What are the elements in \mathbb{Z}_p?

Bezout's identity: For all positive integers $x, y \in \mathbb{Z}$, there exists integers $a, b \in \mathbb{Z}$ such that $ax + by = \gcd(x, y)$.

Corollary: For prime p, $\mathbb{Z}_p = \{[1, 2, \ldots, p-1]\}$.

Proof: Take any $x \in \{1, 2, \ldots, p-1\}$. By Bezout's identity, $\gcd(x, p) = 1$ so there exists integers $a, b \in \mathbb{Z}$ where $1 = ax + bp$.

Modulo p, this is $ax = 1 \pmod{p}$ so $a = x^{-1} \pmod{p}$.

Coefficients a, b in Bezout's identity can be efficiently computed using the extended Euclidean algorithm:

Euclidean algorithm: algorithm for computing $\gcd(a, b)$ for positive integers $a > b$:
- relies on fact that $\gcd(a, b) = \gcd(b, a \pmod{b})$:
 - to see this: take any $a > b$
 - we can write $a = b \cdot q + r$ where $q \equiv 1$ is the quotient and $0 \leq r < b$ is the remainder
 - d divides a and b \iff d divides b and r
 - $\gcd(a, b) = \gcd(b, r) = \gcd(b, a \pmod{b})$
- gives an explicit algorithm for computing \gcd: repeatedly divide:
 - $\gcd(60, 27): \quad 60 = 27(2) + 6 \quad [q = 2, \ r = 6] \quad \Rightarrow \quad \gcd(60, 27) = \gcd(17, 6)$
 - $27 = 6(4) + 3 \quad [q = 4, \ r = 3] \quad \Rightarrow \quad \gcd(27, 6) = \gcd(6, 3)$
 - $6 = 3(2) + 0 \quad [q = 2, \ r = 0] \quad \Rightarrow \quad \gcd(6, 3) = \gcd(3, 0) = 3$

"rewind" to recover coefficients in Bezout's identity:

Extended Euclidean algorithm

\[
\begin{aligned}
&\text{extended} \quad \begin{cases}
60 = 27(2) + 6 \\
27 = 6(4) + 3 \\
6 = 3(2) + 0
\end{cases}
\Rightarrow
3 = 27 - 6 \cdot 4 \\
\end{aligned}
\]

From this, we can compute $x^{-1} \pmod{p}$ using the extended Euclidean algorithm.

Therefore needed: $O(\log p)$ — i.e., bitlength of the input [worst case inputs: Fibonacci numbers]

Implication: Euclidean algorithm can be used to compute modular inverses (faster algorithms also exist)
Definition. A group \(G \) is cyclic if there exists a generator \(g \) such that \(G = \{g^0, g^1, \ldots, g^{\text{ord}(g)}\} \).

Definition. For an element \(g \in G \), we write \(\langle g \rangle = \{g^0, g^1, \ldots, g^{\text{ord}(g)}\} \) to denote the set generated by \(g \) (which need not be the entire set). The cardinality of \(\langle g \rangle \) is the order of \(g \) (i.e., the size of the “subgroup” generated by \(g \)).

Example. Consider \(\mathbb{Z}_7^* = \{1, 2, 3, 4, 5, 6\} \). In this case,

\[
\langle 2 \rangle = \{1, 2, 4, 3, 6, 5\} \quad [2 \text{ is not a generator of } \mathbb{Z}_7^*] \quad \text{ord}(2) = 3
\]

\[
\langle 3 \rangle = \{1, 3, 2, 6, 4, 5\} \quad [3 \text{ is a generator of } \mathbb{Z}_7^*] \quad \text{ord}(3) = 6
\]

Lagrange's Theorem. For a group \(G \), and any element \(g \in G \), \(\text{ord}(g) \mid \text{ord}(G) \) (the order of \(g \) is a divisor of \(|G| \)).

\(\text{for } G \neq \{0\} \text{, this means } \forall g \in G \text{, } \text{ord}(g) \mid \text{ord}(G) \).

Corollary (Fermat's Theorem). For all \(x \in \mathbb{Z}_p^* \), \(x^p = 1 \) (mod \(p \)).

Proof. By Lagrange's Theorem, \(\text{ord}(x) \mid \text{ord}(\mathbb{Z}_p^*) = p-1 \) so we can write \(p-1 = k \cdot \text{ord}(x) \) and so \(x^{p-1} = (x^{\text{ord}(x)})^k = 1^k = 1 \) (mod \(p \)).

Implication: Suppose \(x \in \mathbb{Z}_p^* \) and we want to compute \(x^y \in \mathbb{Z}_p^* \) for some large integer \(y \gg p \).

