
Recap: WordNet

• A very large lexical database of English:
– 117K nouns, 11K verbs, 22K adjectives, 4.5K adverbs

• Word senses grouped into synonym sets 
(“synsets”) linked into a conceptual-semantic 
hierarchy
– 82K noun synsets, 13K verb synsets, 18K adjectives 

synsets, 3.6K adverb synsets
– Avg. # of senses: 1.23/noun, 2.16/verb, 1.41/adj, 

1.24/adverb
• Conceptual-semantic relations

– hypernym/hyponym
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Recap: WordNet similarity

• Path based similarity measure between words
– Shortest path between two concepts (Leacock & 

Chodorow 1998)
• sim = 1/|shortest path|

– Path length to the root node from the least 
common subsumer (LCS) of the two concepts (Wu 
& Palmer 1994)

• sim = 2*depth(LCS)/(depth(w1)+depth(w2))

• http://wn-similarity.sourceforge.net/
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the most specific concept which 
is an ancestor of both A and B.

http://wn-similarity.sourceforge.net/


Recap: distributional semantics

• Use the contexts in which words appear to 
measure their similarity
– Assumption: similar contexts => similar meanings
– Approach: represent each word 𝑤𝑤 as a vector of 

its contexts 𝑐𝑐
• Vector space representation
• Each dimension corresponds to a particular context 𝑐𝑐𝑛𝑛
• Each element in the vector of 𝑤𝑤 captures the degree to 

which the word 𝑤𝑤 is associated with the context 𝑐𝑐𝑛𝑛
– Similarity metric

• Cosine similarity
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Recap: signature of target word

• Simplified Lesk
– Words in context
– Signature(bank) = {refuse, give, loan}

• Original Lesk
– Augmented signature of the target word
– Signature(bank) = {refuse, reject, request,... , give, 

gift, donate,... loan, money, borrow,...}

“The bank refused to give me a loan.”
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Statistical Machine Translation

Hongning Wang
CS@UVa



Machine translation
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How do human translate languages?

• Is a bilingual dictionary sufficient?

John loves Mary.

Jean aime Marie.

John told Mary a story.

Jean a raconté une histoire à Marie.

John is a computer scientist.

Jean est informaticien.

John swam across the lake.

Jean a traversé le lac à la nage. 
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Correspondences

• One-to-one
– John = Jean, aime = loves, Mary=Marie

• One-to-many/many-to-one
– Mary = [à Marie]
– [a computer scientist] = informaticien

• Many-to-many
– [swam across __] = [a traversé __ à la nage]

• Reordering required
– told Mary1 [a story]2 = a raconté [une histoire]2 [à 

Marie]1

A bilingual dictionary is clearly insufficient!
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Lexical divergences

• Different senses of homonymous words 
generally have different translations

• Different senses of polysemous words may 
also have different translations

English                - German
(river) bank        - Ufer
(financial) bank - Bank

I know that he bought the book: Je sais qu’il a acheté le livre.
I know Peter: Je connais Peter.
I know math: Je m’y connais en maths.
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Syntactic divergences

• Word order
– SVO (Sbj-Verb-Obj), SOV, VSO,… 
– fixed or free?

• Head-marking vs. dependent-marking
– Dependent-marking (English): the man’s house
– Head-marking (Hungarian): the man house-his

• Pro-drop languages can omit pronouns
– Italian (with inflection): I eat = mangio; he eats = 

mangia
– Chinese (without inflection): I/he eat: chīfàn
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Semantic divergences

• Aspect
– English has a progressive aspect

• ‘Peter swims’ vs. ‘Peter is swimming’

– German can only express this with an adverb:
• ‘Peter schwimmt’ vs. ‘Peter schwimmt gerade’

Clearly, a bilingual dictionary is  insufficient; 
and machine translation is difficult!
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Machine translation approaches

• The Vauquois triangle
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Statistical machine translation

• Main stream of current machine translation 
paradigm
– The idea was introduced by Warren Weaver in 

1949
– Re-introduced in 1993 by researchers at IBM's 

Thomas J. Watson Research Center
– Now it is the most widely studied/used machine 

translation method
1966: ALPAC report: human translation is far 
cheaper and better - kills MT for a long time
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Noisy-Channel framework [Shannon 48]

• Translating French to English
–
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Source Transmitter
(encoder) DestinationReceiver

(decoder)
Noisy
Channel

P(Eng)
Eng Fre Eng’

P(Fre|Eng) P(Eng’|Fre)=?

