
Chapter 5

Data

For all the programs so far, we have been limited to simple data such as num-

bers and Booleans. We call this scalar data since it has no structure. Although

we could do arbitrarily complex computations using only scalar data, it would be

very hard to understand those computations. For example, we could represent the

text of a book using only one (very large!) number, and manipulate the characters

in the book by changing the value of that number. It would be very difficult to un-

derstand what is going on, though, and to write programs that correctly insert or

replace characters in the text. Instead, we need more complex data structures that

allow us to map the structured data we want to model more directly into struc-

tures our programs can manipulate. In this chapter, we develop those complex

data structures and introduce techniques for defining procedures that manipulate

structured data.

5.1 Pairs

The simplest structured data construct is a pair. A pair packages two values to-

gether. We draw a pair as two boxes, each containing a value. Here is a pair where

the first component of the pair has the value 35 and the second component has the

value 42:

5-1
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35 42

We call a pair a cons cell, and all the first component the car of the cell, and the

second component the cdr of the cell.1 Scheme provides built-in procedures for

constructing pairs and accessing their components:

• (cons Expression Expression)— evaluates to a pair where the first com-

ponent is the value of the first Expression and the second component is the

value of the second Expression

• (car Expression) — evaluates to the first component of the value of Ex-

pression, which must evaluate to a pair

• (cdr Expression) — evaluates to the second component of the value of

Expression, which must evaluate to a pair

We can construct the pair shown in the picture by evaluating (cons 35 42).

DrScheme will display a pair by printing the components separated by a dot: (35

. 42). The interactions below show some uses of cons, car, and cdr.

> (define mypair (cons 35 42))

> mypair

(35 . 42)

> (car mypair)

35

> (cdr mypair)

42

Of course, the components of a pair can be any values, including other pairs! For

example,

> (define doublepair (cons (cons 1 2) (cons 3 4)))

1The names come from the original LISP implementation on the IBM 704. The name car is

short for “Contents of the Address part of the Register” and the name cdr (pronounced “could-

er”) is short for “Contents of the Decrement part of the Register”.
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> (car doublepair)

(1 . 2)

> (cdr doublepair)

(3 . 4)

> (car (cdr doublepair))

3

> (car (car (car doublepair)))

] car: expects argument of type <pair>; given 1

The last expression results in an error, since it attempts to apply car to a value

that is not a pair.

Exercise 5.1. Suppose the following definition has been executed:

(define tpair (cons (cons (cons 1 2)

(cons 3 4)) 5))

Explain what each of the following expressions evaluates to, then try evaluating

them in a Scheme interpreter to check your answers.

a. (cdr tpair)

b. (car (car (car tpair)))

c. (cdr (cdr (car tpair)))

d. (car (cdr (cdr tpair)))

�

Exercise 5.2. Suppose the following definition has been executed:

(define fpair (cons 1 (cons 2 (cons 3 4))))

Write expressions that use cars and cdrs to extract each of the four elements

from fpair. �



5-4 CHAPTER 5. DATA

5.1.1 Making Pairs

Although Scheme provides the built-in procedures cons, car, and cdr for creat-

ing pairs and accessing their parts, there is nothing magic about these procedures.

We could define procedures with the same behavior ourselves using only the sub-

set of Scheme introduced in Chapter 3:

(define (cons a b)

(lambda (w) (if w a b)))

(define (car pair) (pair #t))

(define (cdr pair) (pair #f))

The cons procedure takes the two parts of the pair as inputs, and produces as out-

put a procedure. The output procedure takes one input, a selector that determines

which of the two parts of the pair to output. If the selector is true, the first part is

the output; if false, the second part is the output. The car and cdr procedures

apply a pair constructed by cons to either #t (to select the first part in car) or

#f (to select the second part in cdr).

Exercise 5.3. Convince yourself the definitions of cons, car, and cdr above

work as expected by following the evaluation rules to evaluate

(car (cons 1 2))

�

Exercise 5.4. Above, we illustrated how cons, car, and cdr could be defined.

Suppose we instead defined cons using:

(define (cons a b)

(lambda (w) (if w b a)))

Show the corresponding definitions of car and cdr needed to provide the correct

cons, car, and cdr behavior. �
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5.1.2 Making Octuples

A pair is a construct that has two components. For more complex data structures,

we want to construct data structures that have more than two components.

