
1

CS216: Program and Data Representation

University of Virginia Computer Science
Spring 2006 David Evans

Lecture 1:
Introduction

2UVa CS216 Spring 2006 - Lecture 1: Analyzing Algorithms

Menu

• Motivating Problem

• Course Structure, Expectations, Goals

• Analyzing Algorithms

3UVa CS216 Spring 2006 - Lecture 1: Analyzing Algorithms

Phylogeny

from http://www.shef.ac.uk/language/quantling/

4UVa CS216 Spring 2006 - Lecture 1: Analyzing Algorithms

Language
Phylogeny

tree house
baum haus treow hus

tre hus

strom domovni

arbol casa

albero casa

arbore casa

arbre maison

Latin: arbor domus
casa

5UVa CS216 Spring 2006 - Lecture 1: Analyzing Algorithms

Language
Phylogeny

English
German Anglo-Saxon

Norwegian

Czech

Spanish

Italian

Romanian

French

6UVa CS216 Spring 2006 - Lecture 1: Analyzing Algorithms

Tree of Life

From http://tolweb.org/

2

7UVa CS216 Spring 2006 - Lecture 1: Analyzing Algorithms

Finding a Phylogeny

• Speculate on history based on
current evidence

–Not guaranteed to be correct

• Find the “most likely” history

–Parsimony: find the evolutionary tree
that explains the observations with the
fewest possible changes

8UVa CS216 Spring 2006 - Lecture 1: Analyzing Algorithms

Measuring Changes

• Natural Languages
–Grammatical Rules

–Lexicon

–Hard to quantify how similar two
languages are

• Species
–Genomes (only recently)

–Easy to quantify: genome differences
are measurable

9UVa CS216 Spring 2006 - Lecture 1: Analyzing Algorithms

How Species Evolve

• Point Mutations (Substitution): one
base is replaced with another

…CAT…

…CTT…

UV Ray With only point
mutations, easy to
tell how close two
genomes are, just
count the different
bases

10UVa CS216 Spring 2006 - Lecture 1: Analyzing Algorithms

How Species Evolve 2

• Insertions: one or more bases are
inserted

• Deletions: one or more bases are
removed

…GCATG… …GCACATG…

…GCATCATG…
…GCATG…

Caused by copying errors
(enzymes slipping, etc.)

11UVa CS216 Spring 2006 - Lecture 1: Analyzing Algorithms

Measuring Genome Similarity

• Insertions and Deletions this hard

ACATCATCATCAT

CATCATCATCATC

are more “similar” than
ACATCATCATCAT

| | | |

TCGTTCGCGAAAA

12UVa CS216 Spring 2006 - Lecture 1: Analyzing Algorithms

Sequence Alignment
• Align sequences by inserting gaps:

• Find best alignment inserting gaps
given:
–value of matching bases (point

mutations) = c

–cost of a gap (insertion/deletion) = g

ACATCATCATCAT

||||||||||||

-CATCATCATCAT

We use c = 10, g = 2: goodness = 12 * c – g = 118

3

13UVa CS216 Spring 2006 - Lecture 1: Analyzing Algorithms

Brute Force Alignment

To find the best alignment of
sequences U and V with correct value
c and gap penalty g:

if U or V is empty

U, V is the best alignment

otherwise,

[next slide]

14UVa CS216 Spring 2006 - Lecture 1: Analyzing Algorithms

Brute Force Alignment: Otherwise…

Try three possibilities:

1. First elements of U and V are aligned:

score of best alignments of U[1:] and V[1:]

+ c if U[0] == V[0]

2. First element of U is aligned with a gap in V

score of best alignments of U[1:] and V + g

3. First element of V is aligned with a gap in U

score of best alignments of U and V[1:] + g

Pick the choice with the highest score

U[1:] means U with the
first element removed

16UVa CS216 Spring 2006 - Lecture 1: Analyzing Algorithms

Course Structure,
Expectations, Goals

17UVa CS216 Spring 2006 - Lecture 1: Analyzing Algorithms

Staff
• Me: David Evans (Call me “Dave” or

“Coach”)
– Office Hours posted on course website

– Always available by email, if I don’t reply in 24
hours, send again and complain

