CS 6501 Week 13: Advanced Lattice-Based Primitives

So far, we have shown how to build symmetric crypto and public-key crypto from standard lattice assumptions (e.g., BIS and LWE).

But it turns out, lattices have much additional structure ⇒ enable many new advanced functionalities not known to follow from many other standard assumptions (e.g., discrete log, factoring, pairing, etc.)

We will begin by studying **fully homomorphic encryption (FHE)**.
⇒ encryption scheme that supports arbitrary computation on encrypted data (very useful for outsourced computation)

Abstractly: given encryption of e under some public key, can we derive from that an encryption of f(x) for an arbitrary function f?

- So far, we have seen examples of encryption schemes that support one type of operation (e.g., addition) on ciphertexts
 - ElGamal encryption (in the exponent): homomorphic with respect to addition [1983]
 - Regev encryption: homomorphic with respect to addition
 - For FHE, need homomorphism with respect to two operations: addition and multiplication

Major open problem in cryptography (dates back to late 1970s) - first solved by Stanford student Craig Gentry in 2009

L⇒ revolutionary lattice-based cryptography!

L⇒ very surprising this is possible: encryption needs to "scramble" messages to be secure, but homomorphism requires preserving structure to enable arbitrary computation

General blueprint: 1. Build somewhat homomorphic encryption (SWHE) — encryption scheme that supports bounded number of homomorphic operations
 - Bootstrapping SWHE to FHE (essentially a way to "refresh" ciphertext)

Focus will be on building SWHE (has all of the ingredients for realizing FHE)

L⇒ In particular, will present Gentry-Sahai-Waters (GSW) construction (conceptually simplest scheme, though not the most concretely efficient)

"3rd generation of FHE"

Starting point: Regev's encryption scheme:

- **Setup (pk):**
 \[\hat{A} \in \mathbb{Z}_{q}^{m \times n}, \quad s \in \mathbb{Z}_{q}, \quad e \leftarrow \mathcal{R}_{\mathbb{Z}_{q}^{n}}, \quad s = \left[\hat{s} \hat{A} + e \right] \in \mathbb{Z}_{q}^{m}, \quad \text{Output } pk = \hat{A} \text{ and sk} = s \]

- **Encrypt (pk, m):** Write \[c = \hat{A}r + \mu \cdot \hat{s} \cdot 1_{m \times m} \]
 \[\text{I}_{m \times m} = \left(\begin{array}{c|c} 1 & 0 \\ \hline 0 & 1 \end{array} \right) \]

- **Decrypt (sk, c):** Write \[sk = s \] Compute \[s^{T}c \] and output 0 if \[|s^{T}(c_{0})| < \frac{1}{2} \] and 1 if \[|s^{T}(c_{0})| > \frac{1}{2} \]

Correctness: \[s^{T}C = s^{T}AR + \mu \cdot \hat{s} \cdot \frac{1}{2} \cdot s^{T}I_{m \times m} \]

\[= e^{T}R + \mu \cdot \hat{s} \cdot \frac{1}{2} \cdot s^{T} \]

\[\approx \mu \cdot \hat{s} \cdot \frac{1}{2} \cdot s^{T} \]

Observe: the vector \(s \) (i.e., the secret key) is an approximate left eigen-vector of the matrix \(C \) (i.e., the ciphertext) with associated eigenvalue \(\mu \cdot \frac{1}{2} \) (i.e., the "encoded" message)

Security: Same as prov for Regev encryption (two hybrids: LWE, then LHL)
Observe: We can pad \(A \) with rows of all-zeros so it is a square matrix (over \(\mathbb{Z}_q^{mn} \)) and pad \(s \) accordingly as well.

For the decryption, we justprint the message in the first \((n+1) \) components.