A triple has three components. Here is one way to define a triple datatype and its

accessors:

(define (make-triple a b c)

(lambda (w)

(if (= w 0) a

(if (= w 1) b

c))))

(define (triple-first t) (t 0))

(define (triple-second t) (t 1))

(define (triple-third t) (t 2))

Here, we need three different selector values, so instead of using #t and #f, we

use 0, 1, and 2.

A simpler way of making a triple would be to make a pair, where the second part

of the pair is a pair:

(define (make-triple a b c)

(cons a (cons b c)))

Then, we can use the car and cdr procedures to define procedures for selecting

elements of the triple:

(define (triple-first t) (car t))

(define (triple-second t) (car (cdr t)))

(define (triple-third t) (cdr (cdr t)))

Similarly, we can define a quadruple as a pair where the second part of the pair is

a triple:
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(define (make-quad a b c d)

(cons a (make-triple b c d)))

(define (quad-first q) (car q))

(define (quad-second q) (triple-first (cdr q))

(define (quad-third q) (triple-second (cdr q))

(define (quad-fourth q) (triple-third (cdr q))

We could continue in this manner defining tuples with more and more elements:

• A quintuple is a pair where the second part is a quadruple.

• A sextuple is a pair where the second part is a quintuple.

• A septuple is a pair where the second part is a sextuple.

• · · ·

• A (+ n 1)-uple is a pair where the second part of the pair is an n-uple.

Hence, building from the simple cons procedure, we can construct tuples con-

taining any number of components.

Exercise 5.5. Define a procedure that constructs a quintuple and procedures for

selecting the five elements of a quintuple. �

Exercise 5.6. Another way of thinking of a triple is as a pair where the first part

is a pair (and the second part is a scalar). Provide definitions of make-triple,

triple-first, triple-second, and triple-third for this alternative.

�

5.2 Lists

In the previous section, we saw how to construct arbitrarily large tuples building

from the cons pair. This way of managing data is not very satisfying, however.

It requires defining different procedures for constructing and accessing elements
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of every length tuple. In many cases, we want to define procedures that work on

any length tuple. But we could not do it with these tuples, since we need different

procedures depending on whether we are accessing the second element of a pair,

triple, quadruple, etc.

What we want is a way to construct and manipulate tuples works for tuples con-

taining any number of elements. This definition almost provides what we need:

• An any-uple is a pair where the second part of the pair is an any-uple.

This would allow an any-uple to contain any number of elements.

The problem is we have no stopping point. With only the definition above, there

is no way to construct an any-uple without already having one.

The situation is similar to defining MoreDigits as zero or more digits in Chapter 2,

and defining MoreExpression in the Scheme grammar in Chapter 3 as zero or more

Expressions. Recall the grammar rules for MoreExpressions:

MoreExpressions ::⇒ Expression MoreExpressions

MoreExpressions ::⇒ ε

The rule for constructing an any-uple above corresponds to the first MoreExpres-

sion replacement rule. To allow an any-uple to be constructed, we also need a con-

struction rule similar to the second rule, where MoreExpression can be replaced

with nothing. Since it is hard to type and read nothing in a program, Scheme has

a name for this value: null. The primitive null evaluates to null. DrScheme

will print out the value of null as (). It is also known as the empty list, since it

represents the list containing no elements. The procedure null? takes one input

parameter and evaluates to #t if and only if the value of that parameter is null.

Using null, we can now define a list:

• The value null is a list.

• A pair where the second element is a list, is a list.

Symbolically, we can define a list as:
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list ::⇒ null

list ::⇒ (cons element list)

These two rules define a list as a data structure that can contain any number of

elements. Starting from null, we can create lists of any length using cons. For

example:

• null evaluates to a list containing no elements.

• (cons 1 null) evaluates to containing one element, 1.

• (cons 1 (cons 2 null)) evaluates to a list containing two elements,

1 and 2.

Scheme provides a more convenient procedure, list, for constructing lists. The

list procedure takes zero or more inputs, and evaluates to a list containing those

inputs in order. The following expressions are equivalent to the expressions above:

(list), (list 1), and (list 1 2).

