
UVa - cs302: Theory of Computation Spring 2008

Exam 2 Final Comments

See the preview comments for the grade distribution and answers to the other questions.

Problem 1: Short Answers. (25) For each question, provide a correct, clear, precise, and
concise answer from the perspective of a theoretical computer scientist.

b. [10] Explain the essence of the Church-Turing Thesis in a way that would be understand-
able to a typical fifth grader.

Answer: You know how you learn to solve long addition, multiplication, and division
problems in math class? Well, what you are really learning is called a “procedure”. That
means, it is a series of instructions for what to do. The hard problem of adding two many
digit numbers is broken down into a series of steps. For example, you start by adding the
rightmost digits, writing down the answer at the bottom and if the sum is more than ten,
writing the carry at the top of the next column. Then, you move left one position and add
the next column. If you follow the rules carefully, the instructions work no matter what the
numbers are — they could have hundreds of digits in them, but you can still add them by
following the same rules. The good think about the procedures you are learning in math
class is that they always finish. There is a fancy name for a procedure that always finishes:
it is called an “algorithm”.

To do addition, you have rules that involve making decisions (for example, if the sum in
one column is higher than 10, you need to carry the tens value), and keeping going (you
keep adding the columns from right to left until you are done), as well as a way to keep
track of what you are doing (when you add a column, you remember in your head what
the sum is, and you can do this because you learned how to add any two digits). It turns
out that thow three kinds of rules are all you need to do any computation! If you can keep
track of what you are doing, make decisions, keep going, and have a big enough sheet of
paper to write down everything you want, you can do every calculation. What you are
doing is very similar to what a computer does — computers are all around you: in your
video game machine, in your cell phone, in your iPod, etc. All of these computers might
seem very different, but other than differences in their screens and how much memory
they have (this is like the size of the paper you can write things on), what they can do is
exactly the same, and it is exactly the same as what you can do following rules on paper.
The difference is the computers can carry out the steps much faster, they never get bored,
and they hardly ever make mistakes. This was understood way back before even your
parents were born (before there were any video games, cell phones, or iPods!) by Alonzo
Church and Alan Turing, who started out understanding what computers could do by
thinking about how fifth graders do arithmetic.

X2C-1



Problem 2: Turing Machines. (25)

b. [15] Define a cyclical Turing machine as a Turing machine with a one-way infinite tape (as
in our standard Turing machine definition), except that the left edge behavior is defined
differently. Instead of staying in the leftmost square, if a cyclical Turing machine would
move left past the left edge of the tape, the head moves to the rightmost non-blank square.

Prove that the class of languages that can be recognized by a cyclical Turing machine is
identical to the class of languages that can be recognized by a regular Turing machine.

Answer: To prove two computing models are equivalent, we need to show that each model
can simulate the other model. So, we need to show that (1) a cyclical Turing machine (CTM)
can simulate a regular Turing machine (RTM), and that (2) an RTM can simulate a CTM.

(1) To simulate an RTM with a CTM, we need to avoid the cycling behavior. We can do this
by adding a previously unused symbol, %, to the tape alphabet. To simulate an RTM with
a CTM, we add a new start state which walks to the end of the input, and then moves the
original input to the right one square by copying each symbol to the square to the right,
and then moving two squares left to the next symbol. After this, the original first square
is not unused. Write a % in that square. Then, simulate the original RTM, starting on the
second square, but with an additional transition rule for whenever the input symbol is %
to move right one square. This simulates the normal left edge behavior of the RTM.

(2) To simulate a CTM with an RTM, we need to simulate the cycling behavior. Doing
this correctly is a little tricky, since at the beginning we know the leftmost blank square is
the end of the input, but there is no way to ensure this is always the case. To avoid this
problem, we add a special mark for the rightmost used square. This mark needs to be
maintained by the transition rules, so whenever the machine would move right from the
marked square, it enters a new state that marks whatever is written on the new square. In
the case where the marked square is overwritten with a blank, the rules needs to mark the
square to its left as the new rightmost square. So, to simulate the CTM, at the beginning
the RTM finds the rightmost non-blank and adds a mark to it. As in case (1), we move all
the input to the right one square to make room for the % marker at the leftmost square. A
transition rule is added so that whenever the % is encountered, the machine moves to the
rightmost square by finding the square with the special mark.

