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Clustering as graph cut

* Describe the pairwise distance via a graph

— Clustering can be obtained via graph cut

Cut by class label

Cut by cluster label
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Recap: external validation

e Given class label {2 on each instance

— Rand index

Wl'=W]' Wl':/:Wj
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k-means Clustering

Hongning Wang
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Today’s lecture

* k-means clustering
— A typical partitional clustering algorithm
— Convergence property

e Expectation Maximization algorithm

— Gaussian mixture model



Partitional clustering algorithms

e Partition instances into exactly k non-
overlapping clusters

— Flat structure clustering
— Users need to speC|fy the cluster size k

— Task: |de| YR
optlmlze \IO

Captain America

——————————
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Partitional clustering algorithms

e Partition instances into exactly k non-
overla ppmg clusters Optimize this in an alternative way

distance
Intra cluster distance

— Typical criterion / Inter-clust
. maleild(cl, cj) C ) al
— Optimal solution: enumerate every possible

partition of size k and return the one maximizes
the criterion

Let’s approximate this!  Unfortunately, this is NP-hard!
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k-means algorithm

Input: cluster size k, instances {xi}’ivzl, distance metric d(-,")
Output: cluster membership assignments {z;}; ,

1. Initialize k cluster centroids {c;}¥_, (randomly if no
domain knowledge is available)

2. Repeat until no instance changes its cluster membership:

— Decide the cluster membership of instances by assigning them
to the nearest cluster centroid
z; = argming,d(cy, X;) Minimize intra distance
— Update the k cluster centroids based on the assigned cluster
membership

_ 2.1 6(z; = cp)x;
T R8 = )

Maximize inter distance
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k-means illustration
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Voronoi
diagram
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k-means illustration
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k-means illustration
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k-means illustration
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k-means illustration
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Complexity analysis

e Decide cluster membership

— 0 ( kn) Don’t forget the complexity of
. distance computation, e.q.,
e Com p ute CI uster centrol d O (V) for Euclidean distance
- 0(n)

e Assume k-means stops after [ iterations
— O (knl)



Convergence property

e Why will k-means stop?

— Answer: it is a special version of Expectation
Maximization (EM) algorithm, and EM is
guaranteed to converge

— However, it is only guaranteed to converge to local
optimal, since k-means (EM) is a greedy algorithm



Probabilistic interpretation of clustering

e The density model of p(x) is multi-modal
e Each mode represents a sub-population

— E.g., unimodal Gaussian for each group

51 p(x|z = 2)
NN o

o Mixture model
¢

piclz=1) T <‘\ p(x)=z}'9(x|Z)P(Z)
1 O/ . ° :"\ Unimodaldistribution\

Mixing proportion

0

p(x|z = 3)
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Probabilistic interpretation of clustering

e If zis known for every x

— Estimating p(z) and p(x|z) is easy
e Maximum likelihood estimation
e This is Naive Bayes

a p(x|z = 2)
4 N\ © @ R
o Mixture model

Pxlz =1 T TN p() = ) pl2)p(2)
L) Z

@

Mixing proportion

* :\ /
* ’* Unimodal distribution \
NG )
2 3 ) 5

p(x|z = 3)
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Probabilistic interpretation of clustering

Usually a constrained

e But z is unknown for all x / optimization problem
— Estimating p(z) and p(x|z)/is generally hard
. maXZilogZzip(xilzi,ﬁ)p(zila)

— Appeal to the Expectation Maximization algorithm

p(x|z =2)?
* *
4 ¢ R
/ o f Mixture model
= 23
p(le 1). <\’ ® p(X) — Z P(le)p(Z)
2 ® ® >
\: L 2 ¢ : K /
1 ) o ¢ Unimodal distribution
* o ¢ ¢
D . + . |\

Mixing proportion

p(x|z = 3)?



