
Chapter 8

Sorting and Sequencing

If you keep proving stuff that others have done, getting confidence, increasing the complexities
of your solutions—for the fun of it—then one day you’ll turn around and discover that nobody
actually did that one! And that’s the way to become a computer scientist.

Richard Feynman, Lectures on Computation

In this chapter, we present two extended examples that use the programming tech-
niques from Chapters 2–5 and the analysis ideas from Chapter 6 and 7 in the
context of two interesting problems. First, we consider the problem of arranging a
list in order. Then, we consider the problem of aligning genome sequences. Both
examples involve quite challenging problems, and incorporate many of the ideas
we have seen up to this point in the book. If you are able to understand them well
now, you are well on your way to thinking like a computer scientist!

8.1 Sorting

The sorting problem takes two inputs: a list of elements, and a comparison pro-
cedure. As output, it produces a list consisting of the same elements as the input
list, but ordered according to the comparison procedure. For example, if we sort a
list of numbers using < as the comparison procedure, the output is the list of num-
bers sorted in order from least to greatest. Sorting is one of the most commonly
considered problems in computer science, and many different sorting algorithms

8-1

8-2 CHAPTER 8. SORTING AND SEQUENCING

have been developed and analyzed.1 In this section, we will explore a few differ-
ent ways of implementing a sorting procedure. We encourage curious readers to
attempt to develop their own sorting procedure before continuing further.

8.1.1 Best-First Sort

A simple sorting strategy is to find the best element (that is, the one for which the
comparison procedure evaluates to true when applied to that element and every
other element) in the list and put that at the front. Then, find the best element
from the remaining elements and put that next. Continue finding the best element
of the remaining elements until no more elements remain. To define our best-first
sort procedure, we will first define procedures for finding the best element in the
list, and for removing an element from a list.

Finding the Best. The best element in the list is either the first element, or
the best element from the rest of the list. Hence, we can define find-best
recursively. If the list is empty, however, there is no best element. So, the base
case is for a list that has one element instead of the empty list. When the input list
has only one element, then that element must be the best element in the list.

(define (pick-better proc p1 p2)
(if (proc p1 p2) p1 p2))

(define (find-best proc lst)
(if (null? (cdr lst))

(car lst)
(pick-better proc

(car lst)
(find-best proc (cdr lst)))))

Assuming the procedure passed as proc has constant running time, the running
time of pick-better is constant. To evaluate an application of find-best,
there are n − 1 recursive applications of find-best, since each one passes in
(cdr lst) as the new lst operand, and the base case stops when the list has

1Donald Knuth’s The Art of Computer Programming devotes an entire 780-page volume to the
problem of sorting and searching

8.1. SORTING 8-3

one element left. The running time for each application (excluding the recursive
application) is constant: it involves only applications of procedures with running
times in O(1). So, the total running time for find-best is in Θ(n − 1) which
is equivalent to Θ(n).

Deleting an Element. To implement best first sorting, we need to produce a
list that contains all the elements of the original list except for the best element,
which will be placed at the front of the output list. We do this using a procedure,
delete, that takes as inputs a list and a value, and produces as output a list that
is identical to the input list except with the first element that is equal to the value
parameter removed.

(define (delete lst el)
(if (null? lst) null

(if (eq? (car lst) el) (cdr lst)
(cons (car lst)

(delete (cdr lst) el)))))

The worst case running time for delete occurs when no element in the list
matches the value of el (note that in the best case, the first element matches
and the running time does not depend on the length of the input list at all). In
the worst case, there will be n recursive applications of delete where n is the
number of elements in the input list. Each application has constant running time
since other than the recursive application, all the other applications are of constant
time procedures. Hence, the total running time for delete is in Θ(n) where n is
the length of the input list.

Sorting. Now, we can define best-first-sort using find-best and
delete:2

(define (best-first-sort lst cf)
(if (null? lst) null

(cons (find-best cf lst)
(best-first-sort
(delete lst

2We follow the convention of the sort library procedure by making the input list the first
parameter, and the sorting procedure the second parameter. This is the opposite order from most
of our other procedures, in which the procedure parameter is first.

8-4 CHAPTER 8. SORTING AND SEQUENCING

(find-best cf lst))
cf))))

Assuming the procedure passed as the comparison function has constant running
time, the running time of the best-first-sort procedure grows with the
length of the input list, n. There are n recursive applications of best-first-sort,
since each application of delete produces an output list that is one element
shorter than its input list. In addition to the constant time procedures (null?
and cons), it involves two applications of find-best on the input list, and
one application of delete on the input list. As analyzed earlier, each of these
applications has running time in Θ(m) where m is the length of the input lists to
find-best and delete (we use m here to avoid confusion with n, the length
of the original input list). In the first application, this input list will be a list
of length n, but in later applications it will be involve lists of decreasing length:
n−1, n−2, · · ·, 1. Hence, the average length of the input lists to find-best and
delete is n

2
. The average running time for each of these applications is in Θ(n

2
),

which is equivalent to Θ(n). There are three applications (two of find-best
and one of delete) for each application of best-first-sort, so the total
running time for each application is in Θ(3n), which is equivalent to Θ(n). There
are n recursive applications, each with average running time in Θ(n), so the run-
ning time for best-first-sort is in Θ(n2). Doubling the length of the input
list will quadruple the expected running time.

Let. Each application of the best-first-sort procedure involves two eval-
uations of (find-best cf lst), a procedure with running time in Θ(n)
where n is the length of the input list. The result of both evaluations is the same,
so there is no need to evaluate this expression twice.

We could avoid this by defining a helper procedure and passing in the result of the
evaluation:

(define (best-first-sort lst cf)
(define (combine-helper lst best cf)

(cons best
(best-first-sort
(delete lst best) cf)))

(if (null? lst) null
(combine-helper
lst (find-best cf lst) cf)))

8.1. SORTING 8-5

A more natural way to avoid this duplication is to use a let expression.

The grammar rule for the let expression is:

Expression ::⇒ LetExpression
LetExpression ::⇒ (let (Bindings) Expression)
Bindings ::⇒ Binding Bindings
Bindings ::⇒ ε
Binding ::⇒ (Name Expression)

The evaluation rule is:

Evaluation Rule 6: Let. To evaluate a let expression, evaluate each
binding in order. To evaluate each binding, evaluate the binding ex-
pression and bind the name to the value of that expression. Then,
the value of the let expression is the value of the body expression
evaluated with the names in the expression that match binding names
substituted with their bound values.3

A let expression can be transformed into an equivalent application expression.
The let expression

(let ((Name1 Expression1)
(Name2 Expression2)
...
(Namek Expressionk))

Expression)

is equivalent to the application expression:

((lambda (Name1
Name2

3Note that the grammar and evaluation rule for let here are slightly different from the version
in Problem Set 3. Here, we use a simpler version of the let rules, where the body is a single
expression instead of a list of one or more expressions.

8-6 CHAPTER 8. SORTING AND SEQUENCING

...
Namek)

Expression)
Expression1
Expression2
...
Expressionk)

The advantage of the let expression syntax is it puts the expressions next to the
names to which they are bound. For example, the let expression:

(let ((a 2)
(b (* 3 3)))

(+ a b))

is easier to understand than the corresponding application expression:

((lambda (a b) (+ a b)) 2 (* 3 3))

Using a let expression, we can now define best-first-sort to avoid the
duplicate evaluations of find-best without needing a helper procedure:

(define (best-first-sort lst cf)
(if (null? lst) null

(let ((best (find-best cf lst)))
(cons best

(best-first-sort
(delete lst best) cf)))))

This should improve the running time, but it does not change the asymptotic
growth rate. The running time is still in Θ(n2) since there are n recursive ap-
plications of best-first-sort and each application involves linear time ap-
plications of find-best and delete.

Exercise 8.1. Use the time special form (see Chapter 6) to measure the actual
evaluation times for applications of the different best-first-sort proce-
dures. See if the results in your interpreter match the expected running times based

8.1. SORTING 8-7

on the analysis that the running time of the procedure is in Θ(n2). Also, compare
the running times of the first and final best-first-sort procedures. Are the
timing results consistent with the analysis? ♦

Exercise 8.2. Define the find-best procedure using accumulate (from Sec-
tion 5.3.2). ♦

Exercise 8.3. (??) Instead of sorting the elements by finding the best element first
and putting at the front of the list, we could sort by finding the worst element first
and putting it at the end of the list. Define a worst-last-sort procedure that
sorts this way and analyze its running time. ♦

8.1.2 Insertion Sort

The best-first-sort procedure seems to be quite inefficient. For every
output element, we are searching the whole remaining list to find the best element,
but do nothing of value with all the comparisons that were done to find the best
element. An alternate approach is to build up a sorted list as we go through the
elements.

Insertion sort works by putting the first element in the list in the right place in
the result of sorting the rest of the elements. First, we define the insert-one
procedure that takes three inputs: an element, a list, and a comparison function.
The input list must be sorted according to the comparison function. As output,
insert-one produces a list consisting of the elements of the input list, with the
input element inserts in the right place according to the comparison function.

(define (insert-one el lst cf)
(if (null? lst) (list el)

(if (cf el (car lst)) (cons el lst)
(cons (car lst)

(insert-one el (cdr lst) cf)))))

The running time for insert-one is in Θ(n) where n is the number of elements
in the input list. In the worst case, the input element belongs at the end of the list

8-8 CHAPTER 8. SORTING AND SEQUENCING

and we need to make n recursive applications of insert-one. Each application
involves constant work, so the overall running time is in Θ(n).

To sort the whole list, we need to insert each element in the sorted list that results
from sorting the rest of the elements:

(define (insert-sort lst cf)
(if (null? lst) null

(insert-one (car lst)
(insert-sort (cdr lst) cf) cf)))

Evaluating an application of insert-sort on a list of length n involves eval-
uating n recursive applications of insert-sort, for lists of length n, n − 1,
n − 2, . . ., 0. Each application includes an application of insert-one which
has running time in Θ(n) where n is the number of elements in the input list to
insert-one. The average length of the input list over all the applications is n

2
,

so the average running time of the insert-one applications is in Θ(n). Since
there are n applications of insert-one, the total running time is in Θ(n2).

Exercise 8.4. We analyzed the worst case running time of insert-sort above.
Analyze the best case running time. Your analysis should describe the input for
which insert-sort runs fastest, and explain what the asymptotic running time
is for the best case input. ♦

Exercise 8.5. Both the best-first-sort and insert-sort have running
times in Θ(n2). How do their actual running times compare? Are there any inputs
for which best-first-sort is faster than insert-sort? For sorting a
long list of n random elements, how long would each procedure take?

To answer these questions, you will need to time the actual running times of the
procedures in your Scheme interpreter. You may also find it helpful to define a
procedure that constructs a list of n random elements. To select random elements,
you may use the library procedure, (random k), that evaluates to a random
number between 0 and k − 1. Be careful in your time measurements that you do
not include the time required to generate the input list. Instead, use a define to

8.1. SORTING 8-9

bind the input list to a name, and use that name as the operand expression in your
timing tests. ♦

8.1.3 Quicker Sorting

Although insertion sort is generally faster than best-first sort, its running time is
still in Θ(n2) which is woefully inefficient for sorting a long list. For example, if
it takes 1

10
of a second to sort a list of 1000 elements using insert-sort (on

my laptop, the time to sort a random list of 1000 elements averages 0.13 seconds),
we would expect it to take 10002 as long (over a day!) to sort a list containing one
million (1000 ∗ 1000) elements.

The problem with our insertion sort is it divides the work into inserting one ele-
ment, and sorting the rest of the list. This is a very unequal division. As long as
we sort by considering one element at a time and putting it in the sorted position
as is done by find-best-sort and insert-sort, our sort procedures will
have running times in Ω(n2). We cannot do better than this with this strategy since
there are n elements, and the time required to figure out where each element goes
is in Ω(n). To do better, we need to either reduce the number of recursive appli-
cations needed to sort the list (this would mean each recursive call results in more
than one element being sorted), or reduce the time required for each application.

The approach we take is to use each recursive application to divide the list into
two approximately equal-sized parts, but to do the division in such a way that the
results of sorting the two parts can be combined directly to form the result. This
means, we should divide the elements in the list so all elements in the first part are
less than (according to the comparison function) all elements in the second part.

Our first attempt is to modify insert-one to divide the list in two parts. First,
we define the sublist procedure that takes three inputs: a list, and two numbers
indicating the start and end positions. As output, it produces a sublist of the input
list, between the start and end position.

(define (sublist lst start end)
(if (= start 0)

(if (= end 0)
null

8-10 CHAPTER 8. SORTING AND SEQUENCING

(cons (car lst)
(sublist (cdr lst) start (- end 1))))

(sublist (cdr lst) (- start 1) (- end 1))))

The running time of the sublist procedure is in Θ(n) where n is the number
of elements in the input list. The worst case input is when the value of end is the
length of the input list, which means there will be n recursive applications, each
involving a constant amount of work.

We use sublist to define procedures for obtaining lists of the first and sec-
ond halves of the elements of an input list (when the list has an odd number
of elements, we define the first-half to contain one more element than the
second-half).

(define (first-half lst)
(sublist lst 0

(floor (/ (+ 1 (length lst)) 2))))

(define (second-half lst)
(sublist lst (floor (/ (+ 1 (length lst)) 2))

(length lst)))

The first-half and second-half procedures apply sublist, so they
have running times in Θ(n) where n is the number of elements in the input list.

Using first-half and second-half, we can define the insert-one pro-
cedure to only consider the appropriate half of the list.

(define (insert-one el lst cf)
(if (null? lst)

(list el)
(if (null? (cdr lst))

(if (cf el (car lst))

8.1. SORTING 8-11

(cons el lst)
(list (car lst) el))

(let ((front (first-half lst))
(back (second-half lst)))

(if (cf el (car back))
(append (insert-one el front cf) back)
(append front (insert-one el back cf)))))))

In addition to the normal base case, we need a special case for when the input list
has one element. If the element to be inserted is before this element, the output
is produces using cons; otherwise, we can list the first (only) element in the list
followed by the inserted element. In the recursive case, the first-half and
second-half procedures are used to divide the input list elements. We use a
let expression to bind the results of the first and second halves to the front and
back variables.

