
UVa - cs302: Theory of Computation Spring 2008

Exam 2
Due: 8 April 2008

Your Name:

UVa Email Id:
Honor Policy. For this exam, you must work alone. You may consult the single
(two-sided) page of notes you brought, but may not look at any other materials or
aid or accept aid from other students.

Directions. Answer all four questions, including all sub-parts. You may use the
backs of pages for your scratch work, but we will only grade answers that are
written in the answer boxes, or that are found following clearly marked arrows
from these boxes. The box for each answer is designed to be big enough to easily
fit a full credit, correct answer. If you feel like you need more space to write your
answer, then either your answer is incorrect, inelegant, or you are providing more
detail than needed for full credit.

Question Target Score
1 5-10-10
2 10-15
3 5-5-10
4 10-10-10

Total 100
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Problem 1: Short Answers. (25) For each question, provide a correct, clear, precise,
and concise answer from the perspective of a theoretical computer scientist.

a. [5] What is a language?

b. [10] Explain the essence of the Church-Turing Thesis in a way that would be
understandable to a typical fifth grader.

Exam2-2



c. [10] What does it mean for a language to not be Turing-recognizable?
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Problem 2: Turing Machines. (25)

a. [10] Provide an implementation-level description of a Turing machine that de-
cides the language A = 0n1m0n/m where n ≥ 0 and m ≥ 1 (that is, the input is
n zeros, followed by m ones, followed by n divided by m zeros). To be in the
language, n must be divisible by m. For example, strings in the language include
00100, 00110, and 00001100; but the string 000110 is not in the language.
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b. [15] Define a cyclical Turing machine as a Turing machine with a one-way infinite
tape (as in our standard Turing machine definition), except that the left edge be-
havior is defined differently. Instead of staying in the leftmost square, if a cyclical
Turing machine would move left past the left edge of the tape, the head moves to
the rightmost non-blank square.

Prove that the class of languages that can be recognized by a cyclical Turing ma-
chine is identical to the class of languages that can be recognized by a regular
Turing machine.
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Problem 3: Problematic Proofs. (20)

Each of these “proofs” claims to prove a conjecture. Some of the conjectures are
false, others may be true, but all the proofs are bad. For each proof, explain clearly
why the provided proof does not satisfactorily prove the given conjecture. Your
answer should identify a fundamental flaw in the proof (for example, by explain-
ing what it actually proves instead of the conjecture), not a minor issue like lack of
sufficient detail.

a. [5] Conjecture: The set of languages that can be recognized by a deterministic push-
down automaton is equivalent to the set of languages that can be recognized by a Turing
machine.

Proof by Simulation. We prove the conjecture by showing how to simulate any
DPDA with a TM.

We can simulate the stack by using the TM’s tape, writing a mark after the end of
the input and then writing the stack from left to right on the TM tape. The top of
the stack is represented by the leftmost square on the tape after the mark.

To simulate a push, we move the tape head to the first blank, and then move right
to left copying the contents of each square into the square to its right. Then, we put
the pushed symbol in the leftmost square.

To simulate a pop, we read the top of the stack, and then move left to right, copying
the symbol in each square into the square to its left and overwriting the rightmost
non-blank square with a blank.

To simulate the DPDA processing the input, we start by adding a dot to the first
input symbol, and then mark each successive input symbol with a dot as the input
is processed from left to right.

Thus, we can simulate a DPDA with a TM. This proves a DPDA is equivalent to a
TM.
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b. [5] Conjecture: Define H(L) as the set of even-length strings in L. That is,

H(L) = {w|w ∈ L and |w| = 2k for some k ≥ 0}

H(L) is closed for context-free languages. (Note: this is based on the original un-
corrected Exam 1 comments.)

Proof: Since L is a CFL, there exists a DPDA M = (Q,Σ,Γ, δ, q0, F ) that recognizes
L. We show how to construct a DPDA MH = (QH ,Σ,Γ, δH , q0H , FH) that recog-
nizes H(L). The basic idea is to make two copies the states of Q, corresponding to
having seen an odd or even number of input symbols so far, and duplicating all
the transition rules.

QH = Q× {even, odd}— states in MH keep track of the state in M , and
whether an even or odd number of symbols have been seen so far.

qOH = (q0, even)
FH = {(qf , even)|qf ∈ F} δH is defined by:

δH((q, even), x, γ) = ((qr, odd), β) if δ(q, x, γ)→ (qr, β)
δH((q, odd), x, γ) = ((qr, even), β) if δ(q, x, γ)→ (qr, β)
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c. [10] Conjecture: The “Busy Bee” language, defined below, is undecidable:

LBusyBee = {〈M,w, k〉} where M describes a Turing machine, and k is
the number of different FSM states M enters before halting on input
w. (Note that qAccept and qReject are counted as states for the number
of different states count.)

Proof by Reduction. We prove that LBusyBee is undecidable by reducing HALTTM

to it.

Construct MBusyBee given a machine MHALT that decides HALTTM :

MBusyBee =

Simulate MHALT on input 〈M,w〉.
If MHALT accepts, simulate M on w. On a second tape, list the states of

M , and add a mark on each state that is entered. Count the num-
ber of marked states on the second tape. If the number matches k,
accept.

Otherwise, reject (without simulating M on w since it does not halt).

Since buildingMBusyBee requiresMHALT , which we know does not exist, this proves
that LBusyBee is undecidable.
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Problem 4: Decidability. (30) For each part, state clearly whether the described
language is decidable or undecidable. Support your answer with a convincing proof.
You may use any of the theorems we have proven in class or in the book, but you
may not use Rice’s theorem in your proof unless you also include a proof of Rice’s
theorem.

a. [10] LONGERDFA = {〈A,B〉} where A and B are descriptions of DFAs and the
longest string that is accepted byA is longer than the longest string that is accepted
by B.
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b. [10] NOTSUBTM = {〈A,B〉} where A and B are descriptions of Turing ma-
chines and there is some string w which is accepted by A that is not accepted by B
(that is, the language accepted by A is not a subset of the language accepted by B).
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c. [10] LBusyBee = {〈M,w, k〉} where M describes a Turing machine, and k is the
number of different FSM states M enters before halting on input w. (Note that
qAccept and qReject are counted as states for the number of different states count.)
(The same language as in Problem 3c.)

End of Exam
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