Thus, we can do the simulations in both directions, so the computing models are equiva-
lent.

Problem 4: Decidability. (30) For each part, state clearly whether the described language
is decidable or undecidable. Support your answer with a convincing proof. You may use
any of the theorems we have proven in class or in the book, but you may not use Rice’s
theorem in your proof unless you also include a proof of Rice’s theorem.

b. [10] NOTSUBTM = {〈A, B〉} where A and B are descriptions of Turing machines
and there is some string w which is accepted by A that is not accepted by B (that is, the
language accepted by A is not a subset of the language accepted by B).

Answer: We show two different proofs which use reductions from different problems.

X2C-2



Proof by Reduction from EQTM . We show that NOTSUBTM is undecidable by showing
that a decider for NOTSUBTM could be used to build a decider for EQTM .

Assume NOTSUBTM is decidable. Then, there exists a TM MNS that decides NOTSUBTM .

We can construct MEQ that decides EQTM using MNS :

MEQ(〈A, B〉):

1. Check that the input is a valid representation of two Turing
machines. If not, reject.

2. Simulate MNS on 〈A, B〉. If it accepts, reject.
3. Simulate MNS on 〈B, A〉. If it accepts, reject.
4. Otherwise, accept.

This correctly decides EQTM since it accepts 〈A, B〉 only if MNS rejects both 〈A, B〉 (mean-
ing there is no string w that is accepted by A that is not accepted by B) and 〈B, A〉 (meaning
that there is no string w that is accepted by B and not accepted by A), hence A and B must
be the same language.

This proves that MNS cannot exist, since we know MEQ cannot exist. Thus, NOTSUBTM

is undecidable.

Proof by Reduction from ATM . We show that NOTSUBTM is undecidable by showing
that a decider for NOTSUBTM could be used to build a decider for ATM .

Assume NOTSUBTM is decidable. Then, there exists a TM MNS that decides NOTSUBTM .

We can construct MA that decides ATM using MNS :

MA(〈M,w〉):

1. Check that the input is a valid representation of a Turing ma-
chine and an input pair. If not, reject.

2. Construct Mw, a TM that simulates M running on input w (by
erasing the given input, and writing w on the tape, and then
simulating M ).

3. Construct MACCEPT , a TM that accepts all inputs.
4. Simulate MNS on 〈MACCEPT , Mw〉. If it rejects, accept. If it

accepts, reject.

This correctly decides ATM since if M accepts w then Mw accepts all inputs, so L(MACCEPT )
is a subset of L(Mw) and MNS will reject 〈MACCEPT , Mw〉, and the MA machine correctly
accepts. Similarly, if M does not accept w, then Mw rejects all inputs, so L(MACCEPT ) is
not a subset of L(Mw) and MNS will accept, and MA correctly rejects.

c. [10] LBusyBee = {〈M,w, k〉} where M describes a Turing machine, and k is the number
of different FSM states M enters before halting on input w. (Note that qAccept and qReject

X2C-3



are counted as states for the number of different states count.) (The same language as in
Problem 3c.)

Answer:

Proof by Reduction from HALTTM .

Assume LBusyBee is decidable. Then, there exists a TM MBusyBee that decides LBusyBee.

We can construct MHALT that decides HALTTM using MBusyBee:

MHALT (〈M, w〉):

1. Check that the input is a valid representation of a Turing ma-
chine and an input pair. If not, reject.

2. Extract the number of states, n, from the description M . (This
is easy, just count the states in the description.)

3. For each i = 1, 2, . . . , n, simulate MBusyBee on (〈M, w, i〉). If it
accepts, accept.

4. If none accept, reject.

This works since we know n is finite since the number of states in a TM must be finite, so
trying all of the i values must eventually terminate. If M would halt on w, it must halt
after entering some number of states that is between 1 and n, so if it would halt one of the
MBusyBee simulations must accept.

X2C-4


