
1

CS216: Program and Data Representation

University of Virginia Computer Science
Spring 2006 David Evans

Lecture 15:
Compression

http://www.cs.virginia.edu/cs216 2UVa CS216 Spring 2006 - Lecture 15: Numbers

Menu

• Garbage Collection Puzzle

• Encoding: Huffman, LZW, GIF

• Representing Numbers

3UVa CS216 Spring 2006 - Lecture 15: Numbers

Fighting Finalizers

• finalize() – method in java.lang.Object

–Class can override

– It is called when GC determines the
object is garbage (before collecting it)

Problem due to Paul Tyma, Google

a bxx = NULL;

a.finalize ();
b.finalize ();

GC

4UVa CS216 Spring 2006 - Lecture 15: Numbers

Finality?

a bx

class A {
B p;

}

class B {
A r;
void finalize() {
r.p = this;

}
a = new A();
a.p = new B();
a.p.r = a;
x = a;
a.p = NULL;
GC – b.finalize ()
a.p.toString () Problem due to Paul Tyma, Google

5UVa CS216 Spring 2006 - Lecture 15: Numbers

Encoding

• Huffman Encoding

–We proved there is no better encoding
that is:

• Prefix encoding (can divide coded message
into symbols without looking ahead)

•One-to-one mapping (Symbol→Bits)

• Fixed mapping

• Can we do better without these
constraints?

6UVa CS216 Spring 2006 - Lecture 15: Numbers

Lempel-Ziv-Wench (LZW)

• Terry Wench refined the L-Z scheme

• Fixed-length (typically 12-bits)
codewords

• Dictionary maps each codeword to
text

• Greedy scheme for building
dictionary

2

7UVa CS216 Spring 2006 - Lecture 15: Numbers

LZW Encoding Algorithm
def LZWEncode (s):
w = “”;
res = “”;
dictionary.initialize() # code for each alphabet symbol
foreach k in s:
if dictionary.contains (w + k):
w = w + k;

else
need to do something if dictionary is full
dictionary.append (w + k)
res = res + dictionary.find (w)
w = k;

w is already

in dictionary:
no need to send

dictionary to decode!

8UVa CS216 Spring 2006 - Lecture 15: Numbers

Compression Bake-off
Declaration of Independence

Original 8586

Huffman (PS4) 5123 (60%)

Compress (LZW) 4441 (52%)

Gzip (not LZW) 3752 (44%)

Random Characters

Original 10000

Huffman (PS4) 9517

Compress (LZW) 10000 (“file unchanged”)

Gzip (not LZW) 8800

This is quite surprising!

9UVa CS216 Spring 2006 - Lecture 15: Numbers

GIF

• Graphics Interchange Format
developed by Compuserve (1987)

• Algorithm:

–Divide image into 8x8 blocks

–Find optimal Huffman encoding for
those blocks

–Encode result using LZW

How is GIF different from JPEG?

10UVa CS216 Spring 2006 - Lecture 15: Numbers

Lossy/Lossless Compression

• Lossless Compression:

–uncompress (compress (S)) = S

• Lossy Compression:

–uncompress (compress (S)) similar to S

• For images, sound, video: lossy
compression is usually okay

• For computer programs, declarations
of independence, email: only lossless
compression will do!

11UVa CS216 Spring 2006 - Lecture 15: Numbers

What’s wrong with GIF?

• 1978: LZ patented by Sperry

• 1984: (June) Welch’s article on LZW

• 1984: (July) Unix compress implemented using LZW

• 1987: Compuserve develops GIF (Graphics Interchange

Format) image format, used LZW but didn’t know it was

patented

• GIF becomes popular

• 1994: Unisys/Compuserve decide that developers who

implement LZW (including in GIF) will have to pay a
licensing fee

• 2003: LZW patent expired

– Divide image into 8x8 blocks

– Find optimal Huffman encoding for those blocks

– Encode result using LZW

PNG (“PNG’s Not GIF”)

12UVa CS216 Spring 2006 - Lecture 15: Numbers

Representing Numbers

3

13UVa CS216 Spring 2006 - Lecture 15: Numbers

Binary Representation

Value = Σ b
i
* 2i

b
n-1

b
n-2

b
n-3

...b
2
b

1
b

0

i = 0..n-1

What should n be?

0 + 0 = 0
0 + 1 = 1
1 + 0 = 1
1 + 1 = 0 carry 1

14UVa CS216 Spring 2006 - Lecture 15: Numbers

What is n?
• Java:

–byte, char = 8 bits

–short = 16 bits

– int = 32 bits

– long = 64 bits

• C: implementation-defined

– int: can hold between 0 and UINT_MAX

• UINX_MAX must be at least 65535

• Python?

n >= 16, typical current machines n = 32

n is not fixed (numbers work)

15UVa CS216 Spring 2006 - Lecture 15: Numbers

Charge

• Is Java a “high-level language”?

–Only if you never use numbers bigger
than 231. If you have to worry about
how numbers are represented, you are
doing low-level programming

• PS4 Due Wednesday

