
1

CS216: Program and Data Representation

University of Virginia Computer Science
Spring 2006 David Evans

Lecture 16:
Numbers

http://www.cs.virginia.edu/cs216 2UVa CS216 Spring 2006 - Lecture 16: Numbers

ENIAC
• Started 1943 –
early electronic
programmable
computer

• Operational in 1946

• Computed ballistics
tables

• 17,468 vacuum
tubes

• 150 kW of power

Earlier Computers:
Z3 (Konrad Zuse) 1941
Colossus 1943

3UVa CS216 Spring 2006 - Lecture 16: Numbers

Directions for Getting 6
1. Choose any regular accumulator (ie. Accumulator #9).
2. Direct the Initiating Pulse to terminal 5i.
3. The initiating pulse is produced by the initiating unit's Io terminal each

time the Eniac is started. This terminal is usually, by default, plugged into
Program Line 1-1 (described later). Simply connect a program cable from
Program Line 1-1 to terminal 5i on this Accumulator.

4. Set the Repeat Switch for Program Control 5 to 6.
5. Set the Operation Switch for Program Control 5 to ADD.
6. Set the Clear-Correct switch to C.
7. Turn on and clear the Eniac.
8. Normally, when the Eniac is first started, a clearing process is begun. If

the Eniac had been previously started, or if there are random neons
illuminated in the accumulators, the ``Initial Clear'' button of the
Initiating device can be pressed.

9. Press the ``Initiating Pulse Switch'' that is located on the Initiating
device.

10.Stand back.

4UVa CS216 Spring 2006 - Lecture 16: Numbers

ENIAC number representation

• Decimal system
–Ring of 36 vacuum tubes to store one
digits (10 flip-flops to store 0-9)

–Designed to emulate mechanical adding
machine electronically

–20 accumulators (~registers), each
stores 10-digits

• 5,000 cycles per second
–Perform addition/subtraction between 2
accumulators each cycle

5UVa CS216 Spring 2006 - Lecture 16: Numbers

Binary Number Representations

• First presented by Gottfried Leibniz,
1705 (“Explication de l’Arithmétique
Binaire”)

• George Boole (“Boolean” logic), 1854

• Claude Shannon’s 1937 Master’s thesis:
implemented Boolean algebra with
switches and relays

• Used by Atanasoff-Berry Computer,
Colossus and Z3

See http://www.cs.virginia.edu/evans/academic-roots.html for Leibniz’s
advising relationship to me (academic great14-grandadvisor!)

6UVa CS216 Spring 2006 - Lecture 16: Numbers

Binary Representation

Value = Σ bi * 2i

b
n-1

b
n-2

b
n-3

...b
2
b

1
b

0

i = 0..n-1

What should n be?

0 + 0 = 0
0 + 1 = 1
1 + 0 = 1
1 + 1 = 0 carry 1

2

7UVa CS216 Spring 2006 - Lecture 16: Numbers

What is n?
• Java:

–byte, char = 8 bits

–short = 16 bits

– int = 32 bits

– long = 64 bits

• C: implementation-defined

– int: can hold between 0 and UINT_MAX
• UINX_MAX must be at least 65535

• Python?

n >= 16, typical current machines n = 32

n is not fixed (numbers work)

8UVa CS216 Spring 2006 - Lecture 16: Numbers

The Great Debate

• “Big Endian”: most significant first
(lowest address)

1000 0000 0000 0000 = 215 = 32768

• “Little Endian”: most significant last
(highest address)

1000 0000 0000 0000 = 20 = 1

Which is better?

9UVa CS216 Spring 2006 - Lecture 16: Numbers

Endianness
• Its a “religious” argument: names taken from
Big-Endians and Little-Endians in Gulliver’s
Travels who argued over which end of an egg
to crack

• Different orderings problematic
– Consider what << means in C

• big endian ~ divide by 2

• little endian ~ multiply by 2

• Some architectures support both (“bi-
endian”): PowerPC, DEC Alpha, IA/64

• Most Internet standards: big-endian

10UVa CS216 Spring 2006 - Lecture 16: Numbers

Other Kinds of Numbers

• Positive and Negative Integers

–Sign Bit, Ones Complement, Twos
Complement

–Section this week

• Real numbers

11UVa CS216 Spring 2006 - Lecture 16: Numbers

Real Numbers

1/3

0.1

3.333333333333… * 10-1

π

√2

12UVa CS216 Spring 2006 - Lecture 16: Numbers

Floating Point

Pentium II

3

13UVa CS216 Spring 2006 - Lecture 16: Numbers

IEEE Floating Point
Single Precision (32 bits)

31 022

S
ig
n

30 23

Exponent Fraction

8 bits1 23 bits

Exponent
values:

0 zeroes
1-254 exp + 127
255 infinities, NaN

Value = (1 – 2*Sign) (1 + Fraction)Exponent - 127

14UVa CS216 Spring 2006 - Lecture 16: Numbers

Fraction

b
1
b

2
b

3
b

4
b

5
b

6
b

7
b

8
b

9
b

10
b

11
b

12
b

13
b

14
b

15
b

16
b

17
b

18
b

19
b

20
b

21
b

22
b

23

Fraction = ∑ bi / 2i

i = 1..23

15UVa CS216 Spring 2006 - Lecture 16: Numbers

IEEE Floating Point
Single Precision (32 bits)

31 022

S
ig
n

30 23

Exponent Fraction

8 bits1 23 bits

Value = (1 – 2*Sign) (1 + Fraction)Exponent - 127

What is the largest float?

exponent = 11111111 = 255
fraction = 1 + Σ 1/2i

i = 1..23

16UVa CS216 Spring 2006 - Lecture 16: Numbers

Example

1/10 = 0.1 (Decimal)

What is this in binary?

