

IEEE Floating Point Single Precision (32 bits) 1 8 bits 23 bits					
ि Exponent	Fraction				
31 30 2	3 22	0			
Exponent 0 values: 1 2	zeroes -254 exp + 127 55 infinities, NaN				
Value = $(1 - 2*Sign) (1 + Fraction)^{Exponent - 127}$					
UVa CS216 Spring 2006 - Lecture 16: Numbers					

IEEE Floating Point Single Precision (32 bits) 1 8 bits 23 bits				
Sign	Exponent	Fraction		
31 3	0 23	22 0		
Value = $(1 - 2*Sign) (1 + Fraction)^{Exponent - 127}$				
What is the largest float?				
exponent = 11111111 = 255				
fraction = $1 + \sum_{i=1.23} \frac{1}{2^{i}}$				
UVa CS216	Spring 2006 - Lecture 16: Num	ibers	15	

Two weeks before the incident, