
1

CS216: Program and Data Representation

University of Virginia Computer Science
Spring 2006 David Evans

Lecture 11:
Managing
Memory

http://www.cs.virginia.edu/cs216

http://www.informatics.bangor.ac.uk/~emlynl/photos/lab2/chips1.jpg

2UVa CS216 Spring 2006 - Lecture 11: Managing Memory

Levels of Abstraction

Python a “hello”

C a: 0x80496f8

0x80496f8

0x80496f9

h

e

l

l

o

\0

0x80496fa

0x80496fb

0x80496fc

0x80496fd

Digital
Abstraction

011010000110010101101100

011011000110111100000000

3UVa CS216 Spring 2006 - Lecture 11: Managing Memory

Physical Memory

Vacuum
Tube

Capacitor
(store charge)
DRAM

Magnetic
Core

4UVa CS216 Spring 2006 - Lecture 11: Managing Memory

Memory in C

Stack

• Managed by
compiler
automatically

• Lifetime is
determined by
program scope

– Cannot outlive
procedure return

Heap

• Managed by
programmer
explicitly

• Lifetime is
controlled by
programmer

– Lives until freed by
program

5UVa CS216 Spring 2006 - Lecture 11: Managing Memory

Static/Dynamic Allocation

• Static: space required is known
before program starts (at “compile
time”)

• Dynamic: space required is not
known before the program starts

–Can be placed on either the stack or the
heap

6UVa CS216 Spring 2006 - Lecture 11: Managing Memory

malloc

void *malloc (size_t size)

Returns an untyped pointer
(can point to anything)

Size in bytes

Malloc returns an address that is the location
of at least size bytes of previously unused

memory, and reserves that space.
Or, returns null is there isn’t enough space.

2

7UVa CS216 Spring 2006 - Lecture 11: Managing Memory

Memory Allocators

mallocUnknown

Known

UnlimitedScoped

Lifetime

alloca – like malloc, but on the
stack, not heap (rarely used)

S
iz
e

alloca

local variable
declarations

global, static

variable
declarations

8UVa CS216 Spring 2006 - Lecture 11: Managing Memory

Malloc Example

char *s = (char *) malloc (sizeof(*s) * n)

sizeof operator
Takes a type or
expression,
evaluates to the
number of bytes
to store it

type cast
malloc returns
void *, cast tells
compiler we are
using it as a
char *

9UVa CS216 Spring 2006 - Lecture 11: Managing Memory

String Concatenation
#include <stdlib.h>

#include <string.h>
#include <stdio.h>

int main (int argc, char **argv)
{

int i = 0;
char *result = (char *) malloc (sizeof (*result));

*result = '\0';

while (i < argc)
{
char *s = (char *) malloc (sizeof (*s)

* (strlen (result) + strlen (argv[i]) + 1));
strcpy (s, result);

strcat (s, argv[i]);
result = s;
i++;

}
printf ("Concatenation: %s\n", result);

return 0;
}

Some serious
problems with this,
we’ll discuss soon…

10UVa CS216 Spring 2006 - Lecture 11: Managing Memory

Concating Strings

char *s = (char *)
malloc (sizeof (*s)

* (strlen (result)
+ strlen (argv[i]) + 1));

strcpy (s, result);
strcat (s, argv[i]);

Why is the parameter to
malloc what it is?

11UVa CS216 Spring 2006 - Lecture 11: Managing Memory

string functions

int strlen(char *s) – returns number of chars in s (not counting

null terminator)

char *strcpy(char *s1, const char *s2) – Copies the string

pointed to by s2 (including the terminating null byte) into the

space pointed to by s1. If copying takes place between objects
that overlap, the behavior is undefined.

char *strcat(char *s1, const char * s2) - appends a copy of the

string pointed to by s2 (including the terminating null byte) to

the end of the string pointed to by s1. The initial byte of s2
overwrites the null byte at the end of s1. If copying takes place

between objects that overlap, the behavior is undefined.

12UVa CS216 Spring 2006 - Lecture 11: Managing Memory

Concating Strings

char *s = (char *)
malloc (sizeof (*s)

* (strlen (result)
+ strlen (argv[i]) + 1));

strcpy (s, result);
strcat (s, argv[i]);

We need enough space for s to hold
all the chars in result, all the chars in
argv[i], and the null terminator.

3

13UVa CS216 Spring 2006 - Lecture 11: Managing Memory

Memory Lifetimes
#include <stdlib.h>

#include <string.h>
#include <stdio.h>

int main (int argc, char **argv)
{

int i = 0;
char *result = (char *) malloc (sizeof (*result));

*result = '\0';

while (i < argc)
{
char *s = (char *) malloc (sizeof (*s)

* (strlen (result) + strlen (argv[i]) + 1));
strcpy (s, result);

strcat (s, argv[i]);
result = s;
i++;

}
printf ("Concatenation: %s\n", result);

return 0;
}

When is space
allocated by malloc
reclaimed?

14UVa CS216 Spring 2006 - Lecture 11: Managing Memory

Reclaiming Storage

• Storage allocated by malloc is
reserved forever

• Give it back by passing it to free

void free(void *ptr);

The free() function shall cause the space pointed to by ptr to be
deallocated; that is, made available for further allocation. If ptr is

a null pointer, no action shall occur. Otherwise, if the argument
does not match a pointer earlier returned by malloc(), … (or a

few other allocators) function, or if the space has been

deallocated by a call to free(), the behavior is undefined.

http://www.opengroup.org/onlinepubs/009695399/functions/free.html

15UVa CS216 Spring 2006 - Lecture 11: Managing Memory

Plugging Memory Leaks
#include <stdlib.h>
#include <string.h>

#include <stdio.h>

int main (int argc, char **argv)
{

int i = 0;
char *result = (char *) malloc (sizeof (*result));

*result = '\0';

while (i < argc)

{
char *s = (char *) malloc (sizeof (*s)

* (strlen (result) + strlen (argv[i]) + 1));
strcpy (s, result);

strcat (s, argv[i]);
result = s;
i++;

}
printf ("Concatenation: %s\n", result);

return 0;
}

free (result);

16UVa CS216 Spring 2006 - Lecture 11: Managing Memory

Memory Leak

• There is no reference to allocated
storage

–It can never be reached

–It can never be reclaimed

• Losing references

–Variable goes out of scope

–Variable reassigned

17UVa CS216 Spring 2006 - Lecture 11: Managing Memory

References
char *result = (char *) malloc (sizeof (*result));
…
while (i < argc)
{
char *s = (char *) malloc (…);
strcpy (s, result);
strcat (s, argv[i]);
result = s;
i++;

} scope of s is closed – should we
free(s) first?

No! result now references same storage

18UVa CS216 Spring 2006 - Lecture 11: Managing Memory

References
char *result = (char *) malloc (sizeof (*result));
…
while (i < argc)
{
char *s = (char *) malloc (…);
strcpy (s, result);
strcat (s, argv[i]);
result = s;
i++;

} after this assignment,
no way to reach storage
result previously pointed to

4

19UVa CS216 Spring 2006 - Lecture 11: Managing Memory

C vs. Python
#include <stdlib.h>
#include <string.h>

#include <stdio.h>

int main (int argc, char **argv)
{

int i = 0;
char *result = (char *) malloc (sizeof (*result));
*result = '\0';

while (i < argc)

{
char *s = (char *) malloc (sizeof (*s)

* (strlen (result) + strlen (argv[i]) + 1));
strcpy (s, result);
free (result);

strcat (s, argv[i]);
result = s;

i++;
}

printf ("Concatenation: %s\n", result);
return 0;

}

import sys

res = ""
for arg in sys.argv:

res += arg
print res

20UVa CS216 Spring 2006 - Lecture 11: Managing Memory

C vs. Python
int main (int argc, char **argv)
{

char result[6] = "hello";

while (strlen(result) < 1000000000:)
{

char *s = (char *) malloc (sizeof (*s) * (2 * strlen (result) + 1));
strcpy (s, result);
strcat (s, result);

free (result);
result = s;

}
return 0;

}

res = "hello"
while len(res) < 1000000000:

res += res

> time python concat.py
4.46u 11.70s 9:40.04

21UVa CS216 Spring 2006 - Lecture 11: Managing Memory

Python’s List Implementation

http://svn.python.org/view/python/
trunk/Objects/listobject.c

22UVa CS216 Spring 2006 - Lecture 11: Managing Memory

app1
static int
app1(PyListObject *self, PyObject *v)

{
Py_ssize_t n = PyList_GET_SIZE(self);

assert (v != NULL);
if (n == INT_MAX) {

PyErr_SetString(PyExc_OverflowError,
"cannot add more objects to list");

return -1;
}

if (list_resize(self, n+1) == -1)

return -1;

Py_INCREF(v);
PyList_SET_ITEM(self, n, v);

return 0;
}

23UVa CS216 Spring 2006 - Lecture 11: Managing Memory

list_resize
static int

list_resize(PyListObject *self, Py_ssize_t newsize)
{

PyObject **items;
size_t new_allocated;

Py_ssize_t allocated = self->allocated;

/* Bypass realloc() when a previous overallocation is large enough … */

if (allocated >= newsize && newsize >= (allocated >> 1)) {
assert(self->ob_item != NULL || newsize == 0);

self->ob_size = newsize;
return 0;

}

…

expr1 >> expr2
Value is value of expr1
with bits moved right
value of expr2 times

010000 =>
001000

x >> 1 is similar to (x / 2)

24UVa CS216 Spring 2006 - Lecture 11: Managing Memory

…

/* This over-allocates proportional to the list size, making room for additional
* growth. The over-allocation is mild, but is enough to give linear-time

* amortized behavior over a long sequence of appends() in the presence of a
* poorly-performing system realloc().
* The growth pattern is: 0, 4, 8, 16, 25, 35, 46, 58, 72, 88, ...

