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CS216: Program and Data Representation

University of Virginia Computer Science
Spring 2006 David Evans

Lecture 1:
Introduction
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Menu

• Motivating Problem

• Course Structure, Expectations, Goals

• Analyzing Algorithms
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Phylogeny

from http://www.shef.ac.uk/language/quantling/
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Language 
Phylogeny

tree house
baum haus treow hus

tre hus

strom domovni

arbol casa

albero casa

arbore casa

arbre maison

Latin: arbor domus
casa
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Language 
Phylogeny

English
German Anglo-Saxon

Norwegian

Czech

Spanish

Italian

Romanian

French
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Tree of Life

From http://tolweb.org/
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Finding a Phylogeny

• Speculate on history based on 
current evidence 

–Not guaranteed to be correct

• Find the “most likely” history

–Parsimony: find the evolutionary tree 
that explains the observations with the 
fewest possible changes
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Measuring Changes

• Natural Languages
–Grammatical Rules

–Lexicon

–Hard to quantify how similar two 
languages are

• Species
–Genomes (only recently)

–Easy to quantify: genome differences 
are measurable
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How Species Evolve

• Point Mutations (Substitution): one 
base is replaced with another

…CAT…

…CTT…

UV Ray With only point 
mutations, easy to 
tell how close two 
genomes are, just 
count the different 
bases
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How Species Evolve 2

• Insertions: one or more bases are 
inserted

• Deletions: one or more bases are 
removed

…GCATG… …GCACATG…

…GCATCATG…
…GCATG…

Caused by copying errors 
(enzymes slipping, etc.)
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Measuring Genome Similarity

• Insertions and Deletions this hard

ACATCATCATCAT

CATCATCATCATC

are more “similar” than
ACATCATCATCAT

| |   |   |  

TCGTTCGCGAAAA
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Sequence Alignment
• Align sequences by inserting gaps:

• Find best alignment inserting gaps 
given: 
–value of matching bases (point 

mutations) = c

–cost of a gap (insertion/deletion) = g

ACATCATCATCAT

||||||||||||   

-CATCATCATCAT

We use c = 10, g = 2: goodness = 12 * c – g = 118
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Brute Force Alignment

To find the best alignment of 
sequences U and V with correct value 
c and gap penalty g:

if U or V is empty

U, V is the best alignment

otherwise,

[ next slide ]
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Brute Force Alignment: Otherwise…

Try three possibilities:

1. First elements of U and V are aligned:

score of best alignments of U[1:] and V[1:] 

+ c if U[0] == V[0]

2. First element of U is aligned with a gap in V

score of best alignments of U[1:] and V + g

3. First element of V is aligned with a gap in U

score of best alignments of U and V[1:] + g

Pick the choice with the highest score

U[1:] means U with the 
first element removed
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Course Structure, 
Expectations, Goals
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Staff
• Me: David Evans (Call me “Dave” or 

“Coach”)
– Office Hours posted on course website

– Always available by email, if I don’t reply in 24 
hours, send again and complain

• Assistant Coaches: Erika Chin, David 
Faulkner, Erin Golub, Sam Guarnieri, 
Katherine Jogerst, and Pitchaya (“Yam”) 
Sitthi-Amorn
– Will lead Monday and Tuesday sections

– Available in Small Hall lab at posted times (only)
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Meetings
• Lectures: 2 per week

–Will include material not in the book

–Most lectures will use slides and notes

• Section meetings: 1 per week
–You must sign up for one of the sections

–Classroom work, group exercises, review, 
quizzes, …

• Staffed time in Small Hall
–Take advantage of help from the ACs and 

your classmates
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Problem Sets

• 8 total, 1-2½ weeks each

• Work on them when and where you 
want (but take advantage of staffed 
lab time in Small Hall)

• Usually will work with partners

• Mix of programming and analysis

• Main way most will learn 

• Turn in on paper at beginning of 
class (first is due Wednesday) 
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My Teaching Philosophy:
Drinking from a Firehose

It may hurt a little bit, and a lot of water will 
go by you, but you won’t go away thirsty!

Don’t be overwhelmed!
You will do fine.
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Expectations: 
Programming Background

• You understand basic programming:

–Can write a program longer than a 
screenful

–Can understand multi-file programs

–Familiar with common control structures, 
procedures, recursive definitions

• You don’t freak out when you are 
expected to learn a new language on 
your own
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Expectations:
Math and Logic Background

• You remember some things from CS202 
(or will learn/re-learn them when you 
need them):
–Arithmetic, logarithms, sets, graphs

–Symbolic logic, implication

–Proof techniques (induction, contradiction)

• The textbook is quite mathematical –
you may need to read things more than 
once
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Course Goals
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Course Goal 1

Learn to write delightful programs. 

correct, readable, elegant, 
economical, efficient, scalable, 

maintainable, secure, 
dependable
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Course Goal 2

Be able to predict how decisions 
about data representation will impact 
properties of an implementation. 

running time, memory use, 
ease of implementation, 

scalability, …
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Course Goal 3

Understand how a program executes 
at levels of abstraction ranging from 
a high-level programming language 
to machine memory. 