• Assistant Coaches: Erika Chin, David
Faulkner, Erin Golub, Sam Guarnieri,
Katherine Jogerst, and Pitchaya (“Yam”)
Sitthi-Amorn
– Will lead Monday and Tuesday sections

– Available in Small Hall lab at posted times (only)

18UVa CS216 Spring 2006 - Lecture 1: Analyzing Algorithms

Meetings
• Lectures: 2 per week

–Will include material not in the book

–Most lectures will use slides and notes

• Section meetings: 1 per week
–You must sign up for one of the sections

–Classroom work, group exercises, review,
quizzes, …

• Staffed time in Small Hall
–Take advantage of help from the ACs and

your classmates

19UVa CS216 Spring 2006 - Lecture 1: Analyzing Algorithms

Problem Sets

• 8 total, 1-2½ weeks each

• Work on them when and where you
want (but take advantage of staffed
lab time in Small Hall)

• Usually will work with partners

• Mix of programming and analysis

• Main way most will learn

• Turn in on paper at beginning of
class (first is due Wednesday)

4

20UVa CS216 Spring 2006 - Lecture 1: Analyzing Algorithms

My Teaching Philosophy:
Drinking from a Firehose

It may hurt a little bit, and a lot of water will
go by you, but you won’t go away thirsty!

Don’t be overwhelmed!
You will do fine.

21UVa CS216 Spring 2006 - Lecture 1: Analyzing Algorithms

Expectations:
Programming Background

• You understand basic programming:

–Can write a program longer than a
screenful

–Can understand multi-file programs

–Familiar with common control structures,
procedures, recursive definitions

• You don’t freak out when you are
expected to learn a new language on
your own

22UVa CS216 Spring 2006 - Lecture 1: Analyzing Algorithms

Expectations:
Math and Logic Background

• You remember some things from CS202
(or will learn/re-learn them when you
need them):
–Arithmetic, logarithms, sets, graphs

–Symbolic logic, implication

–Proof techniques (induction, contradiction)

• The textbook is quite mathematical –
you may need to read things more than
once

23UVa CS216 Spring 2006 - Lecture 1: Analyzing Algorithms

Course Goals

24UVa CS216 Spring 2006 - Lecture 1: Analyzing Algorithms

Course Goal 1

Learn to write delightful programs.

correct, readable, elegant,
economical, efficient, scalable,

maintainable, secure,
dependable

25UVa CS216 Spring 2006 - Lecture 1: Analyzing Algorithms

Course Goal 2

Be able to predict how decisions
about data representation will impact
properties of an implementation.

running time, memory use,
ease of implementation,

scalability, …

5

26UVa CS216 Spring 2006 - Lecture 1: Analyzing Algorithms

Course Goal 3

Understand how a program executes
at levels of abstraction ranging from
a high-level programming language
to machine memory.

We will talk about what this
means in Monday’s class.

27UVa CS216 Spring 2006 - Lecture 1: Analyzing Algorithms

if U or V is empty
U, V is the best alignment

otherwise,
Try three possibilities:
1. First elements of U and V are aligned:

score of best alignments of U[1:] and V[1:]
+ c if U[0] == V[0]

2. First element of U is aligned with a gap in V
score of best alignments of U[1:] and V + g

3. First element of V is aligned with a gap in U
score of best alignments of U and V[1:] + g

Pick the choice with the highest score

Is this a “good” solution?

