner



Building a POS tagger

o Statistical POS tagging

t= ! t2 t3 t4 to to
PRP VBD VB] [DT) [NNJ.]
—— — — A — A— — "
she promised to back the bill.

w= i w2 w3 w w5 W

— What is the most likely sequence of tags t for the
given sequence of words w

t" = argmax;p(t|w)
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POS tagging with generative models

 Bayes Rule
PRP \/BD VB DT NN|.|

— — —~ = ~ ——"

she promised to back the bill.
= argmax p(wltjp(t)
— Joint distribution of tags and words

— Generative model

e A stochastic process that first generates the tags, and
then generates the words based on these tags

CS@UVa CS 6501: Text Mining 12



Hidden Markov models

e Two assumptions for POS tagging

1. Current tag only depends on previous k tags

« p(t) =1lip(tilti—1, tizzs e tizk)
e When k=1, itis so-called first-order HMMs

2. Each word in the sequence depends only on its
corresponding tag

* p(wlt) = [l;p(w;lt;)



Graphical representation of HMMs

All the tags (4 (ti | ti— 1) Transition probability

in the tagse /

All the H H a w: | £

words in the / p( ll l)
vocabulary ™ Emission probability

e Light circle: latent random variables
e Dark circle: observed random variables
 Arrow: probabilistic dependency



Finding the most probable tag sequence

— For a sentence with N words, there will be up to
TN possible tag sequences

— Key: explore the special structure in HMMs!
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t? = t,t tatct,

W1 W» W3 Wy,

Word w; takes tag t4 CS 6501: Text Mining
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Trellis: a special structure for HMMs

tl = t,t,tstdt, t? = tyt tstdt,]

Wq Wy W3 Wy Wg

CS@UVa Word w takes tag ty CS 6501: Text Mining
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Viterbi algorithm

e Store the best tag sequence for wy ... w; that
ends in t/ in T[j][i]
—T[j1[i] = maxp(Wy . w;, tq ..., t; = t7)

e Recursively compute trellis[j][i] from the
entries in the previous column trellis[j][i-1]

~ T[j1[i] = P(w;|t/)Max, (TTKI[ - 1P( |6i))

Generating the current /

Transition from the
observation

The best i-1 tag previous best ending
sequence tag
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Viterbi algorithm

Dynamic programming: O(T*N)!
T = P(wi|t/ ) Max (Tlk][E — 11P( [ti))

Wq Wo W3 Wy Wg

Order of computation
CS@UVa CS 6501: Text Mining 19



Decode argmax;p(t|w)

* Take the highest scoring entry in the last
column of the trellis

CS@UVa

Keep backpointers in each trellis to keep
track of the most probable sequence

T[] = P(wi|t )Mage( TlkI[ - 1P(E [t))

Wi

W4 ,"

Wg

/

/

/
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Train an HMM tagger

e Parameters in an HMM tagger
— Transition probability: p(ti‘tj),T XT
— Emission probability: p(w|t),V X T
— Initial state probability: p(t|m), T X 1

N\

For the first tag in a sentence



Train an HMMs tagger

e Maximum likelihood estimator
— Given a labeled corpus, e.g., Penn Treebank

— Count how often we have the pair of t;t; and w;t;
c(titj)
. p(tj ti) N C(ti)]
c(wit;)
c(tj)

» p(wiltj) =

Proper smoothing is necessary!



Public POS taggers

Brill’s tagger

— http://www.cs.jhu.edu/~brill/

TnT tagger

— http://www.coli.uni-saarland.de/~thorsten/tnt/
Stanford tagger

— http://nlp.stanford.edu/software/tagger.shtml
SVMTool

— http://www.lIsi.upc.es/~nlp/SVMTool/

GENIA tagger

— http://www-tsujii.is.s.u-tokyo.ac.jp/GENIA/tagger/
More complete list at

— http://www-nlp.stanford.edu/links/statnlp.html#Taggers



Let’s take a look at other NLP tasks

 Noun phrase (NP) chunking

— Task: identify all non-recursive NP chunks

Pierre Vinken , 61 years old , will join IBM ‘s board
as a nonexecutive director Nov. 29 .

