Evolvability in Learning Theory

Dimitris Diochnos

Department of Computer Science
University of Virginia

April 15, 2019
Charlottesville, VA
Evolvability [Valiant, 2009] was based on Darwin’s work *On the Origin of Species by Means of Natural Selection* [Darwin, 1859].
Evolvability

Key Points

- Species *(Hypotheses)*, Generations *(Iterations)*.
- A *fitness* function called *performance*.
 - Estimated through *sampling*.
- Mutations define the Neighborhood.
- **Tolerance** \(t \) *partitions* the Neighborhood:
 - *Bene* = \(\{ h' \mid \text{Perf}_{D_n} (h', c) > \text{Perf}_{D_n} (h, c) + t \} \).
 - *Neut* = \(\{ h' \mid \text{Perf}_{D_n} (h', c) \geq \text{Perf}_{D_n} (h, c) - t \} \setminus \text{Bene} \).
 - *Deleterious*, the rest.

Goal

\[\Pr (\text{Perf}_{D_n} (h, c) < \text{Perf}_{D_n} (c, c) - \varepsilon) < \delta. \] \hspace{1cm} (1)

Evolution should proceed from any starting point!
The Swapping Algorithm on Monotone Conjunctions

$t = 0.1$

q

$x \land y$

0.5
The Swapping Algorithm on Monotone Conjunctions

\[x \land y = 0.5 \]

\[t = 0.1 \]

\[x = 0.25 \]
\[y = 0 \]

\[q \]
The Swapping Algorithm on Monotone Conjunctions

t = 0.1

\(x \land y \)
0.5

\(x \land y \land z \)
0.88

\(x \land y \land w \)
0.69
The Swapping Algorithm on Monotone Conjunctions

t = 0.1

\[x \land y \]
\[0.5 \]

\[x \]
\[0.25 \]

\[y \]
\[0 \]

\[x \land y \]
\[0.5 \]

\[x \land z \]
\[0.63 \]

\[w \land y \]
\[0.44 \]

\[x \land y \land z \]
\[0.88 \]

\[x \land y \land w \]
\[0.69 \]
Performance

\[X_n = \{0, 1\}^n. \]
\[h(x), c(x) \in \{+1, -1\}. \]

\[
\text{Perf}_{D_n} (h, c) = \sum_{x \in X_n} h(x) c(x) D_n(x) \\
= 1 - 2 \cdot \Pr (h(x) \neq c(x)) \\
= \mathbb{E} [h \cdot c].
\]

\[\text{Estimated through sampling}, \]
\[\text{Perf}_{D_n} (h, c, S) = \frac{1}{|S|} \sum_{x \in S} h(x) \cdot c(x). \]
Preliminary Remarks

Remark 1 (vs. PAC)

Evolvability is a restricted case of PAC learnability.

Goal 1 (Evolvability)

\[
\Pr (\text{Perf}_{D_n} (h, c) < \text{Perf}_{D_n} (c, c) - \varepsilon) < \delta .
\]

Goal 2 (PAC Learning)

\[
\Pr (\text{error}_{D_n} (h, c) > \varepsilon) < \delta .
\]
Preliminary Remarks

Remark 2 (on the *Updates*)

Updates depend only on the positivity and negativity of the examples or experiences, in the sense that there is no dependence on the description of the examples (as is the case in the Statistical Query model); e.g., # of 1’s in binary representation.

Remark 3 (vs. *SQ* model, Valiant, 2009)

Evolvable function classes \subset SQ learnable function classes.
Preliminary Remarks

Description 1 (The Tool on the SQ Model is a Query)

▷ Let $\psi : \{0, 1\}^n \times \{-1, 1\} \mapsto \{-1, 1\}$.
▷ A query is a pair (ψ, τ).
▷ Estimate $\mathbb{E} [\psi(x, \ell)]$ within tolerance τ.

Description 2 (Types of Queries)

▷ independent of the target (i.e. ψ depends only on x)
▷ correlational if $\psi(x, \ell) \equiv g(x)c(x)$.

