Learning Theory Overview

Dimitris Diochnos

University of Virginia
Department of Computer Science

Spring 2019
CS 6501 - Learning Theory
Outline

1. Preliminaries
2. PAC Learning and VC-Dimension
Find a Good Approximation of a Function with High Probability
Learning Theory

Goal (Good Approximation with High Probability)
There is a function c over a space X. One wants to come up (in a reasonable amount of time) with a function h such that h is a good approximation of c with high probability.

Description (Parameters and Terminology)
- X: Instance Space
- $c \in C$: Target Concept
- $h \in H$: Hypothesis
- Good Approximation: Small Error ε
- High Probability: Confidence $1 - \delta$
- Reasonable Amount of Time: Polynomial in $n, 1/\varepsilon, 1/\delta$

Example
- $X = \{0, 1\}^n$
- $c = x_1 \land x_2 \land x_3$
- $h = x_1 \land x_4$
There is an *arbitrary, unknown* distribution \mathcal{D} over X.

Learn from examples $(x, c(x))$, where $x \sim \mathcal{D}$.

$\text{error}(h, c) = \Pr(h(x) \neq c(x))$.

Goal (Valiant, 1984)

$\Pr(\text{error}(h, c) \leq \varepsilon) \geq 1 - \delta$.
Efficiently PAC Learning Conjunctions

Let $X = \{x_1, x_2, x_3, x_4, x_5\}$ and $c = x_1 \land \overline{x}_3 \land x_4$.

- Request m examples and look on the positive ones.

<table>
<thead>
<tr>
<th>example</th>
<th>hypothesis h</th>
</tr>
</thead>
<tbody>
<tr>
<td>$((11010), +)$</td>
<td>$x_1 \land \overline{x}_1 \land x_2 \land \overline{x}_2 \land x_3 \land \overline{x}_3 \land x_4 \land \overline{x}_4 \land x_5 \land \overline{x}_5$</td>
</tr>
<tr>
<td>$((10010), +)$</td>
<td>$x_1 \land x_2 \land \overline{x}_3 \land x_4 \land \overline{x}_5$</td>
</tr>
<tr>
<td>$((10011), +)$</td>
<td>$x_1 \land \overline{x}_3 \land x_4 \land \overline{x}_5$</td>
</tr>
<tr>
<td></td>
<td>$x_1 \land \overline{x}_3 \land x_4$</td>
</tr>
</tbody>
</table>

Theorem (PAC Learning of Finite Concept Classes)

For every distribution \mathcal{D}, drawing $m \geq \frac{1}{\varepsilon} \cdot \left(\ln |\mathcal{C}| + \ln \frac{1}{\delta} \right)$ examples guarantees that any consistent hypothesis h satisfies $\Pr(\text{error}(h, c) \leq \varepsilon) \geq 1 - \delta$.

- For conjunctions $|\mathcal{C}| = 3^n + 1$.
- Efficiently PAC learning because the algorithm runs in poly-time.
- What about infinite concept classes (e.g. halfspaces)?
Different Classifications and the Growth Function

- $\mathbf{x} = (x_1, x_2, \ldots, x_m)$ is a set of m examples.

Number of Classifications $\Pi_{\mathcal{H}}(\mathbf{x})$ of \mathbf{x} by \mathcal{H}: Distinct vectors $(h(x_1), h(x_2), \ldots, h(x_m))$ as h runs through \mathcal{H}.

- $\Pi_{\mathcal{H}}(\mathbf{x}) \leq 2^m$.
Different Classifications and the Growth Function

- $\mathbf{x} = (x_1, x_2, \ldots, x_m)$ is a set of m examples.

Number of Classifications $\Pi_{\mathcal{H}}(\mathbf{x})$ of \mathbf{x} by \mathcal{H}: Distinct vectors $(h(x_1), h(x_2), \ldots, h(x_m))$ as h runs through \mathcal{H}.

- $\Pi_{\mathcal{H}}(\mathbf{x}) \leq 2^m$.

Growth Function: $\Pi_{\mathcal{H}}(m) = \max\{\Pi_{\mathcal{H}}(\mathbf{x}) : \mathbf{x} \in X^m\}$.

Example

Rays on a line:

$h_\varnothing(x) = \begin{cases} +, & \text{if } x \geq \varnothing \\ -, & \text{otherwise} \end{cases}$

$\Pi_{\mathcal{H}}(m) = m + 1$.
The Vapnik-Chervonenkis Dimension

Definition
A sample x of size m is *shattered* by \mathcal{H}, or \mathcal{H} *shatters* x, if \mathcal{H} can give all 2^m possible classifications of x.

Definition (VC dimension)

$$VC\text{-}dim(\mathcal{C}) = \max\{m : \Pi_\mathcal{C}(m) = 2^m\}$$

- Our ray example has $VC\text{-}dim(\text{Rays}) = 1$.
 - One point is shattered.
 - Two points are not shattered ($+, -$)

- Lower Bound \implies Explicit construction that achieves 2^m.
- Upper Bound \implies For *any* sample x of length m we can not achieve 2^m.

D. Diochnos (UVA - CS) Learning Theory Overview Spring 2019 8 / 14
Configurations of 3 Points in 2D
Halfspaces Shatter 3 Points in 2D

Question
Can we shatter 4 points?
Can Halfspaces Shatter 4 Points in 2D?
Halfspaces can *not* Shatter 4 Points in 2D

Theorem (Radon)

Any set of \(d + 2\) *points in* \(\mathbb{R}^d\) *can be partitioned into two (disjoint) sets whose convex hulls intersect.*

Corollary

\[
\begin{align*}
\text{VC-dim}(\text{HALFSPACES}) &= 3 \text{ in 2 dimensions.} \\
\text{VC-dim}(\text{HALFSPACES}) &= d + 1 \text{ in } d \geq 1 \text{ dimensions.}
\end{align*}
\]
Lemma (Sauer’s Lemma)

Let $d \geq 0$ and $m \geq 1$ be given integers and let \mathcal{H} be a hypothesis space with $\text{VC-dim}(\mathcal{H}) = d$. Then

$$\Pi_{\mathcal{H}}(m) \leq 1 + \binom{m}{1} + \binom{m}{2} + \cdots + \binom{m}{d} = \Phi(d, m).$$

Proposition

For all $m \geq d \geq 1$, $\Phi(d, m) < \left(\frac{em}{d}\right)^d$.

VC-Dimension

Theorem

Let \mathcal{C} have finite $\text{VC-dim}(\mathcal{C}) = d \geq 1$ and moreover let $0 < \delta, \epsilon < 1$. Then,

$$m \geq \left\lceil \frac{4}{\epsilon} \left(d \cdot \lg \left(\frac{12}{\epsilon} \right) + \lg \left(\frac{2}{\delta} \right) \right) \right\rceil$$

samples guarantee that any consistent hypothesis has small error with high probability (in the PAC-learning sense).

- We still need an efficient algorithm to efficiently PAC-learn the class.