[NP Pierre Vinken] , [NP 61 years] old , will join
[NP IBM] ‘s [NP board] as [NP a nonexecutive director]
[NP Nov. 2] .

CS@UVa CS 6501: Text Mining

24



The BIO encoding

e Define three new tags
— B-NP: beginning of a noun phrase chunk
— |-NP: inside of a noun phrase chunk
— O: outside of a noun phrase chunk

[NP Pierre Vinken] , [NP 61 years] old , will join
[NP IBM] ‘s [NP board] as [NP a nonexecutive director]
[NP Nov. 2]

POS Tagging with a restricted Tagset?

Pierre B-NP Vinken I-NP , O 61 B-NP years I-NP

old O , O will O join O IBM B-NP ‘s O board B-NP as O
a B-NP nonexecutive I-NP director I-NP Nov. B-NP

29 I-NP . O
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Another NLP task

e Shallow parsing

— Task: identify all non-recursive NP, verb (“VP”) and
preposition (“PP”) chunks

Pierre Vinken , 61 years old , will join IBM ‘s board
as a nonexecutive director Nov. 29 .

h 4

[NP Pierre Vinken] , [NP 61 years] old , [VP will join]
[NP IBM] ‘s [NP board] [PP as] [NP a nonexecutive
director] [NP Nov. 2] .

CS@UVa 26



BIO Encoding for Shallow Parsing

e Define several new tags
— B-NP B-VP B-PP: beginning of an “NP”, “VP”, “PP” chunk
— I-NP I-VP I-PP: inside of an “NP”, “VP”, “PP” chunk
— O: outside of any chunk

[NP Pierre Vinken] , [NP 61 years] old , [VP will join]
[NP IBM] ‘s [NP board] [PP as] [NP a nonexecutive
director] [NP Nov. 2]

POS Tagging with a restricted Tagset?

Pierre B-NP Vinken I-NP , O 61 B-NP years I-NP

old 0 , O will B-VP join I-VP IBM B-NP ‘s O board B-NP
as B-PP a B-NP nonexecutive I-NP director I-NP Nov. B-
NP 29 I-NP . O
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Yet another NLP task

e Named Entity Recognition

— Task: identify all mentions of named entities
(people, organizations, locations, dates)

Pierre Vinken , 61 years old , will join IBM ‘s board
as a nonexecutive director Nov. 29 .

h 4

[PERS Pierre Vinken] , 61 years old , will join
[ORG IBM] ‘s board as a nonexecutive director
[DATE Nov. 2] .

CS@UVa S eSO TERC TV
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BIO Encoding for NER

e Define many new tags
— B-PERS, B-DATE,...: beginning of a mention of a

— |-PERS, B-DATE,...: inside of a mention of a person/date...

person/date...

— O: outside of any mention of a named entity

CS@UVa

[PERS Pierre Vinken] , 61 years old , will join
[ORG IBM] ‘s board as a nonexecutive director

[DATE Nov. 2]

* POS Tagging with a restricted Tagset?

Pierre B-PERS Vinken I-PERS , O 61 O years O old O , O
will O join O IBM B-ORG ‘s _O board O as 0 a O
nonexecutive O dlrec%ﬁﬁgﬂfﬁﬂﬂmmH{DATE 29 I-DATE . O
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Sequence labeling

e Many NLP tasks are sequence labeling tasks
— Input: a sequence of tokens/words

— Output: a sequence of corresponding labels
e E.g., POS tags, BIO encoding for NER
— Solution: finding the most probable label
sequence for the given word sequence

o t* = argmaxp(t|w)



Comparing to traditional classification
problem

Sequence labeling

t* = argmaxp(tlw)
— tis a vector/matrix

Dependency between both
(t, W) and (ti! tj)