28UVa CS216 Spring 2006 - Lecture 1: Analyzing Algorithms

Algorithm Properties

• Implementable – can be readily
expressed as a program

• Termination – always finishes

• Correctness – always gives the
correct answer

• Efficient – uses resources wisely

Note: Chapter 2 of text has a similar list
but separates “Implementable” into
Effectiveness and Program Complexity

29UVa CS216 Spring 2006 - Lecture 1: Analyzing Algorithms

Is it Implementable?
def bestAlignment (U, V, c, g):

if len(U) == 0 or len(V) == 0: return U, V
else:

(U0, V0) = bestAlignment (U[1:], V[1:], c, g)
scoreNoGap = goodnessScore (U0, V0, c, g)
if U[0] == V[0]: scoreNoGap += c

try inserting a gap in U (no match for V[0])
(U1, V1) = bestAlignment (U, V[1:], c, g)
scoreGapU = goodnessScore (U1, V1, c, g) - g
try inserting a gap in V (no match for U[0])
(U2, V2) = bestAlignment (U[1:], V, c, g)
scoreGapV = goodnessScore (U2, V2, c, g) - g
…

30UVa CS216 Spring 2006 - Lecture 1: Analyzing Algorithms

Is it Implementable?
def bestAlignment (U, V, c, g):

if len(U) == 0 or len(V) == 0: return U, V

else:
(U0, V0) = bestAlignment (U[1:], V[1:], c, g)

scoreNoGap = goodnessScore (U0, V0, c, g)
if U[0] == V[0]: scoreNoGap += c

try inserting a gap in U (no match for V[0])
(U1, V1) = bestAlignment (U, V[1:], c, g)

scoreGapU = goodnessScore (U1, V1, c, g) - g
try inserting a gap in V (no match for U[0])

(U2, V2) = bestAlignment (U[1:], V, c, g)
scoreGapV = goodnessScore (U2, V2, c, g) - g

if scoreNoGap >= scoreGapU and scoreNoGap >= scoreGapV:
return U[0] + U0, V[0] + V0

elif scoreGapU >= scoreGapV:
return GAP + U1, V[0] + V1

else: return U[0] + U2, GAP + V2

31UVa CS216 Spring 2006 - Lecture 1: Analyzing Algorithms

Algorithm Properties

�Implementable – can be readily
expressed as a program

• Termination – always finishes

• Correctness – always gives the
correct answer

• Efficient – uses resources wisely

6

32UVa CS216 Spring 2006 - Lecture 1: Analyzing Algorithms

Termination?
if U or V is empty
U, V is the best alignment

otherwise,
Try three possibilities:
1. First elements of U and V are aligned:

score of best alignments of U[1:] and V[1:]
+ c if U[0] == V[0]

2. First element of U is aligned with a gap in V
score of best alignments of U[1:] and V + g

3. First element of V is aligned with a gap in U
score of best alignments of U and V[1:] + g

Pick the choice with the highest score

33UVa CS216 Spring 2006 - Lecture 1: Analyzing Algorithms

if U or V is empty
U, V is the best alignment

otherwise,
Try three possibilities:
1. First elements of U and V are aligned:

score of best alignments of U[1:] and V[1:]
+ c if U[0] == V[0]

2. First element of U is aligned with a gap in V
score of best alignments of U[1:] and V + g

3. First element of V is aligned with a gap in U
score of best alignments of U and V[1:] + g

Pick the choice with the highest score

Every attempt, at least one element is
removed (and none added). Initial length
is finite, so must terminate.

34UVa CS216 Spring 2006 - Lecture 1: Analyzing Algorithms

Algorithm Properties

�Implementable – can be readily
expressed as a program

�Termination – always finishes

• Correctness – always gives the
correct answer
–Very informally: it tries all possibilities

and picks the best one

• Efficient – uses resources wisely

35UVa CS216 Spring 2006 - Lecture 1: Analyzing Algorithms

Efficiency?

• What resources do we care about?

–Programmer Time

–Running Time

–Space Use

36UVa CS216 Spring 2006 - Lecture 1: Analyzing Algorithms

Measuring Resource Use

• Space
–Fundamental unit: bit

• Running Time
–No fundamental unit

• Number of steps?

• How much can you do in one step?

• How long does a step take?

• How does it scale with the size of the
input Answering for this algorithm

is a PS1 question

37UVa CS216 Spring 2006 - Lecture 1: Analyzing Algorithms

Charge
• Registration Survey

–Linked from course web site

–Submit by Friday 5pm

• Text: Read chapters 1-3

• PS1: Out now, due in 1 week

–Start now – the section time is not for
doing PSs

• Monday: Levels of Abstraction, Order
Notation

