Focus thus far in the course: protecting communication (e.g., message confidentiality and message integrity)

Next few weeks: protecting computations.

Zero-knowledge: a defining idea at the heart of theoretical cryptography
- Idea will seem very counter-intuitive, but surprisingly powerful
- Showcases the importance and power of definitions (e.g., “What does it mean to know something?”)

We begin by introducing the notion of a “proof system”
- Goal: A prover wants to convince a verifier that some statement is true
 - e.g., “This Sudoku puzzle has a unique solution”
 - “The number N is a product of two prime numbers p and q”
 - “I know the discrete log of x to base g”
 {there are all examples of statements}

We model this as follows:

\[\text{prover}(X) \xrightarrow{\pi} \text{verifier}(X) \]
\[X: \text{statement that the prover is trying to prove (known to both prover and verifier)} \]
\[\pi: \text{the proof of } X \]
\[b \in \{0,1\}^* \quad \text{given statement } X \text{ and proof } \pi, \text{ verifier decides whether to accept or reject} \]

Properties we care about:
- Completeness: Honest prover should be able to convince honest verifier of true statements
 \[\forall x \in L: \Pr[\pi \leftarrow P(x) : V(x, \pi) = 1] = 1 \]
- Soundness: Dishonest prover cannot convince honest verifier of false statement
 \[\forall x \notin L: \Pr[\pi \leftarrow P(x) : V(x, \pi) = 1] < \frac{2}{3} \]
 [Important: we are not restricting to efficient prover]

Typically, proofs are “one-shot” (i.e., single message from prover to verifier) and the verifier’s decision algorithm is deterministic
- Languages with these types of proof systems precisely coincide with NP (proof of statement x is to send NP witness w)

Going beyond NP: we augment the model as follows
- Add randomness: the verifier can be a randomized algorithm
- Add interaction: verifier can ask “questions” to the prover

Interactive proof systems [Goldwasser-Micali-Rackoff]:

\[\text{prover}(X) \xrightarrow{\pi} \xleftarrow{} \text{verifier}(X) \]
\[\xrightarrow{\pi} \xrightarrow{\pi} \xrightarrow{\pi} \xrightarrow{\pi} \]
\[\xleftrightarrow{\pi} \xleftrightarrow{\pi} \]
\[\xrightarrow{\pi} \xrightarrow{\pi} \xrightarrow{\pi} \xrightarrow{\pi} \]
\[b \in \{0,1\}^* \]

Set of languages that have an interactive proof system is denoted IP.

Theorem (Shamir): IP \subseteq PSPACE

\text{languages that can be decided in polynomial space [very large class of languages!]}
Takeaway: interaction and randomness is very useful

⇒ In fact, enables a new property called zero-knowledge

Consider following example: Suppose prover wants to convince verifier that \(N = p \ q \) where \(p, q \) are prime (and secret).

\[
\begin{align*}
\text{prover } \left(N, p, q \right) & \quad \text{ verifier } \left(N \right) \\
\Rightarrow \quad N = p \ q & \quad \downarrow \text{ accept if } N = p \ q \text{ and reject otherwise.}
\end{align*}
\]

Proof is certainly complete and sound, but now verifier also learned the factorization of \(N \) (may not be desirable if prover was trying to convince verifier that \(N \) is a proper RSA modulus (for a cryptographic scheme) without revealing factorization in the process

⇒ In some sense, this proof conveys information to the verifier [i.e., verifier learns something it did not know before seeing the proof]

Zero-knowledge: ensure that verifier does not learn anything (other than the fact that the statement is true)

How do we define “zero-knowledge”? We will introduce a notion of a “simulator.”

Definition. An interactive proof system \(\langle P, V \rangle \) is zero-knowledge if for all efficient (and possibly malicious) verifiers \(V^* \), there exists an efficient simulator \(S \) such that for all \(x \in L \):

\[
\text{View} \langle P, V^* \rangle (x) \approx S(x)
\]

Random variable denoting the set of messages sent and received by \(V^* \) when interacting with the prover \(P \) on input \(x \)

What does this definition mean?

\[
\text{View} \langle P, V^* \rangle (x) : \text{ this is what } V^* \text{ sees in the interactive proof protocol with } P
\]

\[
S(x) : \text{ this is a function that only depends on the statement } x, \text{ which } V^* \text{ already has}
\]

If these two distributions are indistinguishable, then anything that \(V^* \) could have learned by talking to \(P \), it could have learned just by invoking the simulator itself, and the simulator output only depends on \(x \), which \(V^* \) already knows.

⇒ In other words, anything \(V^* \) could have learned (i.e., computed) after interacting with \(P \), it could have learned without ever talking to \(P \)!

Very remarkable definition!

More remarkable: If one-way functions exist, then every language \(L \in \text{IP} \) has a zero-knowledge proof system.

⇒ Namely, anything that can be proved can be proved in zero-knowledge!

We will state this theorem for \(\text{NP} \) languages. Here, it suffices to construct a single zero-knowledge proof system for an \(\text{NP} \)-complete language. We will consider the language of graph 3-colorability.