Exercise 5.7. For each of the following expressions, explain whether or not the

expression evaluates to a list. You can check your answers with a Scheme inter-

preter by using the list? procedure that takes one input and evaluates to #t if

the value of that input is a list, and #f otherwise.

a. null

b. (cons 1 2)

c. (cons 1 null)

d. (cons null null)

e. (cons (cons (cons 1 2) 3) null)

f. (cons 1 (cons 2 (cons 3 (cons 4 null))))

g. (cdr (cons 1 (cons 2 (cons null null))))

h. (cons (list 1 2 3) 4)

�
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5.3 List Procedures

Since the list data structure is defined recursively, we can define recursive proce-

dures to examine and manipulate lists. Whereas recursive procedures on inputs

that are numbers usually used zero as the base case, for lists the base case is most

naturally the case of the empty list. With numbers, we made progress by subtract-

ing one to produce the input for the recursive application; with lists, we will use

cdr to use the rest of the list as the input for the recursive application. Since the

list was constructed using cons, this means we need to figure out what to do with

the first element (car) of the list, and apply the recursive procedure to the rest

(cdr) of the list.

5.3.1 Procedures that Examine Lists

These procedures take a single list as input, and produce a scalar value that de-

pends on the elements of the list as output. All of the examples in this section

involve base cases where the list is empty, and recursive cases that apply the re-

cursive procedure to the cdr of the input list.

Example 5.1: Length. Scheme provides a procedure length that takes a list

as its input and outputs the number of elements in the list. Here, we define the

length procedure (without using the built-in procedure).

First, consider the base case when the list is null. The length of the empty list is

0. For the recursive case, we need to consider the case where the input list p is

(cons element rest). The length of this list is one more than the length of

the rest list.

(define (length p)

(if (null? p) 0 (+ 1 (length (cdr p)))))

Here are a few example applications of our length procedure:

> (length null)

0

> (length (cons 0 null))
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1

> (length (list 1 2 3 4))

4

> (length (cons 1 2))

] cdr: expects argument of type <pair>; given 2

Note that the last evaluation produces and error, since we are applying length

to an input that is not a list.

Example 5.2: List Sums and Products. First, we define a procedure that takes

a list of numbers as input and produces as output the sum of the numbers in the

input list. As usual, the base case is when the input is null: the sum of an empty

list is 0. For the recursive case, we need to add the value of the first number in the

list, to the sum of the rest of the numbers in the list.

(define (sum-list p)

(if (null? p) 0

(+ (car p) (sum-list (cdr p)))))

We can define product-list similarly, except here we multiply the numbers

in the list. The base case result cannot be 0, though, since then the result would al-

ways be 0 since any number multiplied by 0 is 0. So, we follow the mathematical

convention that the product of the empty list is 1.

(define (product-list p)

(if (null? p) 1

(* (car p) (product-list (cdr p)))))

Exercise 5.8. (�) Define a procedure list? that takes one input and produces

#t if the input is a list, and #f otherwise. (Scheme provides a built-in list?

procedure with this behavior, but you should not use it in your definition.) Check

that the results of your list? procedure match the results from the built-in

list? procedure on the inputs from Exercise 5.2. (Hint: start from the definition

of a list in Section 5.2.) �

Exercise 5.9. (?) Define a procedure max-list that takes a list of non-negative

numbers as its input and produces as its result the value of the greatest element in
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the list (or 0 if there are no elements in the input list). �

5.3.2 Generic Accumulators

The length, sum-list, and product-list procedures all have very simi-

lar structures. They all match the pattern:

(define (recursive-procedure p)

(if (null? p)

base case result

(accumulator function

(car p)

(recursive-procedure (cdr p)))))

We can define a generic accumulator procedure for lists by making the base case

result and accumulator function parameters:

(define (accumulate f base p)

(if (null? p) base

(f (car p) (accumulate f base (cdr p)))))

We can define the sum-list procedure using accumulate:

(define (sum-list p)

(accumulate + 0 p))

Defining the length procedure is a bit more complicated. For the f proce-

dure parameter, we need to pass in a procedure that takes two inputs—the first

input is the first element of the list; the second input is the result of applying

accumulate to the rest of the list. For the length procedure, the first param-

eter is not used since the values of list elements do not impact the length of the

list.