Proposition 1
Any statistical query can be substituted by two statistical queries that are independent of the target and two correlational queries.
A Simulation Result

Remark 4 (CSQ Learnability \Rightarrow Evolvability; Feldman 2008)

Let \mathcal{C} be a concept class CSQ learnable over a class of distributions \mathcal{D} by a polynomial time algorithm A. Then, there exists an evolutionary algorithm $N(A)$ such that \mathcal{C} is evolvable by $N(A)$ over \mathcal{D}.
Related Results in Evolvability

Feldman
- CSQ → Evolvability algorithm [Feldman, 2008].
- Full conjunctions are evolvable [Feldman, 2009].
- Monotone conjunctions are not evolvable distribution-independently using Boolean loss [Feldman, 2011].
- Monotone conjunctions are evolvable distribution-independently using quadratic loss [Feldman, 2012].

D, Turán and D
- Swapping algorithm under \mathcal{U}_n [DT, 2009].
- Swapping algorithm under any \mathcal{B}_n [D, 2016].
- (1+1) EA under some \mathcal{B}_n [D, under submission].

Kanade, Valiant, Vaughan
- Evolvability with drifting targets [KVV, 2010]. (To be presented on April 29)

Kanade
- Recombination, parallel CSQ learning and general conjunctions [Kanade, 2011].

More Results
Basic Notation

Representation

- Hypotheses are conjunctions of boolean variables; e.g., \(h_1 = x_1 \land x_5 \land x_8 \).
- Size / length: \# vars in the conjunction; e.g., \(|h_1| = 3 \).
- Represented as a set of indices; e.g., \(h_1 = \{1, 5, 8\} \).
- Also useful: represented by a bitstring; e.g., \(h_1 = 10001001 \).
- Hamming distance \(d(h_1, h_2) \): \# positions where the bitstrings representing \(h_1 \) and \(h_2 \) differ.

Hypothesis Space

\(\mathcal{H} = C_n^{\le q} \). Hypotheses such that \(0 \le |h| \le q \). (← non-realizable)

\(\mathcal{H} = C_n = C_n^{\le q} \cup C_n^{> q} \). Hypotheses such that \(0 \le |h| \le n \).
Concept Class and Hypothesis Space

The diagram illustrates the concept class and hypothesis space for a given number of variables, x_1, x_2, \ldots, x_n. The level n represents all possible conjunctions with precisely q variables. The levels $q, 2, 1, 0$ correspond to conjunctions with q, 2, 1, and 0 variables, respectively. The hypothesis space encompasses all possible conjunctions within these levels.
Monotone Conjunctions under the Uniform Distribution are Evolvable

<table>
<thead>
<tr>
<th>properties</th>
<th>[Valiant, 2007]</th>
<th>[D & Turán, 2009]</th>
<th>[D, 2016]</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mathcal{H} = C_n$</td>
<td>$\mathcal{H} = C_n$</td>
<td>$\mathcal{H} = C_n^{\leq q}$</td>
<td></td>
</tr>
<tr>
<td>q</td>
<td>$\mathcal{O}(\lg(n/\varepsilon))$</td>
<td>$\mathcal{O}(\lg(1/\varepsilon))$</td>
<td>$\mathcal{O}(\lg(1/\varepsilon))$</td>
</tr>
<tr>
<td>generations</td>
<td>$\mathcal{O}(n\lg(n/\varepsilon))$</td>
<td>$\mathcal{O}(n\lg(1/\varepsilon))$</td>
<td>$2q$</td>
</tr>
<tr>
<td>sample size</td>
<td>$\tilde{\mathcal{O}}((n/\varepsilon)^6)$</td>
<td>$\tilde{\mathcal{O}}(n^2/\varepsilon^2 + n/\varepsilon^4)$</td>
<td>$\tilde{\mathcal{O}}(n/\varepsilon^4)$</td>
</tr>
</tbody>
</table>

Theorem 1 (D & Turán, 2009)

Set $q = \lceil \lg(3/\varepsilon) \rceil$. For every target conjunction c and every initial hypothesis h_0 it holds that after $\mathcal{O}(q + |h_0| \ln \frac{1}{\delta})$ iterations, each iteration evaluating the performance of $\mathcal{O}(nq)$ hypotheses, and each performance being evaluated using sample size $\mathcal{O}\left(\left(\frac{1}{\varepsilon}\right)^4 \left(\ln n + \ln \frac{1}{\delta} + \ln \frac{1}{\varepsilon}\right)\right)$ per iteration, the goal is achieved.
Correlation under the Uniform Distribution