𝐸𝐸𝐸𝐸𝑔𝑔∗ = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑥𝑥𝐸𝐸𝐸𝐸𝐸𝐸𝑝𝑝(𝐸𝐸𝐸𝐸𝐸𝐸|𝐹𝐹𝐹𝐹𝐹𝐹)

Translation modelLanguage model Observation Guessed input



Translation with a noisy channel model

• Bayes rule
–

– Translation model 𝑝𝑝 𝐹𝐹𝐹𝐹𝐹𝐹 𝐸𝐸𝐸𝐸𝐸𝐸 should capture the 
faithfulness of the translation. It needs to be trained 
on a parallel corpus

– Language model p(Eng) should capture the fluency of 
the translation. It can be trained on a very large 
monolingual corpus

𝐸𝐸𝐸𝐸𝑔𝑔∗ = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑥𝑥𝐸𝐸𝐸𝐸𝐸𝐸𝑝𝑝(𝐸𝐸𝐸𝐸𝐸𝐸|𝐹𝐹𝐹𝐹𝐹𝐹)
= 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑥𝑥𝐸𝐸𝐸𝐸𝐸𝐸𝑝𝑝 𝐹𝐹𝐹𝐹𝐹𝐹 𝐸𝐸𝐸𝐸𝐸𝐸 𝑝𝑝(𝐸𝐸𝐸𝐸𝐸𝐸)

Translation Model Language ModelObserved (given)
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Parallel corpora

• The same text in two (or more) languages
– High-quality manually crafted translations

European Parliament Proceedings Parallel Corpus
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Parallel corpora

• The same text in two (or more) languages
– High-quality manually crafted translations 
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Parallel corpora

• The same text in two (or more) languages
– High-quality manually crafted translations 
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Translation model 𝑝𝑝 𝐹𝐹𝐹𝐹𝐹𝐹 𝐸𝐸𝐸𝐸𝐸𝐸

• Specifying translation probabilities

– This probability needs word-alignment to estimate

English French Frequency

green witch grüne Hexe …

at home zuhause 10534

at home daheim 9890

is ist 598012

this week diese Woche …
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Estimation of translation probability 

• If we have ground-truth word-alignments in 
the parallel corpus, maximum likelihood 
estimator is sufficient

– 𝑝𝑝 𝑓𝑓 𝑒𝑒 = 𝑐𝑐(𝑒𝑒→𝑓𝑓)
∑𝑤𝑤 𝑐𝑐(𝑒𝑒→𝑤𝑤)

John told Mary a story.

Jean a raconté une histoire à Marie.
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Language model p(Eng)

• Specifying the likelihood of observing a 
sentence in the target language
– N-gram language model

• Relax the language complexity
• Occurrence of current word only depends on previous 

N-1 words: 𝑝𝑝 𝑤𝑤1 …𝑤𝑤𝑛𝑛 = ∏𝑖𝑖 𝑝𝑝(𝑤𝑤𝑖𝑖|𝑤𝑤𝑖𝑖−1, … ,𝑤𝑤𝑖𝑖−𝑁𝑁−1)
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Language model p(Eng)

• Specifying the likelihood of observing a sentence in 
the target language
– Google (2007) uses 5-grams to 7-grams, which result in huge models, 

but the effect on translation quality levels off quickly
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Statistical machine translation
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IBM translation models

• A generative model based on noisy channel 
framework
– Generate the translation sentence e with regard to 

the given sentence f by a stochastic process
1. Generate the length of f
2. Generate the alignment of e to the target sentence f
3. Generate the words of f

– 𝐸𝐸𝐸𝐸𝑔𝑔∗ = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑥𝑥𝐸𝐸𝐸𝐸𝐸𝐸𝑝𝑝 𝐹𝐹𝐹𝐹𝐹𝐹 𝐸𝐸𝐸𝐸𝐸𝐸 𝑝𝑝(𝐸𝐸𝐸𝐸𝐸𝐸)
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Word alignment

• One to one, one to many and reordering
John told Mary a story.