(define (length p)

(accumulate (lambda (el rest) (+ 1 rest)) 0 p))
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Exercise 5.10.

a. Define the product-list procedure using accumulate.

b. Define the list? procedure (from Exercise 5.3.1) using accumulate.

c. Define the max-list procedure (from Exercise 5.3.1) using accumulate.

�

Exercise 5.11. (?) Define a procedure ordered? that takes two inputs, a test

procedure and a list. It evaluates to true if all the elements of the list are ordered

according to the test procedure. For example, (ordered? < (list 1 2

3)) should evaluate to #t, and (ordered? > (list 4 3 3 2)) should

evaluate to #f. �

5.3.3 Procedure that Construct Lists

The procedures in this section take values (including lists) as input, and produce

a new list as output. As before, the empty list is typically the base case, but since

we are producing a list as output the result for the base case is usually null. Since

the output is a list, the recursive case will use cons to construct a list combining

the first element with the result of the recursive application on the rest of the list.

Example 5.3: Mapping. One common task for manipulating a list is to pro-

duce a new list that is the result of applying the same procedure to every element

in the input list. For the base case, applying a procedure to every element of the

empty list produces the empty list. For the recursive case, we use cons to con-

struct a list consisting of the procedure applied to the first element of the list and

the result of applying the procedure to every element in the rest of the list.

For example, here is a procedure that constructs a list that contains the square of

every element of the input list:

(define (square-all p)
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(if (null? p) null

(cons (square (car p))

(square-all (cdr p)))))

We can generalize this by making the procedure to apply to all list elements a

parameter. This is the map procedure2:

(define (map f p)

(if (null? p) null

(cons (f (car p)) (map f (cdr p)))))

Then, square-all could be defined as:

(define (square-all p) (map square p))

Example 5.4: Filtering. Consider defining a procedure that takes as input a list

of numbers, and evaluates to a list of all the non-negative numbers in the input. For

example, (filter-negative (list 1 -3 -4 5 -2 0)) should eval-

uate to the list (1 5 0).

First, consider the base case when the input list is null. If we filter the negative

numbers from the empty list, the result is an empty list. So, for the base case,

the result should be null. In the recursive case, we need to determine if the first

element should be included in the output list or not. If it should be included,

we construct a new list consisting of the first element followed by the result of

filtering the remaining elements in the list. If it should not be included, we do

not include the first element, and the result is the result of filtering the remaining

elements in the list.

(define (filter-negative p)

(if (null? p) null

(if (>= (car p) 0)

(cons (car p)

(filter-negative (cdr p)))

(filter-negative (cdr p)))))

2Scheme provides a built-in map procedure. It behaves like this one when passed a procedure

and a single list as parameters, but can also work on more than one list parameter.
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Similarly to map, we can generalize our filter by taking a test procedure as a

parameter, so we can use any predicate to determine which elements to include in

the output list.

(define (filter test p)

(if (null? p) null

(if (test (car p))

(cons (car p) (filter test (cdr p)))

(filter test (cdr p)))))

Using the filter procedure, we could define filter-negative as:

(define (filter-negative p)

(filter (lambda (x) (>= x 0)) p))

We could also define the filter procedure using the accumulate procedure

from Section 5.3.1:

(define (filter test p)

(accumulate

(lambda (el rest)

(if (test el) (cons el rest) rest))

null p))

Exercise 5.12. Define a procedure filter-even that takes as input a list of

numbers and produces as output a list consisting of all the even elements of the

input list. �

Exercise 5.13. Define a procedure remove that takes two inputs: a test proce-

dure and a list. As output, it produces a list that is a copy of the input list with all

of the elements for which the test procedure evaluates to true removed. For ex-

ample, (remove (lambda (x) (= x 0)) (list 0 1 2 3)) should

evaluates to the list (1 2 3). �

Exercise 5.14. (? ? ?) Define a procedure unique-elements that takes as

input a list and produces as output a list containing the unique elements of the
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input list. The output list should contain the elements in the same order as the

input list, keeping the first appearance of each duplicate value. Use the equal?

procedure to determine if two elements have the same value. �

Example 5.5: Append. The append procedure takes as input two lists and

produces as output a list consisting of the elements of the first list followed by

the elements of the second list. For the base case, when the first list is empty, the

result of appending the lists should just be the second list. When the first list is

non-empty, we can produce the result by cons-ing the first element of the first

list with the result of appending the rest of the first list and the second list.