3-coloring: given a graph \(G \), can you color the vertices so that no adjacent nodes have the same color?
We will need a commitment scheme (see [H02]). A (non-interactive) commitment scheme consists of two main algorithms (Commit, Verify):

- Commit((r,n) → (c,r)): Takes a message m and outputs the commitment c and an opening r.
- Verify(m,c,r) → b: Checks if c is a valid opening to m (with respect to opening r).

[The commitment scheme might also take public parameters (see [H02]), but for simplicity, we omit them / leave them implicit]

Requirements:
- Correctness: for all messages m:
 \[\Pr[(c,r) → Commit((r,n)): Verify(m,c,r) = 1] = 1 \]
- Hiding: for all efficient adversaries A, if \((m,m') → A(I)\)
 \[\Pr[(c,r) → Commit((r,n)): c \neq c'] \leq \Pr[(c,r) → Commit((r,n)): c'] \]
- Binding: for all efficient adversaries A, if
 \[\Pr[(m,m',c,c',r) → A(I)]: m \neq m' \text{ and } \forall m, \exists c, r \text{ such that } Verify(m,c,r) = 1 \] = neg(\varepsilon)

We will require perfect binding [for every commitment c there is only 1 possible m to which the power can open c]

A 2K protocol for graph 3-coloring:

- Let \(K \in \{0,1,2\}\) be a 3-coloring of \(G\).
- Choose random permutation \(\pi \in \text{Perm}([n])\).
- For \(i \in \{n\}\):
 \((c_i,r_i) → \text{Commit}(\pi(K))\)

Verifier (G)

\(\pi(K)\)

\(c_i, \ldots, c_n\)

\((K_i,r_i), (K_j,r_j)\)

\(\langle i, j \rangle \in E\)

\(\Rightarrow\) accept if \(K_i \neq K_j\) and \(K_i, K_j \in \{0,1,2\}\)

\(\Rightarrow\) reject otherwise

Initiative: Power commits to a coloring of the graph
Verifier challenges power to reveal coloring of a single edge
Power reveals the coloring on the chosen edge and opens the entries in the commitment

Completeness: By inspection, [if coloring is valid, power can always answer the challenges correctly]

Soundness: Suppose \(G\) is not 3-colorable. Let \(K_1, \ldots, K_n\) be the coloring the power committed to. If the commitment scheme is perfectly binding, \(c_i, \ldots, c_n\) uniquely determine \(K_i, \ldots, K_n\). Since \(G\) is not 3-colorable, there is an edge \((i,j) \in E\) where \(K_i = K_j\) or \(i \notin \{0,1,2\}\) or \(j \notin \{0,1,2\}\). Otherwise, \(G\) is 3-colorable with coloring \(K_1, \ldots, K_n\). Since the verifier chooses an edge to check at random, the verifier will choose \((i,j)\) with probability \(1/|E|\). Thus, if \(G\) is not 3-colorable,

\[\Pr[\text{ verifier rejects }] \geq \frac{1}{|E|} \]

Thus, this protocol provides soundness \(1 - \frac{1}{|E|}\). We can repeat this protocol \(O(|E|^3)\) times sequentially to reduce soundness error to

\[\Pr[\text{ verifier accepts proof of false statement }] \leq \left(1 - \frac{1}{|E|}\right)^{1/2 \cdot |E|} \leq \frac{1}{|E|} = \epsilon \quad \text{[since } (1 - \frac{1}{2})^2 \leq \frac{1}{e}] \]
We need to construct a simulator that outputs a valid transcript given only the graph G as input.

Let V^* be a (possibly malicious) verifier. Construct simulator S as follows:

1. Choose $K_i \leftarrow \{0,1,2,3\}$ for all $i \in [n]$.

 Let $(c_i, r_i) \leftarrow \text{Commit}(1^3, K_i)$.

 Give $(c_i, ..., c_n)$ to V^*.

2. V^* outputs an edge $(i,j) \in E$

3. If $K_i \neq K_j$, then S outputs (K_i, K_j, r_i, r_j).

 Otherwise, restart and try again (it fails λ times, then abort)

Simulator succeeds with probability $2/3$ (over choice of $K_i, ..., K_n$). Thus, simulator produces a valid transcript with prob. $1 - \frac{1}{3^2} = 1 - \frac{1}{9}$ after λ attempts. It suffices to show that simulated transcript is indistinguishable from a real transcript.

- True scheme: prover opens K_i, K_j where $K_i, K_j \leftarrow \{0,1,2,3\}$ [since prover randomly permutes the colors]
- Simulation: K_i and K_j sampled uniformly from $\{0,1,2,3\}$ and conditioned on $K_i \neq K_j$, distributions are identical.

In addition, (i,j) output by V^* in the simulation is distributed correctly since commitment scheme is computationally-hiding (e.g. V^* behaves essentially the same given commitments to a random coloring as it does given commitment to a valid coloring).

If we repeat this protocol (for soundness amplification), simulator simulate one transcript at a time.