Since the list passed to insert-one must be sorted, the elements in front
must all be less than the first element in back. Hence, we can determine into
which of the sublists contains the element should be inserted using just one com-
parison: if the element is before the first element in back, then it is in the first
half, so we produce the result by appending the result of inserting the element in
the front half (the recursive call) with the back half unchanged; if the element is
not before the first element in back, then it must be in the second half, so we pro-
duce the result by keeping the front half as it is, and appending it with the result
of inserting the element in the back half.

We have not changed insert-sort at all, so there are still n applications of
insert-one, and the average length of the input list is n

2
. The running time for

the new insert-one procedure may be different, however (in fact, we will see
that grows asymptotically at the same rate as the previous insert-one proce-
dure, but analyzing it will lead to a faster alternative).

Unlike other recursive list procedures we have analyzed, the number of recursive
applications of insert-one does not scale linearly with the length of the input
list. The reason for this is instead of using (cdr lst) in the recursive applica-
tion, insert-one passes in either the front or back value. This is the result
of an application of (first-half lst) or (second-half lst). The
length of the list produced by these procedures is approximately 1

2
the length of

the input list. With each recursive application, the size of the input list is halved.

8-12 CHAPTER 8. SORTING AND SEQUENCING

This means, doubling the size of the input list only adds one more recursive ap-
plication.

Before proceeding further, we briefly review logarithms, since we will need them
in our analysis.

Logarithms. The logarithm (logb) of a number n is the number x such that bx =
n where b is the base of the logarithm. If the base is 10, then the value of log10 n is
the number x such that 10x = n. For example, log10 10 = 1 and log10 1000 = 3.
In computer science, we will most commonly encounter logarithms with base
2. Doubling the input value, increases the value of its logarithm base two by one:
log2 2n = 1+log2 n. This corresponds to the situation with insert-one, where
doubling the size of the input increases the number of recursive applications by
one.

We can change the base of a logarithm using the following formula:

logb n =
1

logk b
logk n

Changing the base of a logarithm from k to b changes the value by the constant
factor, 1

logk b
. Hence, inside our asymptotic operators (O, Ω, and Θ) the base of

the logarithm (as long as it is constant) does not matter. Thus, we use O(log n)
without specifying the base of the logarithm.

The log primitive procedure computes natural logarithms (logarithms where the
base is e ≈ 2.71828). To compute a logarithm of any base we can use the formula
above. The logb procedure below takes one parameter, the base of the logarithm,
and evaluates to a procedure that computes logarithms using that base.

(define (logb b)
(lambda (n)

(/ (log n) (log b))))

For example, ((logb 10) 10) evaluates to 1.0.4

4Because of rounding errors, the values produced by this function will not match the correct
logarithm values exactly. For example, evaluating ((logb 10) 1000) should produce 3.0,
but actually produces 2.9999999999999996. Computers cannot represent all floating point
numbers exactly since there are infinitely many floating point numbers but computers have only

8.1. SORTING 8-13

Analysis. Returning to our analysis of insert-one, the number of recursive
applications is in Θ(log n) since doubling the size of the input requires one more
recursive application. Each application of insert-one involves an application
of append where the first parameter is either the front half of the list, or the
result of inserting the element in the front half of the list. In either case, it is a
list of length approximately n

2
, and append has running time in Θ(m) where m

is the length of the first input list. So, the time required for each insert-one
application is in Θ(n) where n is the length of the input list to insert-one. The
lengths of the input lists to insert-one are n

2
, n

4
, n

8
, . . ., 1. There are log2 n

terms, and the sum of the list is n, so the average length input is n
log2 n

. Hence, the
total running time for each application of insert-one is in Θ(log2 n ∗ n

log2 n
) =

Θ(n).

The analysis of the applications of first-half and second-half is similar:
each of these requires running time in Θ(n) where n is the length of the input list,
which averages n

log2 n
where n is the length of the input list of insert-one.

Since insert-sort involves Θ(n) applications of insert-one (with aver-
age input list length of n

2
, the total running time for insert-sort using the

new insert-one procedure is still in Θ(n2). Because of the cost of evaluating
the append, first-half, and second-half applications, the change to di-
viding the list in halves has not improved the asymptotic performance; in fact,
because of all the extra work in each application, the actual running time has been
increased.

8.1.4 Binary Trees

The problem with our insert-one procedure is that it has to cdr down the
whole list to get to the middle of the list, hence the work for each application
will be in Ω(n). What we need is some way of getting to the middle of the list
quickly. With the standard list data structure this is impossible: it requires one
cdr application to get to the next element in the list, so getting to the middle of
the list requires approximately n

2
applications of cdr. There is no way to do better

finite memory. Hence, calculations involving floating point numbers are prone to such rounding
errors. These errors may be small, but frequently cause serious problems in critical systems. One
infamous example is the failure of the Patriot missile system (see the GAO Patriot Missile Defense
Report).

