

2 STORIES

Carnot

and the second sec

theory governs practice governs theory

1900 INT'L CONFERENCE OF MATHEMATICIANS

DAVID HILBERT

10 entscheidungsproblem

10. Entscheidung der Losbarkeit einer diophantischen Gleichung. Eine diophantische Gleichung mit irgendwelchen Unbekannten und mit ganzen rationalen Zahlkoefficienten sei vorgelegt: man soll ein Verfahren angeben, nach welchen sich mittels einer endlichen Anzahl von Operationen entscheiden lässt, ob die Gleichung in ganzen rationalen Zahlen losbar ist.

> "Is there a method to decide whether a given equation with Integer coefficients has an Integer solution?"

I928:

IS THERE A METHOD TO

DECIDE WHETHER A

MATHEMATICAL

STATEMENT IS TRUE OR

FALSE?

Leibniz 1670

Babbage 1840

I928:

IS THERE A METHOD TO

DECIDE WHETHER A

MATHEMATICAL

STATEMENT IS TRUE OR

FALSE?

of Theoretical

Computer Science

GROUP OF OBJECTS

GROUP OF OBJECTS ELEMENTS MEMBERS

$\{2, 3, 5, 7\}$

$\{2, 3, 5, 7\}$

$2 \in \{2, 3, 5, 7\}$

$4 \not\in \{2, 3, 5, 7\}$

A is a subset of B

ACB

"every element in A is also in B" $% A^{\prime}$

Q: when are 2 sets equal? $A \stackrel{?}{=} B$

A: whenever both $A \subseteq B$ $B \subseteq A$

SETS CAN CONTAIN NO ELEMENTS

SETS CAN CONTAIN INFINITELY MANY ELEMENTS

 $\mathbb{N} = \{1, 2, 3, ...\}$ $\mathbb{Z} = \{\ldots, -2, -1, 0, 1, 2, \ldots\}$

AUB

AUNION

AUNION

$A \cap B$

AUNION

ANB

INTERSECTION

SEQUENCE

LIST OF OBJECTS

(ORDER MATTERS)

SEQUENCE

LIST OF OBJECTS ELEMENTS MEMBERS

(ORDER MATTERS)

K ELEMENT SEQUENCE IS CALLED A K-TUPLE

2 ELEMENT SEQUENCE IS CALLED A PAIR

GRAPH

SET OF NODES (VERTICES) SOME OF WHICH ARE CONNECTED (EDGES)

HOW CAN WE FORMALLY REPRESENT A GRAPH?

SET OF EDGES

DIRECTED GRAPH

DIRECTED GRAPH

LABELLED GRAPH

ALPHABET

FINITE SET OF SYMBOLS

BINARY ALPHABET

$\Sigma_2 = \{a, b, c, d, ..., z\}$

SESAME ST ALPHABET

STRING

FINITE SEQUENCE OF SYMBOLS

FROM AN ALPHABET

STRINGS OVER BINARY ALPHABE

$\sigma = 010001001$

EMPTY STRING (LENGTH O)

LANGUAGE

SET OF STRINGS

LANGUAGE OF BINARY

STRINGS

$\{\epsilon, 0, 1, 00, 01, 10, 11, ...\}$

DEFINITIONS

THEORENS

PROOFS

WE SEEK TO MAKE STATEMENTS ABOUT OUR WORLD.

PREFER TRUE STATEMENTS

PRECISE STATEMENTS

MATHEMATICAL DEFINITIONS OF OBJECTS

PRECISE ARGUMENTS

MATHEMATICAL PROOFS

$\operatorname{PROVE}: \overline{A \cup B} = \overline{A} \cap \overline{B}$

WHAT MUST WE SHOW?

PROOF BY CONTRADICTION

"REDUCTIO AD ABSURDUM"

ASSUME THE ABSURD

ASSUME THE ABSURD DERIVE A FALLACY

ASSUME THE ABSURD DERIVE A FALLACY ERGO: ABSURD IS FALSE

PROVE: THERE ARE INFINITELY MANY PRIMES

$\frac{\text{PROVE:}}{\sqrt{2}}$ is an irrational number