Source 
sentence

John

told

Mary

a

story
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Word alignment

• One to one, one to many and reordering
John told Mary a story.

Source 
sentence

John

told

Mary

a

story
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Word alignment

• One to one, one to many and reordering
John told Mary a story.

Source 
sentence

John

told

Mary

a

story
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Word alignment

• One to one, one to many and reordering
John told Mary a story.

Jean a raconté une histoire à Marie.

Source 
sentence

Target 
sentence

Jean a raconté une histoire à Marie

John

told

Mary

a

Story
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Word alignment

• Many to one and missing word

Target 
sentence

Source 
sentence

A special 
symbol

John swam across the lake.

Jean a traversé le lac à la nage. 

Jean a traversé le lac à la nage

NULL

John

swam

across

the

lake
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• Alignment table

Representing word alignments

Target 
Position 1 2 3 4 5 6 7 8

Source 
Position 1 3 3 4 5 0 0 2

1 2 3 4 5 6 7 8

Jean a traversé le lac à la nage

0 NULL

1 John

2 swam

3 across

4 the

5 lake

CS@UVa CS 6501: Text Mining 30



IBM translation models

• Translation model with word alignment
– 𝑝𝑝 𝐹𝐹𝐹𝐹𝐹𝐹 𝐸𝐸𝐸𝐸𝐸𝐸 = ∑𝑎𝑎∈𝐴𝐴(𝐸𝐸𝐸𝐸𝐸𝐸,𝐹𝐹𝐹𝐹𝐹𝐹) 𝑝𝑝(𝐹𝐹𝐹𝐹𝐹𝐹, 𝑎𝑎|𝐸𝐸𝐸𝐸𝐸𝐸)

– Generate the words of f with respect to alignment 𝒂𝒂
marginalize over all possible alignments 𝑎𝑎

𝑝𝑝 𝒇𝒇,𝒂𝒂 𝒆𝒆 = 𝑝𝑝(𝑚𝑚|𝒆𝒆)�
𝑗𝑗=1

𝑚𝑚

𝑝𝑝 𝑎𝑎𝑗𝑗 𝑎𝑎1..𝑗𝑗−1,𝑓𝑓1,..𝑗𝑗−1,𝑚𝑚, 𝒆𝒆 𝑝𝑝(𝑓𝑓𝑗𝑗|𝑎𝑎1..𝑗𝑗,𝑓𝑓1,..𝑗𝑗−1,𝑚𝑚, 𝒆𝒆)

Length of target sentence f Word alignment 𝑎𝑎𝑗𝑗 Translation of 𝑓𝑓𝑗𝑗
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IBM translation models

• Sequence of 5 translation models
– Different assumptions and realization of the 

components in the translation models, i.e., length 
model, alignment model and translation model

– Model 1 is the simplest and becomes the basis of 
follow-up IBM translation models
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Parameters in Model 1

• Length probability 𝑝𝑝(𝑚𝑚|𝒆𝒆)
– Probability of generating a source sentence of 

length 𝑚𝑚 given a target sentence 𝒆𝒆
• Assumed to be a constant - 𝑝𝑝 𝑚𝑚 𝒆𝒆 = 𝜖𝜖

• Alignment probability 𝑝𝑝 𝑎𝑎 𝒆𝒆
– Probability of source position 𝑖𝑖 is aligned to target 

position 𝑗𝑗
• Assumed to be uniform - 𝑝𝑝 𝑎𝑎 𝒆𝒆 = 1

𝑛𝑛

length of source sentence
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Parameters in Model 1