8-14 CHAPTER 8. SORTING AND SEQUENCING

than this without changing the way we represent our data. What we need is a data
structure where a single application is enough to get to the middle of the list.

The data structure we will use is known as a sorted binary tree. Whereas a list
provides constant time procedures for accessing the first element and the rest of
the elements, with a binary tree we have constant time procedures for accessing
the current element, the left side of the tree, and the right side of the tree. The left
and right sides of the tree are themselves trees. So, like a list, a binary tree is a
recursive data structure. We define a tree as:

tree ::⇒ null
tree ::⇒ (make-tree element tree tree)

The make-tree procedure can be defined using cons to package the three in-
puts into a tree:

(define (make-tree left element right)
(cons element (cons left right)))

Then, we can define selector procedures for extracting the parts of a non-null tree:

(define (tree-element tree)
(car tree))

(define (tree-left tree)
(car (cdr tree)))

(define (tree-right tree)
(cdr (cdr tree)))

The tree-left and tree-right procedures are constant time procedures
that evaluate to the left or right halves respectively of a tree.

We will use a tree where the elements are maintained in a sorted structure. All
elements in the left side of a node are less than (according to the comparison
function) the value of the element of the node; all elements in the right side of a

8.1. SORTING 8-15

node are greater than or equal to the value of the element of the node (the result
of comparing them to the element value is false). For example, here is a sorted
binary tree containing 6 elements using < as the comparison function:

7

qqqqqqq
MMMMMMM

5

qqqqqqq
MMMMMMM 12

MMMMMMM

1 6 17

The top node has element value 7, and its left subtree is a tree containing the
tree elements whose values are less than 7. The null subtrees are not shown.
For example, the left subtree of the element whose value is 12 is null. Note that
although there are 6 elements in the tree, we can reach any element from the top
by following at most 2 branches. By contrast, with a list of 6 elements, we would
need 5 cdr operations to reach the last element.

The first-half, second-half, and append operations that had running
times in Θ(n) for our list representation can be implemented with running times
in O(1) using the tree representation. For example, first-half can be im-
plemented using tree-left, and second-half can be implemented using
tree-right. To implement append requires making a new tree, which is also
a constant time procedure.

Here is a definition of insert-one-tree that inserts an element in a sorted
binary tree.

(define (insert-one-tree cf el tree)
(if (null? tree)

(make-tree null el null)
(if (cf el (tree-element tree))

(make-tree
(insert-one-tree cf el

(tree-left tree))
(tree-element tree)
(tree-right tree))

(make-tree

8-16 CHAPTER 8. SORTING AND SEQUENCING

(tree-left tree)
(tree-element tree)
(insert-one-tree cf el

(tree-right tree))))))

When the input tree is null, the new element is the top element of a new tree whose
left and right subtrees are null. Otherwise, it compares the element to insert to the
element at the top node of the tree. If the comparison evaluates to a true value,
the new element belongs in the left subtree. The result is a tree where the left tree
is the result of inserting this element in the old left subtree, and the element and
right subtree are the same as they were in the original tree. For the alternate case,
the element is inserted in the right subtree, and the left subtree is unchanged.

Unlike insert-one for lists, the insert-one-tree procedure involves no
applications of non-constant time procedures, except for the recursive application.
Assuming the tree is well balanced (that is, the left and right subtrees contain the
same number of elements), each recursive application halves the size of the input
tree. Hence, the running time of insert-one-tree to insert an element in a
well balanced tree is in Θ(log n).

To use our insert-one-tree procedure to perform sorting we need to extract
a list of the elements in the tree in the correct order. The leftmost element in the
tree should be the first element in the list. Starting from the top node, all elements
in its left subtree should appear before the top element, and all the elements in its
right subtree should follow it. The extract-elements procedure does this:

(define (extract-elements tree)
(if (null? tree) null

(append
(extract-elements (tree-left tree))
(cons (tree-element tree)

(extract-elements
(tree-right tree))))))

The total number of applications of extract-elements is between n (the
number of elements in the tree) and 3n since there can be up to two null trees for
each leaf element. For each application, we need to evaluate an append appli-
cation, where the first parameter is the elements extracted from the left subtree.

8.1. SORTING 8-17

The end result of all the append applications is the output list, containing the n
elements in the input tree. Hence, the total size of all the appended lists is at most
n, and the running time for all the append applications is in Θ(n). Since this is
the total time for all the append applications, not the time for each application
of extract-elements, the total running time for extract-elements is
the time for the recursive applications, in Θ(n), plus the time for the append ap-
plications, in Θ(n), which is in Θ(n).

Finally, we use insert-one-tree and extract-elements to define the
insert-sort-tree procedure that takes a list and a comparison function, and
evaluates to a sorted binary tree containing the elements in the list. To produce the
sorted list, we apply extract-elements to the result of insert-sort-helper.