Str ed ou
A t t.
Di I Jto so y<

infergnce problgm

Traditional classification
* ¥y =argmax,p(y|x)
— vy is asingle label
 Dependency only within
(¥, x)

e |nd dent t
. Ea5< Yi )olvez i ﬁference

problem




Two modeling perspectives

e Generative models
— Model the joint probability of labels and words
—t* = argmaxp(tlw) = argmax;p(w|t)p(t)
e Discriminative models

— Directly model the conditional probability of labels
given the words

—t* = argmaxp(tlw) = argmax:f (t,w)



class densities

Generative V.S. discriminative models

e Binary classification as an example

Discriminative Model’s view

5
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Generative Model’s view

p(x|Cy)

p(x|Cs)
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p(Cilx)

p(Colx)




Generative V.S. discriminative models

Generative

Specifying joint distribution

— Full probabilistic specification
for all the random variables

Dependence assumption
has to be specified for
p(wlt) and p(1)
Flexible, can be used in
unsupervised learning

Discriminative

Specifying conditional
distribution
— Only explain the target
variable
Arbitrary features can be
incorporated for modeling

p(tlw)
Need labeled data, only

suitable for (semi-)
supervised learning



Maximum entropy Markov models

 MEMMs are discriminative models of the
labels t given the observed input sequence w

—p(tlw) = [1;p(t;|w;, ti—1)




Design features

e Emission-like features AN
— Binary feature functions I
* ffirst-letter-capitalized-NNP(China) =1 @ @
* Fhirst-tetter-capitatizea-va(KNOW) = /"’:'
— Integer (or real-valued) featur functlons
* frumber-of-vowels-nnp(China) =

* Transition-like features \ Not necessarily
// independent features!
— Binary feature functions /

° ffirst-letter-capitaIized-VB-NNP(ChIna) =



Parameterization of p(t;|w;, t;_1)

e Associate a real-valued weight A to each
specific type of feature function

— Ay for ffirst—Ietter—capitalized—NNP(W)
* Define a scoring function f(t;, t;_1,w;) =
2 A Sfre (Eiy tio1, i)
* Naturally p(t;|w;, t;—1) < exp f(t;, t;i—1, w;)
— Recall the basic definition of probability
e P(x) >0
* 2xp(x) =1



Parameterization of MEMMs

p(tlw) = Hp(tilwi: ti—1)
_ [1; exp(f (&, tizg, Wy))
‘ 2,11, exp(f(ti’ti—l'wi))\

e |tis 3 Iog linear model \ Constant only related to A
—logp(tlw) = Z f(ti,tiqg,wi) — C(A)

e Viterbi algorithm can be used to decode the
most probable label sequence solely based on

i f(ti tizg, wy)




Parameter estimation

e Maximum likelihood estimator can be used in
a similar way as in HMMs

— A" = argmax 2w logp(t|w)
= argmax; ) Y f(titiog,w)) = C(A)

tw 1

Decompose the
training data into
such units




Why maximum entropy?

 We will explain this in detail when discussing
the Logistic Regression models

V= bu + blx 4= Linear Model




A little bit more about MEMMs

 Emission features can go across multiple
observations

_ f(ti’ ti—l’ Wi) = Zk Akfk (tiJ ti—l’ W)
— Especially useful for shallow parsing and NER tasks




Conditional random field

* A more advanced model for sequence labeling
— Model global dependency

- p(tlw) x
[ exp(Xp Akfie (G w) + Xmgi (L, tio1, w))
Edge feature
tl tz t3 t4 g(ti; ti—1, W)

Node feature

—

f(t,w)




What you should know

Definition of POS tagging problem
— Property & challenges

Public tag sets

Generative model for POS tagging
— HMMs

General sequential labeling problem

Discriminative model for sequential labeling
— MEMMs



Today’s reading

e Speech and Language Processing
— Chapter 5: Part-of-Speech Tagging

— Chapter 6: Hidden Markov and Maximum Entropy
Models

— Chapter 22: Information Extraction (optional)
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