We will need a commitment scheme (see HWS). A (non-interactive) commitment scheme consists of two main algorithms (Commit, Verify):

- \(\text{Commit}(m, r) \rightarrow c \): Takes a message \(m \) and randomness \(r \) and outputs a commitment \(c \).
- \(\text{Verify}(m, c, r) \rightarrow b \): Checks if \(c \) is a valid opening to \(m \) (with respect to randomness \(r \)).

[The commitment scheme might also take public parameters (see HWS), but for simplicity, we omit them/leave them implicit.]

Requirements:
- Correctness: for all messages \(m \):
 \[\Pr [c \leftarrow \text{Commit}(m, r) : \text{Verify}(m, c, r) = 1] = 1 \]
 sampled uniformly

- Hiding: for all efficient adversaries \(A \), \(\Pr [(m, c) \leftarrow A : m \neq m \text{ and } \text{Verify}(m, c, r) = 1 = \text{Verify}(m, c, r)] = \text{negl} \).

- Binding: for all efficient adversaries \(A \), if \(\Pr [(m, m, c, r, c) \leftarrow A : m = m \text{ and } \text{Verify}(m, c, r) = 1 = \text{Verify}(m, c, r)] = \text{negl} \).

\[
\rightarrow \text{We will require perfect binding [for every commitment } c, \text{ there is only 1 possible } m \text{ to which the power can open } c.\]

A ZK protocol for graph 3-coloring:

\[\text{prover } (G) \quad \text{contains } n \text{ nodes, } m \text{ edges} \]

\[\text{verifier } (G) \]

\[
\begin{align*}
\text{prover } (G) & \quad \text{let } K_i \in \{0,1,2\} \text{ be a 3-coloring of } G \\
& \quad \text{choose random permutation } \pi \text{ of } \text{rand}(\{0,1,2\}) \\
& \quad \text{for } i \in \pi: \\
& \quad \quad c_i \leftarrow \text{Commit}(K_i; r) \\
& \quad \text{for random } r: \\
& \quad \quad c_1, \ldots, c_n \\
& \quad \quad (K_i, r_i), (K_j, r_j) \\
& \quad (i, j) \in E \\
\text{verifier } (G) & \quad \text{accept if } K_i \neq K_j \text{ and } K_i, K_j \in \{0,1,2\} \\
& \quad \text{Verify}(K_i, c_i, r) = 1 = \text{Verify}(K_j, c_j, r) \\
& \quad \text{reject otherwise} \\
\end{align*}
\]

Intuitively: Prover commits to a coloring of the graph.
Verifier challenges prover to reveal coloring of a single edge
Prover reveals the coloring on the chosen edge and opens the entries in the commitment.

Completeness: By inspection, [if coloring is valid, prover can always answer the challenge correctly]

Soundness: Suppose \(G \) is not 3-colorable. Let \(K_1, \ldots, K_n \) be the coloring the prover committed to. If the commitment scheme is perfectly binding, \(c_1, \ldots, c_n \) uniquely determine \(K_1, \ldots, K_n \). Since \(G \) is not 3-colorable, there is an edge \((i, j) \in E\) where \(K_i = K_j \) or \(i \notin \{0,1,2\} \) or \(j \notin \{0,1,2\} \). Otherwise, \(G \) is 3-colorable with coloring \(K_1, \ldots, K_n \). Since the verifier chooses an edge to check at random, the verifier will choose \((i, j)\) with probability \(\frac{1}{|E|} \). Thus, if \(G \) is not 3-colorable,

\[\Pr [\text{verifier rejects}] \geq \frac{1}{|E|} \]

Thus, this protocol provides soundness \(1 - \frac{1}{|E|} \). We can repeat this protocol \(O(|E|^3) \) times sequentially to reduce soundness error to

\[\Pr [\text{verifier accepts proof of false statement}] \leq \left(1 - \frac{1}{|E|} \right)^{|E|^3} \leq e^{-|E|} = e^{-n} \quad \text{[since } 1+x \leq e^x \]
Zero knowledge: We need to construct a simulator that outputs a valid transcript given only the graph G as input.

Let V^* be a (possibly malicious) prover. Construct simulator S as follows:

1. Choose $K_i \leftarrow \{0,1,2,3\}$ for all $i \in [n]$.
 Let $c_i \leftarrow \text{Commit}(K_i; r_i)$
 Given $(c_1, \ldots, c_n) \to V^*$.

2. V^* outputs an edge $(c_i) \in E$
3. If $K_i \neq K_j$, then S outputs (K_i, K_j, r_i, r_j).
 Otherwise, restart and try again (if fails k times, then abort)

Simulator succeeds with probability $\frac{2}{3}$ (over choice of K_1, \ldots, K_n). Thus, simulator produces a valid transcript with prob. $1 - \frac{1}{3^2} = 1 - \frac{1}{27}$ after k attempts. It suffices to show that simulated transcript is indistinguishable from a real transcript.

 - Real scheme: prover opens K_i, K_j where $K_i, K_j \leftarrow \{0,1,2,3\}$ [since prover randomly permutes the colors]
 - Simulation: K_i and K_j sampled uniformly from $\{0,1,2,3\}$ and conditioned on $K_i \neq K_j$, distributions are identical

In addition, (c_i) output by V^* in the simulation is distributed correctly since commitment scheme is computationally-hiding (e.g. V^* behaves essentially the same given commitments to a random coloring as it does given commitment to a valid coloring).

If we repeat this protocol (for soundness amplification), simulator simulate one transcript at a time.

Summary: Every language in NP has a zero-knowledge proof.

In many cases, we want a stronger property: the prover actually "knows" why a statement is true (e.g., it knows a "witness").

For instance, consider the following language:

$$L = \{ h \in G \mid \exists x \in \mathbb{Z}_p : h = g^x \} \in G$$

Note: this definition of L implicitly defines an NP relation R:

$$R(h, x) = 1 \iff h = g^x \in G$$

In this case, all statements in G are true (i.e., contained in L), but we can still consider a notion of proving knowledge of the discrete log of an element $h \in G$ — conceptually stronger property than proof of membership.

Philosophical question: What does it mean to "know" something?

If a prover is able to convince an honest verifier that it "knows" something, then it should be possible to extract that quantity from the prover.

Definition. An interactive proof system (P, V) is a proof of knowledge for an NP relation R if there exists an efficient extractor E such that for any x and any prover P^*

$$\Pr \left[\omega \leftarrow E^{P^*}(x) : R(x, \omega) = 1 \right] \geq \Pr \left[\langle P^*, V \rangle(x) = 1 \right] - \epsilon$$

more generally, could be polynomially smaller