Introduction to EM

e Parameter estimation

— All data is observable
 Maximum likelihood estimator
* Optimize the analytic form of L(8) = logp(X|0)

— Missing/unobservable data e E.g. cluster membership
e Data: X (observed) + Z (hidden)
o Likelihood: L(8) =log )., p(X,Z|0)
e Approximate it! \

Most of cases are intractable



Background knowledge

e Jensen's inequality
— For any convex function f (x) and positive weights

A,
f<Z Z xi> <Sarey QA1

9(-)¢ 9(-)¢

Convex Concave
\/ // A

I 1 > I 1
T Yy X Yy




Expectation Maximization

e Maximize data likelihood function by pushing
the |Ower bound Proposal distributions for Z

/-
_ L(6) = log ¥, p(X,Z]6) = lo zz"(“”(é)z'g)l

Jensen's inequality > 71 X 716 Al ;
f(Elx]) = E[f(x)] Z q(Z)logp(X,216) — Z q(Z)logq(Z)

Lower bound!

Components we need to tune when
optimizing L(0): q(Z) and 6!

CS@UVa CS 6501: Text Mining
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Intuitive understanding of EM

Data likelihood p(X| &)

Easier to optimize, guarantee
to improve data likelihood

Lower bound

D
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Expectation Maximization (cont)

e Optimize the lower bound w.r.t. g(%)
—L(0) =2%7q9(Z) logp(X,Z|0) — X72q9(Z) log q(Z)

=), 4@ logp(ZL.) +logp(XI6)) - ) gDloge(@
p( |X

=), q(Z)log o +logpon|9>

negative KL-divergence between q(Z) and p(Z|X,60) Constant with respectto q(Z)

P(x)
Q(x)

KL(P||Q) = fP(x) log dx
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Expectation Maximization (cont)

e Optimize the lower bound w.r.t. g(%)
- L(6) =2 —KL(q(2)||p(Z1X,6)) + L(6)
— KL-divergence is non-negative, and equals to zero i.f.f.
q(Z) =p(Z]X,0)

— A step further: when q(Z2) = p(Z|X, 0), we will get L(6) >
L(O), i.e., the lower bound is tight!

— Other choice of g(Z) cannot lead to this tight bound, but
might reduce computational complexity

— Note: calculation of g(Z) is based on current 8



Expectation Maximization (cont)

e Optimize the lower bound w.r.t. g(%)
— Optimal solution: g(Z) = p(Z|X, %)

Posterior distribution of Z given current model §*

In k-means: this corresponds to assigning
instance x; to its closest cluster centroid c;,
z; = argmin,d(cy, X;)



Expectation Maximization (cont)

 Optimize the lower bound w.r.t. 6
—-L(0) = X;p(Z|X,0%) logp(X,Z|0) —

L_D( ﬂ%‘?p‘\u X HL) <—— Constant w.r.t. 8
-0 = argmaxg Y., p(Z|X,09) logp(X,Z|0)

= argmaxgkE ; x gt[logp(X, Z|6)]
!

Expectation of complete data likelihood

In k-means, we are not computing the

expectation, but the most probable

i 0(zi=cp)x;
2 6(zi=ck)

configuration, and then c¢;, =



Expectation Maximization

e EM tries to iteratively maximize likelihood
— “Complete” likelihood: L¢(8) = logp(X,Z|6)
— Starting from an initial guess 6(©

1. E-step: compute the expectation of the complete
likelihood

Q(ei Qt) — Ez|x,0t[l’c(9)] — p(le; Qt)log p(X; Zl@)

Z
2. M-step: compute 0(t1) by maximizing the Q-function

9t+1 — argmang(H; Qt) Key step!




An intuitive understanding of EM

In k-means
4 o e E-step: identify the cluster
Data likelihood p(X]| 6) membership - p(z|x, ¢)

e M-step: update c by p(z|x, ¢)

next guess

current guess
Lower bound
(Q function)

E-step = computing the lower bound
M-step = maximizing the lower bound
30



Conve rgence guarantee

e Proof of EM
logp(X|0) = logp(Z,X|0) —logp(Z|X, 6)
Taking expectation with respect to p(Z|X, 8%) of both sides:
l0gp(X10) = ) p(ZIX,0%)l0gp(Z,X16) = ) p(ZIX,6%) logp(ZIX, )
= Q(6;0%) + H(9; %) <—— Cross-entropy
Then the change of log data likelihood between EM iteration is:
logp(X16) —logp(X|6%) = Q(0;6%) + H(6;6%) — Q(8*;6%) — H(6%;6%)
By Jensen’s inequality, we know H(8; 6%) > H(0¢%; 1), that means
logp(X16) — logp(X|6°) = Q(6;0%) — Q(6%6%) = 0
=

M-step guarantee this



What is not guaranteed

* Global optimal is not guaranteed!