Thus, correctness and security follows as before (scheme has not changed), and the message is simply the “noisy” eigenvalue associated with \(s \) (the “noisy” eigenvalue)

Why is this view useful? Because eigenvalues add and multiply:

- Suppose \(\lambda_1 \) is a (left) eigenvalue of \(C_1 \) with associated left-eigenvector \(s \) \[\text{Then: } s^T(C_1 + C_2) = s^T C_1 + s^T C_2 = \lambda_1 s^T + \lambda_2 s^T = (\lambda_1 + \lambda_2) s^T \]

- Suppose \(\lambda_2 \) is a (left) eigenvalue of \(C_2 \) with associated left-eigenvector \(s \) \[s^T C_1 C_2 = \lambda_1 s^T C_2 = \lambda_1 \lambda_2 s^T \]

Unfortunately, this intuition does not directly translate to our setting:

Correctness: \(s^T C = x \cdot [\frac{\lambda}{2}] \cdot s^T + e^T R \)

Addition: \(s^T (C_1 + C_2) = (x_1 \cdot [\frac{\lambda}{2}] + s^T R_1 + x_2 \cdot [\frac{\lambda}{2}] + s^T R_2) \]

\[= ((x_1 + x_2) \cdot [\frac{\lambda}{2}] + s^T (R_1 + R_2)) \quad \text{works as long as } R_1 + R_2 \text{ is small! (As long as } B < q, \text{ this will be OK)}

Multiplication: \(s^T C_1 C_2 = (x_1 \cdot [\frac{\lambda}{2}] + s^T R_1)C_2 = x_1 \cdot [\frac{\lambda}{2}] \cdot s^T C_2 + s^T C_2 R_2 \]

\[= x_1 \cdot [\frac{\lambda}{2}] \left(x_2 \cdot [\frac{\lambda}{2}] + s^T R_2 \right) + s^T C_2 R_2 \]

not quite what we wanted due to the message encoding, but should be fixable...

Does Correctness fail for multiplication?

Need a new trick: the gadget matrix \(G \) (e.g., the power-of-two matrix)

One issue above is noise growth (and bit-decomposition is effective way of generating short matrices).

The GSID FHE scheme:

Setup: \(A \in \mathbb{Z}_q^{mn} \) \(e \in \mathbb{Z}_q \) \[s = \frac{A}{e^T A + e} \in \mathbb{Z}_q^{mn} \]

output \(\text{pk} = A \) and \(\text{sk} = s \)

Encrypt (pk, m): Write \(\text{pk} = A \in \mathbb{Z}_q^{mn} \) and sample \(R \in \{0,1\}^{mn} \)

Output \(C = AR + m \cdot G \)

Decrypt (sk, C): Write \(sk = s \). Compute \(s^T C \) and output 0 if \(|s^T C| < \frac{q}{4} \) and 1 if \(|s^T C| > \frac{q}{4} \)

Correctness: \(s^T C = s^T AR + m \cdot s^T G = m \cdot s^T G + e^T R \)

By construction of \(G \), \([s^T G]_m = \Delta \log \frac{1}{\epsilon} \), so if \(e^T R \ll \frac{q}{4} \), then correctness goes through.
Conclusion: If we want to support circuits of multiplicative depth \(d \), we need to choose \(g = m^{o(d)} \) to accommodate the multiplications. Observe that in this case, \(\log g = O(d \log m) \), so the number of bits in the ciphertext scales linearly with the depth of the circuit. [Note: generally, there is a bit of flexibility when choosing lattice parameters]

Semantic security follows by same argument as Regev. Homomorphic operations possible by structure of gadget matrix!

From SWHE to FHE. The above construction requires imposing an a priori bound on the multiplicative depth of the computation.

To obtain fully homomorphic encryption, we apply Gentry’s brilliant insight of bootstrapping.

High-level idea. Suppose we have SWHE with following properties:

1. We can evaluate functions with multiplicative depth \(d \).
2. The decryption function can be implemented by a circuit with multiplicative depth \(d' < d \).