(define (insert-sort-tree lst cf)
(define (insert-sort-helper lst cf)
(if (null? lst) null

(insert-one-tree
cf (car lst)
(insert-sort-helper (cdr lst) cf))))

(extract-elements
(insert-sort-helper lst cf)))

Assuming well-balanced trees as above (we will revisit this assumption later), the
expected running time of insert-sort-tree is in Θ(n log n) where n is the
size of the input list. There are n applications of insert-sort-helper since
each application uses cdr to reduce the size of the input list by one. Each appli-
cation involves an application of insert-one-tree (as well as only constant-
time procedures), so the expected running time of each application is in Θ(log n).
Hence, the total running time for insert-sort-helper is in Θ(n log n) since
there are n applications of insert-one-tree which has expected running
time in Θ(log n). In addition to the application of insert-sort-helper,
there is also an evaluation of an application of extract-elements. As ana-
lyzed above, this has running time in Θ(n), which means it does not impact the
overall running time growth. Thus, the expected total running time for an appli-
cation of insert-sort-tree to a list containing n elements is in Θ(n log n).

Now, we return to the well-balanced trees assumption. Our analysis depended
on the left and right halves of the tree passed to of insert-one-tree having

8-18 CHAPTER 8. SORTING AND SEQUENCING

approximately the same number of elements. If the input list is in random order,
this assumption is valid: each element we insert has equal probability of going in
the left or right half, so the halves will maintain approximately the same number
of elements all the way down the tree. But, if the input list is not in random order
this may not be the case.

For example, suppose the input list is already in sorted order. Then, each element
that is inserted will be the rightmost node in the tree when it is inserted. This
produces an unbalanced tree like the one shown below.

1

BB
BB

B

5

BB
BB

B

6

BB
BB

B

7

BB
BB

B

12

BB
BB

B

17

This tree contains the same six elements as the earlier example, but because it
is not well-balanced the number of branches that must be traversed to reach the
deepest element is 5 instead of 2. Similarly, if the input list is in reverse sorted
order, we will have an unbalanced tree where only the left branches are used.

In these pathological situations, the tree becomes effectively a list. The num-
ber of recursive applications of insert-one-tree needed to insert a new
element will not be in Θ(log n), but rather will be in Θ(n). Hence, the worst
case running time for insert-sort-tree is in Θ(n2) since the worst case
time for insert-one-tree is in Θ(n) and there are Θ(n) applications of
insert-one-tree.

8.1. SORTING 8-19

8.1.5 Quicksort

Although building and extracting elements from trees allows us to sort with ex-
pected time in Θ(n log n), the constant time required to build all those trees and
extract the elements from the final tree is high. In fact, we can use the same ap-
proach to sort without needing to build trees. Instead, we keep the two sides of
the tree as separate lists, and sort them recursively.

The quicksort procedure uses filter (from Example 5.3.3) to divide the
input list into sublists containing elements below and above the comparison ele-
ment, and then recursively applies quicksort to sort those sublists.

(define (quicksort lst cf)
(if (null? lst) lst

(append
(quicksort
(filter
(lambda (el) (cf el (car lst)))
(cdr lst))

cf)
(list (car lst))
(quicksort
(filter
(lambda (el) (not (cf el (car lst))))
(cdr lst))

cf))))

This is the quicksort algorithm that was invented by Sir C. A. R. (Tony) Hoare in
1962. Quicksort is probably the most widely used sorting algorithm.5

As with insert-sort-tree, the expected running time for a randomly ar-
ranged list is in Θ(n log n) and the worst case running time is in Θ(n2). In the
expected cases, each recursive call halves the size of the input list (since if the list
is randomly arranged we expect about half of the list elements are below the value

5As we will see in Chapter ??, there is no general sorting procedure that has expected running
time better than Θ(n log n), so there is no algorithm that is asymptotically faster than quicksort.
There are, however, sorting procedures that may have advantages such as how they use memory
which may provide better absolute performance in some situations.

8-20 CHAPTER 8. SORTING AND SEQUENCING

of the first element), so there are approximately log n expected recursive calls.
Each call involves an application of filter, which has running time in Θ(m)
where m is the length of the input list. At each call depth, the total length of the
inputs to all the calls to filter is n since the original list is subdivided into 2d

sublists, which together include all of the elements in the original list. Hence, the
total running time is in Θ(n log n) in the expected cases where the input list is
randomly arranged. As with insert-sort-tree, the worst case running time
is still in Θ(n2).

