Message integrity: Confidentiality alone is not sufficient, also need message integrity. Otherwise, an adversary can tamper with the message (e.g., “Send $100 to Bob” → “Send $100 to Eve”).

In some cases (e.g., software patches), integrity more important than confidentiality.

Idea: Append a “tag” (also called a “signature”) to the message to prove integrity (property we want is tags should be hard to forge).

Definition: The tag should be computed using a keyed-function.

Example of keyless integrity check: CRC (cyclic redundancy check) [simple example is to set tag to be the parity]

Example: This was used in SSH v1 (1995) for data integrity. Fixed in SSH v2 (1996) also used in WEP (802.11b) protocol for integrity — also broken!

Problem: If there is no key, anyone can compute it! Adversary can tamper with message and compute the new tag.

Definition. A message authentication code (MAC) with key-space \(K \), message space \(M \) and tag space \(T \) is a tuple of algorithms \(T \text{mac} = (\text{Sign, Verify}) \):

\[
\begin{align*}
\text{Sign} & : K \times M \rightarrow T \\
\text{Verify} & : K \times M \times T \rightarrow \{0,1\}
\end{align*}
\]

Must be efficiently-computable.

Correctness: \(\forall k \in K, \forall m \in M : \Pr[\text{Verify}(k, m, \text{Sign}(k,m)) = 1] = 1 \)

\(\text{Sign} \) can be a randomized algorithm.

Defining security: Intuitively, adversary should not be able to compute a tag on any message without knowledge of the key.

Moreover, since adversary might be able to see tags on existing messages (e.g., signed software updates), it should not help towards creating a new MAC.

Definition. A MAC \(T \text{mac} = (\text{Sign, Verify}) \) satisfies existential unforgeability against chosen message attacks (EUF-CMA) if for all efficient adversaries \(A \), \(\text{MACAdv}(A, T \text{mac}) = \Pr[W = 1] = \text{negl}(\lambda) \), where \(W \) is the output of the following security game:

As usual, \(\lambda \) denotes the length of the MAC secret key (e.g., \(\log |K| = \text{poly}(\lambda) \)).

Note: the key can also be sampled by a special KeyGen algorithm (for simplicity, we just define it to be uniformly random).

Let \(m_1, ..., m_n \) be the signing queries the adversary submits to the challenger, and let \(t_1, ..., t_n \) be the challenger’s responses. Then, \(W = 1 \) if and only if:

\[
\text{Verify}(k, m_*, t_*) = 1 \text{ and } (m_*, t_*) \neq \{ (m_1, t_1), ..., (m_n, t_n) \}
\]

MAC security notion says that adversary cannot produce a new tag on any message even if it gets to obtain tags on messages of its choosing.

First, we show that we can directly construct a MAC from any PRF.
MACs from PRFs: Let $F : K \times M \to T$ be a PRF. We construct a MAC Timac over (K, M, T) as follows:

Sign(k, m): output $t = F(k, m)$

Verify(k, m, t): output 1 if $t = F(k, m)$ and 0 otherwise.

Theorem. If F is a secure PRF with a sufficiently large range, then Timac defined above is a secure MAC. Specifically, for every efficient MAC adversary A, there exists an efficient PRF adversary B such that $\text{MACAdv}[A, \text{Timac}] \leq \text{PRFAdv}[B, F] + \frac{1}{T}$.

Intuition for proof: 1. Output of PRF is computationally indistinguishable from that of a truly random function.
2. If we replace the PRF with a truly random function, adversary wins the MAC game only if it correctly predicts the random function at a new point. Success probability is then exactly $\frac{1}{T}$.

Formalize using a “hybrid argument” [see Boneh-Shoup or ask in Ott]

Implication: Any PRF with large output space can be used as a MAC.

\Rightarrow AES has 128-bit output space, so can be used as a MAC.

Drawback: Domain of AES is 128-bits, so can only sign 128-bit (16-byte) messages.

How do we sign longer messages? We will look at two types of constructions:

1. Constructing a large-domain PRF from a small-domain PRF (i.e., AES)
2. Hash-based constructions

Approach 1: use CBC (without IV)

```
\begin{array}{c}
\text{m}_1 \\
F(k) \\
\text{m}_2 \\
F(k) \\
\text{...} \\
F(k) \\
\text{m}_n \\
F(k) \\
\hi \\
\text{output}
\end{array}
```

Not encrypting messages so no need for IV (or intermediate blocks).

\Rightarrow Mode often called “raw-CBC”

Raw-CBC is a way to build a large-domain PRF from a small-domain one

\Rightarrow Can show security for “prefix-free” messages [more precisely, raw-CBC is a prefix-free PRF: pseudorandom as long as PRF never evaluated on two values where one is a prefix of other]

Includes fixed-length messages as a special case.