We will talk about what this 
means in Monday’s class.
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if U or V is empty
U, V is the best alignment

otherwise,
Try three possibilities:
1. First elements of U and V are aligned:

score of best alignments of U[1:] and V[1:] 
+ c if U[0] == V[0]

2. First element of U is aligned with a gap in V
score of best alignments of U[1:] and V + g

3. First element of V is aligned with a gap in U
score of best alignments of U and V[1:] + g

Pick the choice with the highest score

Is this a “good” solution?
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Algorithm Properties

• Implementable – can be readily 
expressed as a program

• Termination – always finishes

• Correctness – always gives the 
correct answer

• Efficient – uses resources wisely

Note: Chapter 2 of text has a similar list 
but separates “Implementable” into 
Effectiveness and Program Complexity
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Is it Implementable?
def bestAlignment (U, V, c, g):  

if len(U) == 0 or len(V) == 0: return U, V
else:

(U0, V0) = bestAlignment (U[1:], V[1:], c, g)
scoreNoGap = goodnessScore (U0, V0, c, g)
if U[0] == V[0]: scoreNoGap += c        

# try inserting a gap in U (no match for V[0])
(U1, V1) = bestAlignment (U, V[1:], c, g)
scoreGapU = goodnessScore (U1, V1, c, g) - g      
# try inserting a gap in V (no match for U[0])
(U2, V2) = bestAlignment (U[1:], V, c, g)
scoreGapV = goodnessScore (U2, V2, c, g) - g
…
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Is it Implementable?
def bestAlignment (U, V, c, g):  

if len(U) == 0 or len(V) == 0: return U, V

else:
(U0, V0) = bestAlignment (U[1:], V[1:], c, g)

scoreNoGap = goodnessScore (U0, V0, c, g)
if U[0] == V[0]: scoreNoGap += c        

# try inserting a gap in U (no match for V[0])
(U1, V1) = bestAlignment (U, V[1:], c, g)

scoreGapU = goodnessScore (U1, V1, c, g) - g      
# try inserting a gap in V (no match for U[0])

(U2, V2) = bestAlignment (U[1:], V, c, g)
scoreGapV = goodnessScore (U2, V2, c, g) - g

if scoreNoGap >= scoreGapU and scoreNoGap >= scoreGapV:
return U[0] + U0, V[0] + V0

elif scoreGapU >= scoreGapV:
return GAP + U1, V[0] + V1

else: return U[0] + U2, GAP + V2
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Algorithm Properties

�Implementable – can be readily 
expressed as a program

• Termination – always finishes

• Correctness – always gives the 
correct answer

• Efficient – uses resources wisely



6

32UVa CS216 Spring 2006 - Lecture 1: Analyzing Algorithms

Termination?
if U or V is empty
U, V is the best alignment

otherwise,
Try three possibilities:
1. First elements of U and V are aligned:

score of best alignments of U[1:] and V[1:] 
+ c if U[0] == V[0]

2. First element of U is aligned with a gap in V
score of best alignments of U[1:] and V + g

3. First element of V is aligned with a gap in U
score of best alignments of U and V[1:] + g

Pick the choice with the highest score
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if U or V is empty
U, V is the best alignment

otherwise,
Try three possibilities:
1. First elements of U and V are aligned:

score of best alignments of U[1:] and V[1:]
+ c if U[0] == V[0]

2. First element of U is aligned with a gap in V
score of best alignments of U[1:] and V + g

3. First element of V is aligned with a gap in U
score of best alignments of U and V[1:] + g

Pick the choice with the highest score

Every attempt, at least one element is
removed (and none added). Initial length
is finite, so must terminate.
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Algorithm Properties

�Implementable – can be readily 
expressed as a program

�Termination – always finishes

• Correctness – always gives the 
correct answer
–Very informally: it tries all possibilities 

and picks the best one

• Efficient – uses resources wisely
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Efficiency?

• What resources do we care about?

–Programmer Time

–Running Time

–Space Use
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Measuring Resource Use

• Space
–Fundamental unit: bit

• Running Time
–No fundamental unit

• Number of steps?

• How much can you do in one step?

• How long does a step take?

• How does it scale with the size of the 
input Answering for this algorithm 

is a PS1 question
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Charge
• Registration Survey

–Linked from course web site

–Submit by Friday 5pm

• Text: Read chapters 1-3

• PS1: Out now, due in 1 week

–Start now – the section time is not for 
doing PSs

• Monday: Levels of Abstraction, Order 
Notation