— Likelihood: L(8) = log )., p(X,Z|0) is non-convex
in most of case

— EM boils down to a greedy algorithm

e Alternative ascent

e Generalized EM

— E-step: §(Z) = argminq(z)KL(q(Zﬂ|p(Z|X, Ht))
— M-step: choose 8 that improves Q(60; 8%)



k-means v.s. Gaussian Mixture

e |f we use Euclidean distance in k-means

— We have explicitly assumed p(x|z) is Gaussian
— Gaussian Mixture Model (GMM)

11 _ (x_ﬂz)IQZC,_Mz)ngl (x—1i,)

° p(le) = N(ﬂz, ZZ) P(x|z) = Zz-ne)kzze 5t HZ)
° p(Z) = (&, < Multinomial

equal variance across

2 2 e | e e In k-means, we assume
We do not / O O @ % ’
’ 2ge ,;.. ’ -

consider cluster O O 7 ,
o & clusters, so we don’t
size in k-means 2 & 2 % )
o @ 2 - " w2 - " @ 2 need to estimate them
o, . .s*:;; Hopos . -‘ﬁ; o P ) .gia'}.
A g R
0 . ﬂ‘ 0 . i@. 0 - .°‘
?-' e o .:_-"-. .
2 -‘3.’:' 2 r‘.‘:. -2 .‘@‘:‘
0 d) 2

( 0 (e) 2 2 0 f) 2
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k-means v.s. Gaussian Mixture

e Soft v.s., hard posterior assighment

CS@UVa

GMM

B

k-means
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k-means in practice

e Extremely fast and scalable

— One of the most popularly used clustering
methods

e Top 10 data mining algorithms — ICDM 2006

— Can be easily parallelized

e Map-Reduce implementation
— Mapper: assign each instance to its closest centroid
— Reducer: update centroid based on the cluster membership

— Sensitive to initialization
* Prone to local optimal



Better initialization: k-means++

1. Choose the first cluster center at uniformly
random

2. Repeat until all k centers have been found

— For each instance compute Dy = mkind(x, Cy)

— Choose a new cluster center with probability
p(x) o D)%  New center should be far

away from existing centers

3. Run k-means with selected centers as
initialization



How to determine k

e Vary k to optimize clustering criterion
— Internal v.s. external validation

— Cross validation

e Abrupt change in objective function
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How to determine k

e Vary k to optimize clustering criterion
— Internal v.s. external validation

— Cross validation
e Abrupt change in objective function

 Model selection criterion — penalizing too many clusters
— AIC, BIC



What you should know

* k-means algorithm
— An alternative greedy algorithm

— Convergence guarantee
e EM algorithm

— Hard clustering v.s., soft clustering

e k-means v.s., GMM



Today’s reading

 Introduction to Information Retrieval
— Chapter 16: Flat clustering

e 16.4 k-means
e 16.5 Model-based clustering



	Clustering as graph cut
	Clustering as graph cut
	Clustering as graph cut
	Clustering as graph cut
	Recap: external validation
	k-means Clustering
	Today’s lecture
	Partitional clustering algorithms
	Partitional clustering algorithms
	k-means algorithm
	k-means illustration
	k-means illustration
	k-means illustration
	k-means illustration
	k-means illustration
	Complexity analysis
	Convergence property
	Probabilistic interpretation of clustering
	Probabilistic interpretation of clustering
	Probabilistic interpretation of clustering
	Introduction to EM
	Background knowledge
	Expectation Maximization
	Intuitive understanding of EM
	Expectation Maximization (cont)
	Expectation Maximization (cont)
	Expectation Maximization (cont)
	Expectation Maximization (cont)
	Expectation Maximization
	An intuitive understanding of EM
	Convergence guarantee
	What is not guaranteed
	k-means v.s. Gaussian Mixture
	k-means v.s. Gaussian Mixture
	k-means in practice
	Better initialization: k-means++
	How to determine k
	How to determine k
	What you should know
	Today’s reading