\[h = \bigwedge_{i \in M} x_i \land \bigwedge_{\ell \in \mathcal{M}} x_{\ell} \quad \text{and} \quad c = \bigwedge_{i \in M} x_i \land \bigwedge_{k \in \mathcal{U}} x_k \quad (2) \]

\[
\text{Perf}_{\mathcal{U}_n}(h, c) = 1 - 2^{1-(m+u)} - 2^{1-(m+r)} + 2^{2-(m+r+u)} \\
= 1 - 2^{1-|c|} - 2^{1-|h|} + 2^{2-|h|-u}
\]
Strategy

\[h = \bigwedge_{i \in M} x_i \land \bigwedge_{\ell \in N} x_\ell \quad \text{and} \quad c = \bigwedge_{i \in M} x_i \land \bigwedge_{k \in U} x_k \]

- Short target \(\Rightarrow \) Find target precisely (w.h.p.)
- Long target \(\Rightarrow \) Find some good approximation (w.h.p.)
Strategy

\[h = \bigwedge_{i \in M} x_i \wedge \bigwedge_{\ell \in R} x_\ell \quad \text{and} \quad c = \bigwedge_{i \in M} x_i \wedge \bigwedge_{k \in U} x_k \]

- Short target \(\Rightarrow \) Find target precisely (w.h.p.)
- Long target \(\Rightarrow \) Find some good approximation (w.h.p.)

Lemma 2 (Performance Lower Bound)

If \(|h| \geq q \) and \(|c| \geq q + 1 \) then \(\text{Perf}_{\mathcal{U}_n}(h, c) > 1 - 3 \cdot 2^{-q} \).

Corollary 3

Let \(q \geq \lg(3/\varepsilon), \ |h| \geq q, \ |c| \geq q + 1 \) \(\Rightarrow \) \(\text{Perf}_{\mathcal{U}_n}(h, c) > 1 - \varepsilon \).
Guiding the Search

\[\Delta = \text{Perf}_{\mathcal{U}_n} (h', c) - \text{Perf}_{\mathcal{U}_n} (h, c) \]

Theorem 4 (Structure of Best Approximations)

The best q-approximation of a target c is

- c itself if \(|c| \leq q\)
- any hypothesis formed by q good variables if \(|c| > q\).
Example 1: Short Initial Hypothesis and Short Target

Let $X_8 = \{0, 1\}^8$ such that $\{g_1, g_2, g_3, b_1, b_2, b_3, b_4, b_5\}$, the target be $c = g_1 \land g_2 \land g_3$, and require $\varepsilon = 1/5$.

\[
\begin{array}{cccc|c|c}
\text{Step } i & u & \text{Hypothesis } h_i & \text{Performance} & \text{Neighborhood} & \text{Class} \\
0 & 0 & \emptyset & -\frac{3}{4} & N^+ & \\
1 & 1 & \{b_1\} & 0 & N^+ \cup \{\text{swaps: } b \rightarrow g\} & \\
2 & \geq 2 & \{b_1 \land b_2\} & \frac{3}{8} & N^+ \cup \{\text{swaps: } b \rightarrow g\} & \\
3 & \geq 2 & \{b_1 \land b_2 \land b_3\} & \frac{9}{16} & N^+ \cup \{\text{swaps: } b \rightarrow g\} & \\
4 & \geq 2 & \{b_1 \land b_2 \land b_3 \land b_4\} & \frac{21}{32} & \{\text{swaps: } b \rightarrow g\} & \\
5 & \geq 2 & \{b_1 \land g_3 \land b_3 \land b_4\} & \frac{22}{32} & \{\text{swaps: } b \rightarrow g\} & \\
6 & 1 & \{g_1 \land g_3 \land b_3 \land b_4\} & \frac{24}{32} & \{\text{swaps: } b \rightarrow g\} & \\
7 & 0 & \{g_1 \land g_3 \land g_2 \land b_4\} & \frac{28}{32} & \{\text{remove } b\} & \\
8 & 0 & \{g_1 \land g_3 \land g_2\} & 1 & \{h_8\} & \\
\end{array}
\]
Example 2: Short Initial Hypothesis and Long Target

Let \(X_{13} = \{0, 1\}^{13} \) such that
\(\{g_1, g_2, g_3, g_4, g_5, g_6, g_7, b_1, b_2, b_3, b_4, b_5, b_6\} \), the target be
\(c = g_1 \land g_2 \land g_3 \land g_4 \land g_5 \land g_6 \land g_7 \), and require \(\varepsilon = 1/5 \). \((q = 4) \)