Then, we can build an FHE scheme as follows:

- Public key of FHE scheme is public key of SWHE scheme and an encryption of the SWHE decryption key under the SWHE public key.
- We now describe an ciphertext-refreshing procedure:

 - For each SWHE ciphertext, we can associate a “noise” level that keeps track of how many more homomorphic operations can be performed on the ciphertext (while maintaining correctness).
 - For instance, we can evaluate depth-\(d \) circuits on fresh ciphertexts; after evaluating a single multiplication, we can only evaluate circuits of depth-\((d+1) \) and so on...

 - The refresh procedure takes any valid ciphertext and produces one that supports depth-\((d-d') \) homomorphism; since \(d > d' \), this enables unbounded (i.e., arbitrary) computations on ciphertexts.

Idea: Suppose \(C_{x} = \text{Encrypt}(pk,x) \).

Using the SWHE, we can compute \(C_{fx} = \text{Encrypt}(pk,f(x)) \) for any \(f \) with multiplication depth up to \(d \).

Given \(C_{x} \), we first compute:

\[
C_{x} = \text{Encrypt}(pk, C_{x}) \quad \text{[strictly speaking, encrypt bit by bit]}
\]

This is a fresh ciphertext so we can perform operations of depth up to \(d \) on \(C_{x} \). Since the public key includes a copy of the decryption key \((C_{x}) \), we can homomorphically evaluate the decryption function:

\[
C_{x} = \text{Encrypt}(pk, C_{x}) \quad \text{Encrypt}(pk, \text{Decrypt}(sk,C_{x})) = \text{Encrypt}(pk,x)
\]

This is a new encryption of \(x \), and we can continue performing homomorphic operations on \(m \) (of depth \(d-d' \)).
Bootstrapping is a general technique that converts any \(\text{SWHE} \) that can evaluate its own decryption function (plus a little more) into an \(\text{FHE} \) scheme. Transformation requires additional circular security assumption (namely, that it is \(\text{OK} \) to publish an encryption of the scheme's own public key. \[\text{The GSW scheme supports bootstrapping -- decryption is a threshold inner product; choose parameters carefully] \]

Open problem: Build \(\text{FHE} \) from \(\text{LWE} \) (or another standard assumption) without the circular security assumption.

The GSW homomorphic operations have a lot of applications. We will describe three of them in the remaining weeks of this course: homomorphic signatures, attribute-based encryption, and non-interactive zero-knowledge.

Homomorphic signatures: Analog of homomorphic encryption for signatures

- given signature \(\sigma \) on input \(x \), can compute signature \(\sigma_y \) on any function evaluation \(f(x) \) where \(\sigma_y \) verifies with respect to function \(f \) and value \(f(x) \)
- useful for authenticating computations (eg, cloud provider can prove that performed a particular computation correctly on signed data)

Syntax:

\[
\text{Setup}(1^\lambda) \rightarrow (sk, vk) : \text{Outputs a signing key } sk \text{ and a verification key } vk
\]

\[
\text{Sign}(sk, x) \rightarrow \sigma_x : \text{Output a signature on a message } x
\]

\[
\text{Eval}(vk, \sigma_x, f) \rightarrow \sigma_{f(x)} : \text{Takes a signature on } x \text{ and a function } f \text{ and outputs a signature on } f(x)
\]

\[
\text{Verify}(vk, f, y, \sigma_y) \rightarrow 0/1 \text{ : Checks whether signature } \sigma_y \text{ is a signature on value } y \text{ with respect to function } f
\]

Correctness:

\[
(\ sk, \ vk) \gets \text{Setup}(1^\lambda)
\]

\[
\sigma_x \gets \text{Sign}(sk, x) \implies \text{Verify}(vk, f, y, \sigma_y) = 1
\]

\[
\sigma_{f(x)} \gets \text{Eval}(vk, \sigma_x, f)
\]

(One-Time) Unforgeability:

[Diagram]

adversary wins if \(y \neq f(x) \) but \(\text{Verify}(vk, f, y, \sigma_y) = 1 \).