*/
new_allocated = (newsize >> 3) + (newsize < 9 ? 3 : 6) + newsize;

if (newsize == 0)
new_allocated = 0;

items = self->ob_item;
if (new_allocated <= ((~(size_t)0) / sizeof(PyObject *)))
PyMem_RESIZE(items, PyObject *, new_allocated);

else
items = NULL;

if (items == NULL) {
PyErr_NoMemory();

return -1;
}
self->ob_item = items;

self->ob_size = newsize;
self->allocated = new_allocated;

return 0;

5

25UVa CS216 Spring 2006 - Lecture 11: Managing Memory

PyMem_Resize
#define PyMem_RESIZE(p, type, n) \

((p) = (type *) PyMem_REALLOC((p), (n) * sizeof(type)))

/* PyMem_MALLOC(0) means malloc(1). Some systems would
return NULL for malloc(0), which would be treated as an error.
Some platforms would return a pointer with no memory behind
it, which would break pymalloc. To solve these problems,
allocate an extra byte. */
#define PyMem_MALLOC(n) malloc((n) ? (n) : 1)
#define PyMem_REALLOC(p, n) realloc((p), (n) ? (n) : 1)

PyMem_RESIZE(items, PyObject *, new_allocated)

=>

items = (PyObject *)
realloc (items, new_allocated * sizeof(PyObject *))

26UVa CS216 Spring 2006 - Lecture 11: Managing Memory

realloc
void *realloc(void *ptr, size_t size);
The realloc() function changes the size of the memory
object pointed to by ptr to the size specified by size.
The contents of the object will remain unchanged up
to the lesser of the new and old sizes. If the new size
of the memory object would require movement of the
object, the space for the previous instantiation of the
object is freed. If the new size is larger, the contents
of the newly allocated portion of the object are
unspecified. If size is 0 and ptr is not a null pointer,
the object pointed to is freed. If the space cannot be
allocated, the object remains unchanged.

http://www.opengroup.org/onlinepubs/007908799/xsh/realloc.html

27UVa CS216 Spring 2006 - Lecture 11: Managing Memory

realloc is risky
int main (int argc, char **argv)
{

char *s = (char *) malloc (sizeof(*s) * 6);
char *t;

t = s;
strcpy (s, "hello");

printf ("s = %s [%p] [%p]\n" , s, s, t);
s = (char *) realloc (s, sizeof(*s) * 7);

printf ("s = %s [%p] [%p]\n" , s, s, t);
strcpy (s, "cheers");
printf ("s = %s, t = %s\n", s, t);

}

s = hello [20a80] [20a80]
s = hello [20a80] [20a80]
s = cheers, t = cheers

20

s = hello [20a80] [20a80]
s = hello [20e88] [20a80]
s = cheers, t = hello

28UVa CS216 Spring 2006 - Lecture 11: Managing Memory

realloc

void *realloc(void *ptr, size_t size);
The realloc() function changes the size of the memory
object pointed to by ptr to the size specified by size.
The contents of the object will remain unchanged up
to the lesser of the new and old sizes. If the new
size of the memory object would require
movement of the object, the space for the
previous instantiation of the object is freed. If
the new size is larger, …

After a realloc, any use of the original
location of ptr has undefined behavior!

29UVa CS216 Spring 2006 - Lecture 11: Managing Memory

Running time of realloc

• Time to reserve new space: O(1)

• Time to copy old data into new
space:
– O(n) where n is the size of the old
data

So how can Python’s list append be O(1)?

30UVa CS216 Spring 2006 - Lecture 11: Managing Memory

static int

list_resize(PyListObject *self, Py_ssize_t newsize)
{

PyObject **items;
size_t new_allocated;
Py_ssize_t allocated = self->allocated;

…
/* This over-allocates proportional to the list size, making room for additional

* growth. The over-allocation is mild, but is enough to give linear-time
* amortized behavior over a long sequence of appends() in the presence of a

* poorly-performing system realloc(). The growth pattern is: 0, 4, 8, 16, 25, …*/
new_allocated = (newsize >> 3) + (newsize < 9 ? 3 : 6) + newsize;
if (newsize == 0) new_allocated = 0;

items = self->ob_item;
if (new_allocated <= ((~(size_t)0) / sizeof(PyObject *)))

PyMem_RESIZE(items, PyObject *, new_allocated);
else

items = NULL;
if (items == NULL) { PyErr_NoMemory(); return -1; }
self->ob_item = items;

self->ob_size = newsize;
self->allocated = new_allocated;

return 0;

6

31UVa CS216 Spring 2006 - Lecture 11: Managing Memory

When to grow

• Approximately: newsize / 8 + newsize

• So, we have to do O(n) work every
approximately every n/8 calls to append

• Amortized: O(n / (n / 8)) = O(1)

• But…some calls will be more expensive than
others

new_allocated = (newsize >> 3)
+ (newsize < 9 ? 3 : 6) + newsize;

32UVa CS216 Spring 2006 - Lecture 11: Managing Memory

Charge

• Section: practice with pointers

• Reading: Chapter 10

• Wednesday:

–Reference Counting

–Garbage Collection

–PS4 out