(define (append p q)

(if (null? p) q

(cons (car p) (append (cdr p) q))))

Example 5.6: Reverse. The reverse procedure takes a list as input and

produces as output a list containing the elements of the input list in reverse order.

For example, (reverse (list 1 2 3)) should evaluate to the list (3 2 1).

As usual, we consider the base case where the input list is null first. The reverse of

the empty list is null. To reverse a non-empty list, we should put the first element

of the list at the end of the reverse of the rest of the list. The tricky part is putting

the first element at the end, since cons only puts elements at the beginning of a

list. We can use the append procedure defined in the previous example to put

a list at the end of another list. To make this work, we need to turn the element

at the front of the list into a list containing just that element. We do this using

(list (car p)).

(define (reverse p)

(if (null? p) null

(append (reverse (cdr p)) (list (car p)))))

Exercise 5.15. (?) Define the reverse procedure using accumulate. �

Example 5.7: Intsto. For our final example, we consider the problem of con-

structing a list containing the whole numbers between 1 and the input parameter

value. For example, (intsto 5) should evaluate to the list (1 2 3 4 5). Here,
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we have to combine some of the ideas from the previous chapter on creating re-

cursive definitions for problems involving numbers, and from this chapter on lists.

Since the input parameter is not a list, the base case is not the usual base case

when the input is null. Instead, we use the input value 0 as the base case. The

result for input 0 should be the empty list. For higher values, the output is the

result of putting the input value inserted at the end of the list of numbers up to the

input value minus one.

A first attempt that doesn’t quite work is:

(define (revintsto n)

(if (= n 0) null

(cons n (revintsto (- n 1)))))

The problem with this solution is it is cons-ing the higher number to the front

of the result, instead of at the end. Hence, it produces the list of numbers in

desending order: (revintsto 5) evaluates to (5 4 3 2 1).If you keep proving

stuff that others have

done, getting

confidence, increasing

the complexities of your

solutions for the fun of

it then one day you’ll

turn around and

discover that nobody

actually did that one!

And that’s the way to

become a computer

scientist.
Richard Feynman, Lectures

on Computation

One solution is to reverse the result by composing reverse with revintsto:

(define (intsto n)

(reverse (revintsto n)))

Or, use the compose procedure from Section 4.2:

(define intsto

(compose reverse revintsto))

Alternatively, we could use append to put the high number directly at the end of

the list. Since the second operand to append must be a list, we use (list n)

to make a singleton list containing the value as we did for reverse.

(define (intsto n)

(if (= n 0) null

(append (intsto (- n 1)) (list n))))

Exercise 5.16. (�) Define the factorial procedure (from Section 4.3) using

intsto. �
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5.4 Summary

Building from the simple cons procedure that constructs a pair, we can create

complex data structures including lists. A list is either null, or a pair whose second

part is a list. Since the list data structure is itself defined recursively, it is not

surprising that many procedures that involve lists can be defined recursively.

We can specialize our general problem solving strategy from Chapter 3 for proce-

dures involving lists:

1. Be very optimistic! Since lists themselves are recursive data structures, most

problems involving lists can be solved with recursive procedures.

2. Think of the simplest version of the problem, something you can already

solve. This is the base case. For lists, this is usually when the list is null.

3. Consider how you would solve a big version of the problem by using the

result for a slightly smaller version of the problem. This is the recursive

case. For lists, the smaller version of the problem is the rest (cdr) of the

list.

4. Combine the base case and the recursive case to solve the problem.

One limitation of lists is that the only structure they provide is a sequence of el-

ements; for some problems, it will be convenient to have richer structures such

as multi-dimensional lists (lists of lists), trees (structures where each element can

have more than one successor), and graphs (structures where elements can be con-

nected in arbitrary ways). All of these structures can be built using just the cons

pair introduced in this chapter. In later chapters, we will explore these more com-

plex data structures. Most of the concepts needed to construct and manipulate

them follow directly from our simple list structures. Another problem with lists

is that because of their sequential structure, many tasks cannot be efficiently per-

formed on lists that could be performed efficiently on other data structures. In the

next chapter, we begin to consider the resources required to execute a procedure.


