Thus for: PRP/PRF in "counter mode" gives us a stream cipher (one-time encryption scheme)

How do we reuse it? Choose a random starting point (called an initialization vector) in "randomized counter mode"

<table>
<thead>
<tr>
<th>IV</th>
<th>F(k,IV)</th>
<th>F(k,IV1)</th>
<th>F(k,IV2)</th>
<th>F(k,IV3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

decide message into blocks (based on block size of PRF)

observe: ciphertext is longer than the message (required for CPA security)

Theorem: Let $F: K \times X \rightarrow Y$ be a secure PRF and let T_{ctr} denote the randomized counter mode encryption scheme from above for l-block messages ($M = X^l$). Then, for all efficient CPA adversaries A, there exists an efficient PRF adversary B such that

$$\text{CPAAdv}[A, T_{ctr}] \leq \frac{4Q^2l}{1X} + 2^{-E} \cdot \text{PRFAdv}[B, F]$$

s : number of encryption queries

l : number of blocks in message

Intuition:
1. If there are no collisions (i.e., PRF never evaluated on the same block), then it is as if everything is encrypted under a fresh one-time pad.
2. Collision event: $(X, X+1, \ldots, X+l-1)$ overlaps with $(X', X'+1, \ldots, X'+l-1)$ when $X, X' \in X$

$$\Pr\[\text{collision}\] \leq \frac{2lQ^2}{1X}$$

There are $\leq Q^2$ possible pairs (X, X'), so by a union bound,

$$\Pr\[\text{collision}\] \leq \frac{2lQ^2}{1X}$$

3. Remaining factor of 2 in advantage due to intermediate distribution:

- Encrypt m_0 with PRF
- Encrypt m_0 with fresh one-time pad
- Encrypt m_0 with fresh one-time pad
- Encrypt m_1 with PRF

$$\Pr\[\text{PRFAdv}[B, F] + \frac{2lQ^2}{1X}\]$$

Interpretation: If $|X| = 2^{128}$ (e.g., AES), and messages are 1 MB long (2^{16} blocks) and we want the distinguishing advantage to be below 2^{-32}, then we can use the same key to encrypt

$$Q \leq \sqrt{\frac{1X \cdot 2^{-32}}{4E}} = \sqrt{2^{16} \cdot 2^{-32}} = 2^{7/2} \approx 2^{39} \quad (\sim 1 \text{ trillion messages})$$
None-based counter mode: divide IV into two pieces: \(IV = \text{nonce} \| \text{counter} \)

| common choices: 64-bit nonce, 64-bit counter | only nonce needs to be sent! |
| 96-bit nonce, 32-bit counter | (slightly smaller ciphertexts) |

Only requirement for security is that IV does not repeat:

- **Option 1:** Choose randomly (other IV or nonce)
- **Option 2:** If sender + recipient have shared state (e.g., packet counter), can just use a counter, in which case, IV/nonce does not have to be sent

Counter mode is parallelizable, simple-to-implement, just requires PRF — preferred mode of using block ciphers

Other block cipher modes of operation:

Cipher block chaining (CBC): common mode in the past (e.g., TLS 1.0, still widely used today)

Theorem: Let \(f : X \times K \rightarrow Y \) be a secure PRF and let \(\text{CBC} \) denote the CBC encryption scheme for \(l \)-block messages \((M = X \times 2^l) \). Then, for all efficient CPA adversaries \(A \), there exists an efficient PRF adversary \(B \) such that

\[
\text{PRFAdv}[A, \text{CBC}] \leq 2^{\frac{2^l}{2}} + 2 \cdot \text{PRFAdv}[B, f]
\]

Inuition: Similar to analysis of randomized counter mode:

1. Ciphertext is indistinguishable from random string if PRF is evaluated on distinct inputs
2. When encrypting, PRF is invoked on \(l \) random blocks, so after \(Q \) queries, we have \(\Omega l \) random blocks.
 \[
 \Rightarrow \text{Collision probability} \leq 2^{\frac{2^l}{2}} \cdot \frac{2^l}{2^l} \leq \frac{2^l}{2} \cdot \frac{2^l}{2^l} \leq \frac{1}{2} \text{ [overlap of } \Omega \text{ random intervals vs. } \Omega l \text{ random points]}
 \]
3. Factor of 2 arises for same reason as before.

Interpretation. CBC mode provides weaker security compared to counter mode: \(2^{2^l} \text{ vs. } 2^{2^l} \)

Concretely: for same parameters as before (1 MB messages, 2^12 distinguishing advantage):

\[
Q \leq \sqrt{ \frac{2^l}{2} \cdot 2^{31.5} } = 2^{\frac{2^l}{2}} = 2^l \cdot 2^{31.5} = 2^{31.5} \text{ (apart } 1 \text{ billion messages)}
\]

\[
\Rightarrow 2^{25} \approx 180 \times \text{smaller than using counter mode}
\]
Padding in CBC mode: each ciphertext block is computed by feeding a message block into the PRP
⇒ message must be an even multiple of the block size
⇒ when used in practice, need to pad messages

Can we pad with zeroes? Cannot decrypt! What if original message ended with a bunch of zeroes?

Requirement: padding must be invertible

CBC padding in TLS 1.0: if k bytes of padding is needed, then append k bytes to the end, with each byte set to k-1
(for AES-CBC) if 0 bytes of padding is needed, then append a block of 16 bytes, with each byte equal to 15
⇒ dummy block needed to ensure pad is invertible [injective functions must expand:]

called PKCS#5/PKCS#7 (public-key cryptography standards)

Need to pad in CBC encryption can be exploited in "padding oracle" attacks — see HW1 for one example

Padding in CBC can be avoided using idea called "cipher text stealing" (as long as messages are more than 1 block)

Comparing CTR mode to CBC mode:

CTR mode
1. no padding needed (shorter ciphertexts)
2. parallelizable
3. only requires PRF (no need to invert)
4. tighter security
5. IVs have to be non-repeating (and spaced far apart)

CBC mode
1. padding needed
2. sequential
3. requires PRP
4. less tight security
5. requires unpredictable IVs

Easy to implement: IVs have to be non-repeating (can be predictable)

Bottom-line: use randomized or nonce-based counter mode whenever possible: simpler, easier, and better than CBC!

A tempting and bad way to use a block cipher: ECB mode (electronic codebook)

Encryption: Simply apply block cipher to each block of the message

Decryption: Simply invert each block of the ciphertext

Never use ECB mode for encryption!