But not secure for variable-length messages: “Extension attack”

1. Query for MAC on arbitrary block x:

 $\begin{array}{c}
x \\
F(k_x) \\
\text{tag t} \\
F(k, x)
\end{array}$

2. Output forgery on message $(x, x \oplus t)$ and tag t

$\Rightarrow t$ is a valid tag on extended message $(x, t \oplus x)$

\Rightarrow Adversary succeed with advantage $\frac{1}{T}$
raw CBC can be used to build a MAC on fixed-length messages, but not variable-length messages (more generally, prefix-free) (E CBC)

For variable-length messages, we use “encrypted CBC”:

\[\text{variant used in ANSI X9.9, ANSI X9.19 standards} \]

critical for security (using the same key not secure)

apply another PRF with a different key to the output of raw CBC

To use encrypted CBC-MAC, we need to assume message length is even multiple of block size (similar to CBC encryption)

\(\Rightarrow\) to sign messages that are not a multiple of the block size, we need to first pad the message

\(\Rightarrow\) as was the case with encryption, padding must be injective

\(\Rightarrow\) in the case of encryption, injectivity needed for correctness

\(\Rightarrow\) in the case of integrity, injectivity needed for security

\[\text{if } \text{pad}(m) = \text{pad}(m'), m \text{ and } m' \text{ will have the same meaning}\]

Standard approach to pad: append 1000...0 to fill up block [ANSI X9.9 and ANSI X9.19 standards]

- Note: if message is on even multiple of the block length, need to introduce a dummy block

\(\Rightarrow\) Necessary for any injective function: \(1\text{,000}\ldots > 1\text{,000}\)

- This is a bit-paddign scheme [BLECS #7 that we discuss previoux in the context of CBC encryption is a byte-paddign scheme]

Encrypted CBC-MAC drawbacks: always need at least 2 PRF evaluations (using different keys) \} especially bad for authentieng short (e.g. single-byte) messages

Better approach: raw CBC-MAC secure for prefix-free messages

\(\Rightarrow\) Can we apply a “prefix-free” encoding to the message?

- Option 1: Prepend the message length to the message

 Problematic if we do not know message length at the beginning (e.g., in a streaming setting)

 Still requires padding message to multiple of block size

- Option 2: Apply a random secret shift to the last block of the message

 \((m_1, m_2, \ldots, m_l) \xrightarrow{\text{pad}} (m_1, m_2, \ldots, m_l \oplus k)\) where \(k \in \mathbb{X}\)

 Adversary that does not know \(k\) cannot construct two messages that are prefixes except with probability \(1/|\mathbb{X}|\) (by guessing \(k\))

Cipher-based MAC (CMAC): variant of CBC-MAC standardized by NIST in 2005

\[\text{clear technique to avoid extra padding block}\]

better than encrypted CBC (should be preferred over ANSI standards)

randomized prefix-free encoding

different keys needed to avoid collision between updated message and padded message

2-rounds in 100-0

\{ never needs to introduce an additional block! \}

key: \((k_1, k_2, k_3)\) — CMAC standard uses a specific key-derivation function to derive these keys from one key
Another approach, based on a "cascade" design [Nested MAC (NMAC)]

- Variant of this is HMAC (IETF standard - widely used MAC protocol on the web - will discuss later)

![Diagram of MAC construction](image)

CBC-MAC, CMAC, and HMAC are PRF-based MACs (both approaches implicitly construct a variable-length PRF)
- All are in fact streaming MACs (message blocks can be streamed - no need to know a priori bound)
- All constructions are sequential

Theorem. Let $F: \mathbb{K} \times X \rightarrow X$ be a secure PRF. Let \tilde{M}_{ECBC} be the encrypted CBC MAC formed by F and let \tilde{T}_{NMAC} be the NMAC formed by F. Then, for all MAC adversaries A, there exists a PRF adversary B where

$$ MACAdv[A, \tilde{M}_{ECBC}] \leq 2 \cdot PRFAdv[B, F] + \frac{Q^2 (|X| + 1)^2}{|X|} $$

$$ MACAdv[A, \tilde{T}_{NMAC}] \leq Q (|X| + 1) \cdot PRFAdv[B, F] + \frac{Q^2}{2 |X|} $$

(quad. dependence on Q arises for similar reason as in analyzing CPA security)

Proof. See Boneh-Shoup, Chapter 6.

Implication: Block size of PRF is important!
- 3DES: $|X| = 2^{64}$; need to update key after $< 2^{32}$ signing queries
- AES: $|X| = 2^{26}$; can use key to sign many more messages ($\sim 2^{64}$ messages)

A parallelisable MAC (PMAC) - general idea:

![Diagram of PMAC](image)

- Derived as $F(k_i, 0^{|X|})$ - so key is just k_i
- $P(k_i)$ are important - otherwise, adversary can permute the blocks
- "mask" term is of the form $\gamma_i \cdot k_i$ where multiplication is done over $\mathbb{GF}(2^n)$ where n is the block size (constants γ_i carefully chosen for efficient evaluation)

Can use similar ideas as CMAC (randomized prefix-free encoding) to support messages that is not constant multiple of block size

Parallel structure of PMAC makes it easily updateable (assuming F is a PRP)
- Suppose we change block i from $m(i)$ to $m'(i)$:
 - Compute $F^{-1}(k, \text{tag}) \oplus F(k, m(i) \oplus P(k, i)) \oplus F(k, m'(i) \oplus P(k, i))$

PMAC is "incremental":
- can make local updates without full recomputation
In terms of performance:

- On sequential machine, PMAC comparable to ECBC, NMAC, CMAC. Best MAC we've seen so far, but not used...

- On parallel machine, PMAC much better

Reason: patents ≠ [not patented anymore!]

Summary: Many techniques to build a large-domain PRF from a small-domain one (domain extension for PRF)

\downarrow Each method (ECBC, NMAC, CMAC, PMAC) gives a MAC on variable-length messages

\downarrow Many of these designs (or their variants) are standardized