1/10 ≈ 1/16 + 1/32

3/32

.2/32 = 2/320 ≈ 1/256 + 1/512

3/512 = 1.875/320
=0011001100110011…

17UVa CS216 Spring 2006 - Lecture 16: Numbers

10.0000000000000000000000000
1 010
1100
1010

10000
1010
1100
1010
10000

…

1010

0.001100110011001100110011…

Even common decimals like 0.1
cannot be represented exactly!

18UVa CS216 Spring 2006 - Lecture 16: Numbers

Patriot Missile
• Gulf War I

• Failed to intercept
incoming Iraqi
scud missile (Feb
25, 1991)

• 28 American
soldiers killed

GAO Report: GAO/IMTEC-92-26 Patriot Missile
Software Problem
http://www.fas.org/spp/starwars/gao/im92026.htm

4

19UVa CS216 Spring 2006 - Lecture 16: Numbers

Patriot Design

• Intended to operate only for a few hours
– Defend Europe from Soviet aircraft and missile

• Four 24-bit registers (1970s design!)

• Kept time with integer counter:
incremented every 1/10 second

• Calculate speed of incoming missile to
predict future positions:

velocity = loc1 – loc0/(count1 – count0) * 0.1

• But, cannot represent 0.1 exactly!

20UVa CS216 Spring 2006 - Lecture 16: Numbers

Floating Imprecision
• 24-bits:

0.1 = 1/24 + 1/25 + 1/28 + 1/29

+ 1/212 + 1/213 + 1/216 + 1/217

+ 1/220 + 1/221

= 209715 / 2097152
Error is 0.2/2097152 = 1/10485760

One hour = 3600 seconds
3600 * 1/10485760 * 10 = 0.0034s
20 hours = 0.0687s Miss target! (137 meters)

21UVa CS216 Spring 2006 - Lecture 16: Numbers

Two weeks before the incident, Army
officials received Israeli data indicating
some loss in accuracy after the system
had been running for 8 consecutive
hours. Consequently, Army officials
modified the software to improve the
system's accuracy. However, the
modified software did not reach
Dhahran until February 26, 1991--the
day after the Scud incident.

GAO Report

22UVa CS216 Spring 2006 - Lecture 16: Numbers

Better Floating Point:
Use More Bits

• IEEE Double Precision (64 bits)

S
ig
n

Exponent Fraction

11 bits1 52 bits

Single Precision:
0.1 = 209715/2097152
Error = 9.5*10-8 (20 hours to miss target)

Double Precision:
0.1 = 56294995342131/562949953421312
Error = 3.608 *10-16 (2,172,375,450 years to miss)

23UVa CS216 Spring 2006 - Lecture 16: Numbers

Better Floating Point (?)
• IBM Floating Point (“Hexadecimal”)

–Use more bits in fraction, fewer in
exponent (7/24 and 7/56 instead of 8/23
and 11/52)

• Decimal Formats (IEEE 754d)

–Naive: 1 decimal digit into 4 binary digits

–Cowlishaw encoding:
• Exact representation of decimals (e.g., 0.1)

• 3 decimal digits (0-999) into 10 binary digits
(0-1023) (24 wasted out of 1024)

24UVa CS216 Spring 2006 - Lecture 16: Numbers

Smaller Floating Point

• 16-bit floating point representations

–Minifloat: 1 sign, 5-bit exponent (-15),
10-bit mantissa

–Range from 2.98×10-8 to 65504

Your graphics card uses this
(if you have a good one)

40B Floating Point Ops per
second (3GHZ Pentium = 12B)

5

25UVa CS216 Spring 2006 - Lecture 16: Numbers

High Dynamic Range
(Example from Paul Debevec’s HDRShop)

8
-b
it
 i
n
te
g
e
r
c
o
lo
r

1
6
-b
it
 f
lo
a
t
co
lo
r

26UVa CS216 Spring 2006 - Lecture 16: Numbers

Charge
• If you have to worry about how numbers are
represented, you are doing low-level
programming

• Are there any high-level programming
languages yet?
– Java: only if you never use floating point numbers
or integers bigger than 2 147 483 647 (can keep
track of National Debt for about 23 hours)

– Python: almost a “high-level language” (but still
need to worry about floating point numbers)

– Scheme (PLT implementation): is a “high-level”
language (code used to calculate error values)

27UVa CS216 Spring 2006 - Lecture 16: Numbers

Code
; smarter implementation would compute these...
(define seq (list 4 5 8 9 12 13 16 17 20 21))
(define seq64 (list 4 5 8 9 12 13 16 17 20 21 24 25 28 29 32 33

36 37 40 41 44 45 48 49))
(define (value seq)
(if (null? seq) 0 (+ (/ 1 (expt 2 (car seq))) (value (cdr seq)))))

28UVa CS216 Spring 2006 - Lecture 16: Numbers

DrScheme Interactions
> (define onetenth (value seq))
> onetenth
209715/2097152
> (define onetenth64 (value seq64))
> onetenth64
56294995342131/562949953421312
> (- .1 onetenth)
9.536743164617612e-008
> (- .1 onetenth64)
3.608224830031759e-016
> (* 20 3600 (- .1 onetenth))
0.00686645507852468
> (/ (* 20 3600 (- .1 onetenth)) (- .1 onetenth64))
19030008943384.617
> (/ (/ (/ (* 20 3600 (- .1 onetenth)) (- .1 onetenth64)) 24) 365)
2172375450.1580615