- We can compute this as \(x^y \equiv x^y \cdot (x^{p-1})^{x^y \\pmod{p}} \) (mod \(p \))

- Since \(x^{p-1} = 1 \) (mod \(p \))

- Specifically, the exponents operate modulo the order of the group

- Equivalently: group \(\langle g \rangle \) generated by \(g \) is isomorphic to the group \((\mathbb{Z}_p^*, \cdot) \) where \(g = \text{ord}(g) \)

\[
\langle g \rangle \cong (\mathbb{Z}_p^*, \cdot) \quad g \mapsto x
\]

Notation: \(g^x \) denotes \(g \cdot g \cdot \ldots \cdot g \)

\(g^{-x} \) denotes \((g^x)^{-1} \) [inverse of group element \(g^x \)]

\(g^x \) denotes \(g^{-x} \) where \(x \) computed mod \(\text{ord}(g) \) — need to make sure this inverse exists!

Computing on group elements: In cryptography, the groups we typically work with will be large (e.g., \(2^{256} \) or \(2^{1024} \))

- Size of group element (\# bits): \(\sim \log 16b \) bits \((256 \text{ bits} / 2048 \text{ bits}) \)

- Group operations in \(\mathbb{Z}_p^* \): \(\log p \) bits per group element

- Addition of mod \(p \) elements: \(O(\log p) \)

- Multiplication of mod \(p \) values: namely \(O(\log^2 p) \)

- Karatsuba: \(O(\log^3 p) \)

- Schönhage–Strassen (GMP library): \(O(\log p \log \log p \log \log \log p) \)

- Best algorithm: \(O(\log p \log \log p) \) \([2019] \)

- **Not yet practical \((> 2^{1400} \text{ bits}) \) to be faster...**

- Exponentiation: using repeated squaring: \(g, g^2, g^4, g^8, \ldots, g^{16b \cdot p^2} \), can implement using \(O(\log p) \) multiplications \([O(\log^2 p) \text{ with naive multiplication}] \)

- Time/space trade-offs with more precomputed values

- Division (inversion): typically \(O(\log^2 p) \) using Euclidean algorithm (can be improved)
Computational problems: Let \(G \) be a finite cyclic group generated by \(g \) with order \(q \).

- **Discrete log problem:** sample \(x \in \mathbb{Z}_q \)

 given \(h = g^x \), compute \(x \)

- **Computational Diffie-Hellman (CDH):** sample \(x, y \in \mathbb{Z}_q \)

 given \(g^x, g^y \), compute \(g^{xy} \)

- **Decisional Diffie-Hellman (DDH):** sample \(x, y, r \in \mathbb{Z}_q \)

 distinguish between \((g^x, g^y, g^r) \) vs. \((g^x, g^y, g^s) \)

Each of these problems translates to a corresponding computational assumption:

Definition. Let \(G = \langle g \rangle \) be a finite cyclic group of order \(q \) (where \(q \) is a function of the security parameter \(\lambda \)).

The DDH assumption holds in \(G \) if for all efficient adversaries \(A \):

\[
\Pr[(x, y, r, s) \in \mathbb{Z}_q^4 : A(g^x, g^y, g^r, g^s) = 1] = \text{negl}(\lambda)
\]

The CDH assumption holds in \(G \) if for all efficient adversaries \(A \):

\[
\Pr[(x, y) \in \mathbb{Z}_q^2 : A(g^x, g^y) = 1] = \text{negl}(\lambda)
\]

The discrete log assumption holds in \(G \) if for all efficient adversaries \(A \):

\[
\Pr[x \in \mathbb{Z}_q : A(g^x) = x] = \text{negl}(\lambda)
\]

Instantiations: Discrete log in \(\mathbb{Z}_p^* \) when \(p \) is 2048-bits provides approximately 128-bits of security.

- Best attack is General Number Field Sieve (GNFS) — runs in time \(2^{63} \) time

 Much better than brute force — \(2^{2048} \)

- Need to choose \(p \) carefully (e.g., avoid cases where \(p-1 \) is smooth)

 For DDH applications, we usually set \(p = 2^k + 1 \) where \(k \) is also a prime (\(p \) is a “safe prime”) and work in the subgroup of order \(q \) in \(\mathbb{Z}_p^* \) (\(\mathbb{Z}_p^* \) has order \(p-1 = 2q \)) — see NIST bitlength of the modulus

 Elliptic curve groups: only require 256-bit modulus for 128 bits of security

 - Best attack is generic attack and runs in time \(2^{128} \) \([p\text{-algorithm} - \text{can discuss at end of semester}\]

 - Much faster than using \(\mathbb{Z}_p^* \): several standards
 - NIST P256, P384, P512
 - Dan Bernstein’s curves: Curve25519

 - Widely used for key-exchange + signatures on the web

When describing cryptographic constructions, we will work with an abstract group (easier to work with less details to worry about)