Intuitively: the adversary can always produce new signatures (by using the homomorphic properties of the underlying signature scheme), but cannot produce a new signature that does correspond to a valid computation on the signatures it is given.

Compactness: signatures are “short” (depend essentially on the size of the output and the depth of the circuit):

\[
|\sigma_{f(x)}| = \text{poly}(\lambda, d)
\]

in particular, if we compute a signature over a large database (ie, many signatures), the resulting signature that authenticates the computation can still be short.
Starting point: Recall GPV signatures (hash and sign)
\[\text{vk}: \text{A}, \quad \text{sk}: t \text{da} \]

Signature on message \(m \) is a short vector \(u \in \mathbb{Z}_q^m \) such that \(Au = H(m) \) (modeled as random oracle)
\(t \) can view this as "target vector"

For homomorphic signatures, we will sign bit-by-bit. Suppose we are signing \(t \)-bit strings.
\[\text{vk}: \text{A}_1, \text{V}_1, \ldots, \text{V}_t \in \mathbb{Z}_q^n \]
\[\text{sk}: \text{tda} \]

To sign an input \(x \in \{0,1\}^t \), we will sample short \(U_1, \ldots, U_t \in \mathbb{Z}_q^n \)
\[\text{AU}_i = V_i + x_i G \]

target matrix like in GPV
signatures (notice that this is uniform since \(V_i \in \mathbb{Z}_q^n \) and we all only ever sign a single message)

Signing directly corresponds to preimage sampling (using trapdoor for \(A \)).

Homomorphic operations are defined exactly as in GSW FHE:

- **GSW Ciphertext:** \(C = AR + x_i G \)
- **Encryption randomness** (publicly known)
- **Signature:** \(\text{AU}_i = V_i + x_i G \)

Suppose we have
\[V_i = \text{AU}_i + x_i G \]
\[V_z = \text{AU}_z + x_z G \]
\[\Rightarrow V_i + V_z = A (U_i + U_z) + (x_i + x_z) G \]
\[= \text{sum of } x_i, x_z \]
\[\Rightarrow (U_i, U_z) \text{ can be viewed as a signature on the sum } x_i + x_z \text{ with respect to the public component } V_i + V_z \]

For multiplication, we use the analog of GSW multiplication:
\[V_i = \text{AU}_i + x_i G \]
\[V_z = \text{AU}_z + x_z G \]
\[\Rightarrow V_i G^{\perp} (V_z) = A U_i G^{\perp} (V_z) + x_i A U_z + x_z G \]
\[= \text{signature on } x_i, x_z \text{ depends only on public parameters} \]
\[\Rightarrow \text{product of signatures} \]
\[\Rightarrow \text{norm of signature grows by multiplicative factor } O(n) \]

\[U_i, x_i, V_z, \text{ which are known to the evaluator} \]

Summary:
Suppose \(V_i = \text{AU}_i + x_i G \)
\[\vdots \]
\[V_z = \text{AU}_z + x_z G \]
\[\Rightarrow \text{given } V_i, \ldots, V_z, \text{ and circuit } C, \text{ can compute } V_c \]
\[\Rightarrow \text{using homomorphic evaluation procedure described above} \]
\[\text{given } V_i, \ldots, V_z, \text{ signatures } U_i, \ldots, U_z, \text{ message } x \in \{0,1\}^t, \text{ and circuit } C, \]
\[\text{can compute } U_c \text{ using homomorphic evaluation procedure described above} \]
\[\Rightarrow \text{these procedures then satisfy the following property:} \]
\[V_c = AU_c + C(x) \cdot G \]
\[\|U_c\| \leq p \cdot m_{\text{G}} \]
\[\Rightarrow \text{correspondingly, just need to set } \alpha > p \cdot m_{\text{G}} \]
\[\Rightarrow \text{for all } \]
To verify, compute V_c from V_i, V_e, and check if V_c, A_{lety}, and $H_{\text{G mold}}$ computed from signature and public parameters.