Exercise 8.6. Estimate the time it would take to sort a list of one million elements
using quicksort. ♦

Exercise 8.7. Both the quicksort and insert-sort-tree procedures
have expected running times in Θ(n log n). How do their actual running times
compare? ♦

Exercise 8.8. Is there a best case input for quicksort? Describe it and analyze
the asymptotic running time for quicksort on best case inputs. ♦

8.2 Genome Alignment

A genome is a sequence of nucleotides, represented using the letters a (Adenine),
g (Guanine), c (Cytosine), and t (Thymine). As a species evolves through the
generations, mutations will change the sequence of nucleotides in its genome.
Mutations may replace one nucleotide with a different nucleotide. They may also
insert additional nucleotides in the sequence, or remove them. In order to under-
stand how two organisms are related, a biologist wants to compare their genomes
to identify similarities and differences. Because of the insertions and deletions,
however, it is difficult to compare the genomes directly. Instead, we want to align
them in a way that best reveals their similarities.

The sequence alignment problem takes as input two or more sequences, and pro-
duces as output an arrangement of those sequences that highlights their similarities
and differences. This is done by introducing gaps (typically denoted using dashes)
in the sequences so the similar segments are aligned. Sequence alignment is an
important component of many genome analyses. For example, it is used to de-

8.2. GENOME ALIGNMENT 8-21

termine which sequences are likely to have come from a common ancestor and to
construct phylogenetic trees that explain the most likely evolutionary relationships
among a group of genes, species, or organisms.

To identify a good sequence alignment, we need a way of measuring how well
an arrangement is aligned. This is done using a goodness metric, that takes as
input the two aligned sequences and calculates a score that indicates how well
aligned they are. We will use a simple goodness metric where the goodness can
be computed by summing the score for each position in the resulting alignment
using a scoring function. The score function takes two inputs, representing the
nucleotide or gap at corresponding positions in the aligned genomes:

Score(a, b) =

c : a = b
0 : a 6= b (and neither a or b is a gap)

−g : a or b is a gap

The values of c and g are constants chosen to reflect the relative likelihood of a
point mutation and insertion or deletion. For these examples, we will use values
of c = 10 and g = 2.

For example, suppose the input genomes are:

U = catcatggaa
V = catagcatgg

To compute the goodness score, we sum the scores at each position and subtract
the gap penalties. If we align the genomes with no gaps, we have (the vertical
lines connect matching nucleotides in the alignment):

catcatggaa
|||
catagcatgg

and the goodness score is 3c = 30. This is not the best possible alignment of the
sequences. We can do better by inserting gaps:

cat--catggaa
||| |||||
catagcatgg--

8-22 CHAPTER 8. SORTING AND SEQUENCING

This alignment has goodness score 8c− 4g = 72.

The find-best-alignment procedure takes as input two genome sequences
and produces an alignment of the genomes that has the maximum possible good-
ness score (for simplicity, the values of c and g are defined, rather than passed as
parameters). The output is a list consisting of the two genomes with gaps inserted
to produce the best possible alignment.

To represent a genome we will use a list of characters. Characters are primitives.
A character is denoted by #\letter. For example, the letter a is #\a. We define
the gap character for representing a gap in an aligned genome:

(define gap #\-)

Ambitious students should attempt to define find-best-alignment them-
selves before reading further.

First, we define a procedure to compute the goodness score of a given alignment.
This procedure will take an alignment as its input, and produce a number as its
output that is the goodness score of the input alignment. The input is a pair of
two aligned genomes (that is, genomes of the same length with gaps inserted). To
compute the goodness score, we need to compare the corresponding elements of
each genome. Each genome is represented by a list of characters (each of which
either represents a nucleotide or a gap).

We define a scoring procedure that takes two inputs that are either a nucleotide or
a gap, and evaluates to the score for that position. The score procedure imple-
ments the Score function defined above:

(define (score a b)
(if (eq? a b) 10

(if (or (eq? a gap)
(eq? b gap))

-2
0)))

The running time of the score procedure is constant.

The goodness procedure needs to compute the sum of applying score to every
pair of aligned nucleotides or gaps. To do this we need a version of the map

8.2. GENOME ALIGNMENT 8-23

procedure that operates simultaneously on two lists6. The map2 procedure does
this:

(define (map2 proc list1 list2)
(if (null? list1)

null
(cons (proc (car list1) (car list2))

(map2 proc (cdr list1) (cdr list2)))))

The input lists must be the same length. The running time of map2 is in Θ(n)
where n is the number of elements in each input list. Then, we can define goodness
using map2 by applying score to each position in the aligned genomes, and
summing the result (using the sumlist procedure defined in Section 5.3.1):

(define (goodness align)
(sumlist (map2 score (car align) (cdr align))))

The running time of goodness is in Θ(n) where n is the number of elements
in each input list (that is, each component of the alignment). It involves an ap-
plication of map2 to the input lists, this has running time in Θ(n) where n is the
number of elements in each input list. Then, it applies sumlist to the resulting
list of length n. The running time of sumlist is linear in the length of the input.
Hence, the total running time is in Θ(n) + Θ(n) which is equivalent to Θ(n).

A brute force technique for finding the best alignment is to try all possible align-
ments, and keep the one with the best goodness score. We can do this by recur-
sively trying all three possibilities at each position:

• No gap

• Insert a gap for the first sequence

• Insert a gap for the second sequence

6In fact, the built-in map procedure already does this. It can take any number of input lists, and
applies the procedure to one element from each list.