• Translation probability 𝑝𝑝 𝑓𝑓 𝑎𝑎, 𝑒𝑒
– Probability of English word ei is translated to 

French word 𝑓𝑓𝑗𝑗 - 𝑝𝑝 𝑓𝑓𝑗𝑗 𝑒𝑒𝑎𝑎𝑗𝑗
• After the simplification, Model 1 becomes

𝑝𝑝 𝒇𝒇,𝒂𝒂 𝒆𝒆 = 𝑝𝑝(𝑚𝑚|𝒆𝒆)�
𝑗𝑗=1

𝑚𝑚

𝑝𝑝 𝑎𝑎𝑗𝑗 𝑎𝑎1..𝑗𝑗−1,𝑓𝑓1,..𝑗𝑗−1,𝑚𝑚, 𝒆𝒆 𝑝𝑝(𝑓𝑓𝑗𝑗|𝑎𝑎1..𝑗𝑗,𝑓𝑓1,..𝑗𝑗−1,𝑚𝑚, 𝒆𝒆)

=
𝜖𝜖

𝑛𝑛 + 1 𝑚𝑚�
𝑗𝑗=1

𝑚𝑚

𝑝𝑝(𝑓𝑓𝑗𝑗|𝑒𝑒𝑎𝑎𝑗𝑗)

We add a NULL word in the source sentence
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Recap: IBM translation models

• Translation model with word alignment
– 𝑝𝑝 𝐹𝐹𝐹𝐹𝐹𝐹 𝐸𝐸𝐸𝐸𝐸𝐸 = ∑𝑎𝑎∈𝐴𝐴(𝐸𝐸𝐸𝐸𝐸𝐸,𝐹𝐹𝐹𝐹𝐹𝐹) 𝑝𝑝(𝐹𝐹𝐹𝐹𝐹𝐹, 𝑎𝑎|𝐸𝐸𝐸𝐸𝐸𝐸)

– Generate the words of f with respect to alignment 𝒂𝒂
marginalize over all possible alignments 𝑎𝑎

𝑝𝑝 𝒇𝒇,𝒂𝒂 𝒆𝒆 = 𝑝𝑝(𝑚𝑚|𝒆𝒆)�
𝑗𝑗=1

𝑚𝑚

𝑝𝑝 𝑎𝑎𝑗𝑗 𝑎𝑎1..𝑗𝑗−1,𝑓𝑓1,..𝑗𝑗−1,𝑚𝑚, 𝒆𝒆 𝑝𝑝(𝑓𝑓𝑗𝑗|𝑎𝑎1..𝑗𝑗,𝑓𝑓1,..𝑗𝑗−1,𝑚𝑚, 𝒆𝒆)

Length of target sentence f Word alignment 𝑎𝑎𝑗𝑗 Translation of 𝑓𝑓𝑗𝑗

CS@UVa CS 6501: Text Mining 35



Generative process in Model 1
For a particular English sentence 𝑒𝑒 = 𝑒𝑒1. . 𝑒𝑒𝑛𝑛 of length 𝑛𝑛

0 1 2 3 4 5

NULL John swam across the lake

1. Choose a length 𝑚𝑚 for the target sentence (e.g m = 8)

1 2 3 4 5 6 7 8

? ? ? ? ? ? ? ?

2. Choose an alignment 𝑎𝑎 = 𝑎𝑎1 …𝑎𝑎𝑚𝑚 for the source sentence

Target Position 1 2 3 4 5 6 7 8

Source Position 1 3 3 4 5 0 0 2

3. Translate each source word 𝑒𝑒𝑎𝑎𝑗𝑗 into the target language

English John across across the lake NULL NULL swam

Alignment 1 3 3 4 5 0 0 2

Encoded Jean a traversé le lac à la nage
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Decoding process in Model 1
For a particular English sentence 𝑒𝑒 = 𝑒𝑒1. . 𝑒𝑒𝑛𝑛 of length 𝑛𝑛

0 1 2 3 4 5

NULL John flies across the river

1. Choose a length 𝑚𝑚 for the target sentence (e.g m = 8)

1 2 3 4 5 6 7 8

? ? ? ? ? ? ? ?

