Abstract Data Types

Development and Implementation

JPC and JWD © 2002 McGraw-Hill, Inc.

Our Goal

4 Well-defined representations that allow objects to be created
and used in an intuitive manner

= User should not have to bother with unnecessary details

@ Example

= programming a microwave to make popcorn should not
require a physics course

Golden Rule

Use information hiding and encapsulation to support integrity of
data

» Put implementation details in a separate module
+ Implementation details complicate the class declarations

= Data members are private so that use of the interface is
required
+ Makes clients generally immune to implementation
changes

Another Golden Rule

Keep it simple — class minimality rule

= Implement a behavior as a nonmember function when
possible

= Only add a behavior if it is necessary

Abstract Data Type

Well-defined and complete data abstraction using the
information-hiding principle

Rational Number Review

4 Rational number
= Ratio of two integers: a/b
+ Numerator over the denominator

Standard operations

= Addition Multiplication
a, c_ad¥bc axc_ac
= Subtraction Division

Abstract Data Type

Consider

Rational a(l1,2); // a=1/2

Rational b(2,3); // b = 2/3

cout << a << " + " << b << " = " << a + b;
Rational s; // s = 0/1

Rational t; // t = 0/1

cin >> s >> t;

cout << 8 << " * " << t << " =" << 8 * t;

4 Observation

= Natural look that is analogous to fundamental-type
arithmetic objects

Rational Attributes

4 A numerator and denominator

= Implies in part a class representation with two private int
data members

+ NumeratorValue and DenominatorValue

Rational Public Behaviors

Rational arithmetic
» Addition, subtraction, multiplication, and division

4 Rational relational
= Equality and less than comparisons
+ Practice rule of class minimality

Rational Public Behaviors

@ Construction
» Default construction
+ Design decision 0/1
» Specific construction
+ Allow client to specify numerator and denominator
= Copy construction
+ Provided automatically

@ Assignment
= Provided automatically

4 Insertion and extraction

Non-Public Behaviors

Inspection and mutation of data members

» Clients deal with a Rational object!

Auxiliary Behaviors

@ Operations (necessarily public)
= Arithmetic, relational, insertion, and extraction operations
+ Provides the natural form we expect

» Class definition provides a functional form that
auxiliary operators use

+ Provides commutativity consistency
m For C++reasons1 + rand r + 1 would not be
treated the same if addition was a member operation

nstantiation ‘ Instantiation
Rational a(1l,2); Rational b(2,3);

Library Components

4 Rational.h
= Class definitions and library function prototypes

Rational.cpp

= Implementation source code — member and auxiliary
function definitions

+ Auxiliary functions are assisting global functions that
provide expected but non-member capabilities
4 Rational.obj
= Translated version of Rational.cpp (linkable)

4 Rational.lib
= Library version of Rational.obj that is more readily linkable

MyProgram.cpp

Making use of the Rational
. . class. The header file provides
#include <iostream> access to the class definition
using namespace std; and to auxiliary function

#include "rational.h" - prototypes. The header file
does not provide member and

int main()
¢ auxiliary definitions

Rational r;
Rational s;
cout << "Enter two rationals(a/b): ";
cin >> r >> s;

Rational Sum = r + s;

cout << r << " + " << 5 << " = " << Sum;

return O0;

Producing MyProgram.exe

4 Preprocessor combines the definitions and prototypes in
iostream and rational headers along with MyProgram.cpp to
produce a compilation unit

= Compiler must be told where to look for Rational.h

Compiler translates the unit and produces MyProgram.obj

Compiler recognizes that MyProgram.obj does not contain actual
definitions of Rational constructor, +, >>, and <<

Linker is used to combine definitions from the Rational library
file with MyProgram.obj to produce MyProgram.exe

= Compiler must be told where to find the Rational library file

MyProgram.cpp

v

Producing MyProgram.exe

Process
preprocessor
directives to
produce a
translation
unit

Check
translation unit
for legal syntax
and compile it
into object file
MyProgram.obj

Link object file
with standard
library files
and rational
library file to
produce
executable
unit

A 4

MyProgram.exe

Rational Header File Overview

File layout

= Class definition and library prototypes nested within
preprocessor statements

+ Ensures one inclusion per translation unit
= Class definition precedes library prototypes

#ifndef RATIONAL H
#define RATIONAL H
class Ratiomal {

/)
} o
// library prototypes ...
#endif

Class Rational Overview

class Ratiomal ({ // from rational.h
public:
// for everybody including clients
protected:
// for Rational member functions and for
// member functions from classes derived
// from rational
private:
// for Rational member functions

Rational Public Section

public:
// default constructor
Rational () ;
// specific constructor
Rational (int numer, int denom = 1);
// arithmetic facilitators
Rational Add(const Rational &r) const;
Rational Multiply(const Rational &r) const;
// stream facilitators
void Insert (ostream &sout) const;
void Extract(istream &sin);

10

Rational Protected Section

protected:
// inspectors
int GetNumerator () const;
int GetDenominator () const;
// mutators
void SetNumerator (int numer) ;
void SetDenominator (int denom) ;

Rational Private Section

private:
// data members
int NumeratorValue;
int DenominatorValue;

11

Auxiliary Operator Prototypes

// after the class definition in rational.h

Rational operator+(

const Rational &r, const Rational &s);

Rational operator* (

const Rational &r, const Rational &s);

ostream& operator<c<(

ostream &sout, const Rational &s);

istream& operator>>(istream &sin, Rational &r);

Auxiliary Operator Importance

Rational r;

Rational s;
r.Extract(cin) ;
s.Extract(cin) ;
Rational t = r.Add(s);

t.Insert (cout);

Rational r;
Rational s;

cin >> r;

cin >> s;

Rational t = r + s;
cout << t;

4 Natural look

Should << be a member?
= Consider
r << cout;

12

Const Power

const Rational OneHalf (1,2):;
cout << OneHalf; // legal
cin >> OneHalf; // illegal

Rational Implementation

#include <iostream> // Start of rational.cpp
#include <string>

using namespace std;
#include "rational.h" <€ Isthis necessary?