8-24 CHAPTER 8. SORTING AND SEQUENCING

(The fourth possibility of inserting a gap in both sequences makes no sense, since
we could always improve the goodness score by removing that double gap.)

To pick the best alignment, we use the find-best procedure (from Section 8.1.1)
that takes a procedure and a list as inputs, and outputs the element in the list that
produces true when compared with every other element in the list. As we analyzed
in Section 8.1.1, its running time is in Θ(n) where n is the length of the input list.

Finally, we define find-best-alignment using find-best:

(define (pad-with-gaps lst n)
(if (= n 0)

lst
(append (pad-with-gaps lst (- n 1))

(list gap))))

(define (prepend-alignment c1 c2 p)
(cons (cons c1 (car p))

(cons c2 (cdr p))))

(define (find-best-alignment u v)
(if (or (null? u) (null? v))

(cons (pad-with-gaps u (length v))
(pad-with-gaps v (length u)))

(find-best
(lambda (a1 a2)

(> (goodness a1) (goodness a2)))
(list
(prepend-alignment
(car u) (car v)
(find-best-alignment (cdr u) (cdr v)))

(prepend-alignment
gap (car v)
(find-best-alignment u (cdr v)))

(prepend-alignment
(car u) gap
(find-best-alignment (cdr u) v))))))

The find-best-alignment procedure takes two inputs, each of which rep-

8.2. GENOME ALIGNMENT 8-25

resents a genome sequence. The base case is when either of the lists is empty. The
result is an alignment where there is a gap aligned with each element in the other
list. The pad-with-gaps procedure produces the necessary padding. It takes
two inputs, a list and a number n, and appends n gaps to the end of the input list.
There will be n recursive applications, where n is the value of the input parameter
n.

Each application involves an application of append, which has running time in
Θ(m) where m is the length of the first input list. The length of the input list is
initially the length of the lst parameter to pad-with-gaps, but it grows by 1
every time a gap is added, up to the length of lst + n. Hence, the running time of
pad-with-gaps is in Θ(n(m + n)) where m is the length of the input list, and
n is the value of the second parameter. Since the maximum values of n and m are
the lengths of the input lists to find-best-alignment, the running time of
find-best-alignment is in Θ(uv) where u and v are the respective lengths
of the input parameters to find-best-alignment. Since this is only done
once for the entire evaluation, it will not be a significant term in our final result.

In the recursive case, we use find-best with a comparison procedure that uses
the goodness procedure to compare the goodness scores of two alignments.
This will evaluate to the best alignment from the list of possible alignments passed
in as the second parameter. This list includes the three options mentioned earlier:

• No gap — align the first elements, and find the best alignment of the rest of
the elements.

• Gap in the first genome — align a gap in the first genome with the first
element in the rest of the genome, and find the best alignment of the first
genome with the rest of the elements in the second genome.

• Gap in the second genome — align the first element of the first genome with
a gap, and find the best alignment of the rest of the first genome with the
elements in the second genome.

The prepend-alignment procedure creates the full alignments, but putting
the first elements (or gaps) back at the front of each aligned genome.

The find-best-alignment procedure makes three recursive applications,
one corresponding to each option. The total size of the input is the sum of the

8-26 CHAPTER 8. SORTING AND SEQUENCING

sizes of u and v, so increasing the size by one approximately triples the number of
recursive calls. This means the number of recursive applications scales as Θ(kw)
where w is the total length of the two input lists and k is some constant between 2
and 3.7There’s no sense in

being precise when you
don’t even know what
you’re talking about.
John von Neumann

Each application involves an evaluation of find-best which has running time
in Θ(n) where n is the length of the input list. Since the input list is always a list of
three elements, this is a constant amount of time. There is an invalid assumption
however: that the procedure passed to find-best does not have constant run-
ning time. It involves two applications of goodness, on the candidate genomes.
The running time of goodness is in Θ(n) where n is the total length of the input
lists. In this case, the total length is length of both alignments. The maximum
length of an alignment is u + v, since we never insert gaps at the same position
in both genomes. Hence, the total running time for each application is in Θ(w)
where w is the total length of the two input lists.

Thus, the total running time for find-best-alignment is in Θ(wkw) where
w is the total length of the two input lists, and k is some constant between 2 and
3. This is exponential in the size of the input.

Exercise 8.9. (??) Define a find-best-alignment whose running time is
polynomial in the size of the input. (Hint: compare the find-best-alignment
procedure with the fibo procedure and try and do a similar transformation to
what we did to make fast-fibo.) ♦

7Determining the actual value of k is outside the score of this book, but it is not very important
for understanding the running time growth of find-best-alignment. Once we know it is
exponential, that is enough to understand how it scales as the input scales.