2. Choose an alignment 𝑎𝑎 = 𝑎𝑎1 …𝑎𝑎𝑚𝑚 for the source sentence

Target Position 1 2 3 4 5 6 7 8

Source Position 1 2 4 5 5 2 0 3

3. Translate each source word 𝑒𝑒𝑎𝑎𝑗𝑗 into the target language

English John flies the river river flies NULL across

Alignment 1 2 4 5 5 2 0 3

Encoded Jean a traversé le lac à la nage
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𝑝𝑝 𝑚𝑚 𝒆𝒆 = 𝜖𝜖

𝑝𝑝 𝑎𝑎 𝒆𝒆 =
1
𝑛𝑛

𝑝𝑝(𝒆𝒆)

�
𝑗𝑗=1

𝑚𝑚

𝑝𝑝(𝑓𝑓𝑗𝑗|𝑒𝑒𝑎𝑎𝑗𝑗)

Receiver

Search through all 
English sentences

Search through all 
possible alignments

𝑝𝑝 𝒆𝒆 𝒇𝒇 = 1𝑒𝑒−55



Decoding process in Model 1
For a particular English sentence 𝑒𝑒 = 𝑒𝑒1. . 𝑒𝑒𝑛𝑛 of length 𝑛𝑛

0 1 2 3 4 5

NULL John swam across the lake

1. Choose a length 𝑚𝑚 for the target sentence (e.g m = 8)

1 2 3 4 5 6 7 8

? ? ? ? ? ? ? ?

2. Choose an alignment 𝑎𝑎 = 𝑎𝑎1 …𝑎𝑎𝑚𝑚 for the source sentence

Target Position 1 2 3 4 5 6 7 8

Source Position 1 3 3 4 5 0 0 2

3. Translate each source word 𝑒𝑒𝑎𝑎𝑗𝑗 into the target language
English John across across the lake NULL NULL swam

Alignment 1 3 3 4 5 0 0 2

Encoded Jean a traversé le lac à la nage
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𝑝𝑝 𝑚𝑚 𝒆𝒆 = 𝜖𝜖

𝑝𝑝 𝑎𝑎 𝒆𝒆 =
1
𝑛𝑛

𝑝𝑝(𝒆𝒆)

�
𝑗𝑗=1

𝑚𝑚

𝑝𝑝(𝑓𝑓𝑗𝑗|𝑒𝑒𝑎𝑎𝑗𝑗)

Receiver

𝑝𝑝 𝒆𝒆 𝒇𝒇 = 1𝑒𝑒−15

Search through all 
English sentences

Search through all 
possible alignments



Decoding process in Model 1

• Search space is huge
– Presumably all “sentences” in English

• English sentence length is unknown
• All permutation of words in the vocabulary

– Heuristics to reduce search space
• Trade-off between translation accuracy and efficiency
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Estimation of translation probability 

• If we do not have ground-truth word-
alignments, appeal to Expectation 
Maximization algorithm
– Intuitively, guess the alignment based on the 

current translation probability first; and then 
update the translation probability

– EM algorithm will be carefully discussed in our 
later lecture of “Text Clustering”
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Other translation models

• IBM models 2-5 are more complex
– Word order and string position of the aligned 

words
– Phase-based translation in the source and target 

languages
• Incorporate syntax or quasi-syntactic structures
• Greatly reduce search space

CS@UVa CS 6501: Text Mining 41



What you should know

• Challenges in machine translation
– Lexicon/syntactic/semantic divergences

• Statistical machine translation
– Source-channel framework for statistical machine 

translation
• Generative process

– IBM model 1
• Idea of word alignment
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Today’s reading

• Speech and Language Processing
– Chapter 25: Machine Translation
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