// default constructor
Rational::Rational() {

SetNumerator (0) ; i i
: Wh|ch objects are
SetDenominator (1) ; being referenced?
}
4 Example
Rational r; // r =0/1

13

Remember

Every class object
= Has its own data members

= Has its own member functions
+ When a member function accesses a data member

» By default the function accesses the data member of
the object to which it belongs!

= No special notation needed

Remember

4 Auxiliary functions
= Are not class members

= To access a public member of an object, an auxiliary
function must use the dot operator on the desired object

object.member

14

Specific Constructor

// (numer, denom) constructor
Rational::Rational (int numer, int denom) {
SetNumerator (numer) ;
SetDenominator (denom) ;

}

4 Example
Rational t(2,3); // t = 2/3
Rational u(2); // u = 2/1 (why?)

Inspectors

int Rational::GetNumerator () const {

return NumeratorValue; vachOMects
3 being referenced?

int Rational::GetDenominator () const {
return DenominatorValue; \\\\
} Why the const?

Where are the following legal?
int a = GetNumerator():;
int b = t.GetNumerator():;

15

Numerator Mutator

void Rational::SetNumerator (int numer) {
NumeratorValue = numer; ‘\\

}

Why no const?
Where are the following legal?

SetNumerator (1) ;

t.SetNumerator (2) ;

Denominator Mutator

void Rational::SetDenominator (int denom) {
if (denom != 0) {
DenominatorValue = denom;
}
else {
cerr << "Illegal denominator: " << denom
<< "using 1" << endl;
DenominatorValue = 1;
}
}

@ Example
SetDenominator (5) ;

16

Addition Facilitator

Rational Rational::Add(const Rational &r) const {
int a = GetNumerator();
int b = GetDenominator () ;
int ¢ = r.GetNumerator();

int d = r.GetDenominator () ;
return Rational(a*d + b*c, b*d):;
}
Example

cout << t.Add(u);

Multiplication Facilitator

Rational Rational::Multiply(const Rational &r)
const {
int a = GetNumerator();
int b = GetDenominator () ;
int ¢ = r.GetNumerator();
int d = r.GetDenominator() ;

return Rational (a*c, b*d);

@ Example
t.Multiply (u);

17

Insertion Facilitator

void Rational::Insert (ostream &sout) const {
sout << GetNumerator() << '/' << GetDenominator();
return;

4

Example
t.Insert (cout);

Why is sout a reference parameter?

Basic Extraction Facilitator

void Rational::Extract(istream &sin) {
int numer;
int denom;
char slash;
sin >> numer >> slash >> denom;
assert(slash == '/');
SetNumerator (numer) ;
SetDenominator (denom) ;

return;

}

@ Example

t.Extract(cin);

18

Auxiliary Arithmetic Operators

Rational operator+(
const Rational &r, const Rational &s) {

return r.Add(s);

}

Rational operator* (
const Rational &r, const Rational &s) {
return r.Multiply(s);

}

% Example
cout << (t + t) * t;

Auxiliary Insertion Operator

ostream& operator<c<(
ostream &sout, const Rational &r) {
r.Insert (sout) ;

return sout;

}
Why a reference return?

Note we can do either

t.Insert (cout); cout << endl; // unnatural

cout << t << endl; // natural

19

Auxiliary Extraction Operator

// extracting a Rational
istream& operator>>(istream &sin, Rational &r) {
r.Extract(sin) ;

return sin;

4 Why a reference return?

4 We can do either

t.Extract(cin); // unnatural

cin >> t; // natural

What's Happening Here?

4 Suppose the following definitions are in effect
Rational a(2,3);
Rational b(3,4);
Rational c(1,2);
Why do the following statements work
Rational s(a);
Rational t = b;
c = a
@ C++ has automatically provided us a copy constructor and an
assignment operator

20

Copy Construction

Default copy construction
= Copy of one object to another in a bit-wise manner

+ The representation of the source is copied to the target
in a bit-by-bit manner

= This type of copy is called shallow copying

Class developers are free to implement their own copy
constructor

Rational does need a special one, but we will define one for the
experience

A Rational Copy Constructor

Rational::Rational (const Rational &r) (
int a = r.GetNumerator();

int b = r.GetDenomiator() ;
SetNumerator (a) ;

SetDenominator (b) ;

Rational s(a);
Rational t = b;

21

Gang Of Three

@&

If it is appropriate to define a copy constructor then
= Consider also defining
+ Assignment operator
= Copy source to target and return target
s A=B= C
+ Destructor
» Clean up the object when it goes out of scope

&

We give the name Gang of three to the
» Copy constructor, assignment operator, and the destructor

A Rational Assignment Operator

Rational& Rational::operator =(const Rational &r) {
int a = r.GetNumerator();
int b r.GetDenomiator () ;

SetNumerator (a) ;
SetDenominator (b) ;
*this is C++ syntax for the
return *this; -<—— object whose member
3 function was invoked

o o

Rational Destructor

Rational::~Rational() {
// nothing to do

}

23