<table>
<thead>
<tr>
<th>Step (i)</th>
<th>(u)</th>
<th>Hypothesis (h_i)</th>
<th>Performance</th>
<th>Neighborhood</th>
<th>Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(\geq 2)</td>
<td>(\emptyset)</td>
<td>(-63/64)</td>
<td>(N^+)</td>
<td>Bene</td>
</tr>
<tr>
<td>1</td>
<td>(\geq 2)</td>
<td>(b_1)</td>
<td>0</td>
<td>(N^+ \cup {\text{swaps: } b \rightarrow g})</td>
<td>Bene</td>
</tr>
<tr>
<td>2</td>
<td>(\geq 2)</td>
<td>(b_1 \land b_2)</td>
<td>(63/128)</td>
<td>(N^+ \cup {\text{swaps: } b \rightarrow g})</td>
<td>Neut</td>
</tr>
<tr>
<td>3</td>
<td>(\geq 2)</td>
<td>(b_1 \land b_2 \land b_3)</td>
<td>(189/256)</td>
<td>(N^+ \cup {\text{swaps: } b \rightarrow g})</td>
<td>Neut</td>
</tr>
<tr>
<td>4</td>
<td>(\geq 2)</td>
<td>(b_1 \land b_2 \land b_3 \land b_4)</td>
<td>(425/512)</td>
<td>{all swaps} \cup {h_4}</td>
<td>Neut</td>
</tr>
<tr>
<td>5</td>
<td>(\geq 2)</td>
<td>(b_1 \land b_6 \land b_3 \land b_4)</td>
<td>(425/512)</td>
<td>{all swaps} \cup {h_5}</td>
<td>Neut</td>
</tr>
<tr>
<td>6</td>
<td>(\geq 2)</td>
<td>(b_1 \land b_6 \land b_3 \land b_5)</td>
<td>(425/512)</td>
<td>{all swaps} \cup {h_6}</td>
<td>Neut</td>
</tr>
<tr>
<td>7</td>
<td>(\geq 2)</td>
<td>(b_1 \land b_6 \land b_3 \land b_5)</td>
<td>(425/512)</td>
<td>{all swaps} \cup {h_7}</td>
<td>Neut</td>
</tr>
<tr>
<td>8</td>
<td>(\geq 2)</td>
<td>(g_1 \land b_6 \land b_3 \land b_5)</td>
<td>(426/512)</td>
<td>{swaps: (b \rightarrow g)}</td>
<td>Bene</td>
</tr>
<tr>
<td>9</td>
<td>(\geq 2)</td>
<td>(g_1 \land b_6 \land b_3 \land g_4)</td>
<td>(428/512)</td>
<td>{swaps: (b \rightarrow g)}</td>
<td>Bene</td>
</tr>
<tr>
<td>10</td>
<td>(\geq 2)</td>
<td>(g_1 \land b_6 \land g_6 \land g_4)</td>
<td>(432/512)</td>
<td>{swaps: (b \rightarrow g)}</td>
<td>Bene</td>
</tr>
<tr>
<td>11</td>
<td>(\geq 2)</td>
<td>(g_1 \land g_3 \land g_6 \land g_4)</td>
<td>(440/512)</td>
<td>{swaps: (g \rightarrow g)} \cup {h_{11}}</td>
<td>Neut</td>
</tr>
<tr>
<td>12</td>
<td>(\geq 2)</td>
<td>(g_1 \land g_3 \land g_5 \land g_4)</td>
<td>(440/512)</td>
<td>{swaps: (g \rightarrow g)} \cup {h_{12}}</td>
<td>Neut</td>
</tr>
<tr>
<td>13</td>
<td>(\geq 2)</td>
<td>(g_1 \land g_3 \land g_5 \land g_4)</td>
<td>(440/512)</td>
<td>{swaps: (g \rightarrow g)} \cup {h_{13}}</td>
<td>Neut</td>
</tr>
<tr>
<td>14</td>
<td>(\geq 2)</td>
<td>(g_2 \land g_3 \land g_5 \land g_4)</td>
<td>(440/512)</td>
<td>{swaps: (g \rightarrow g)} \cup {h_{14}}</td>
<td>Neut</td>
</tr>
</tbody>
</table>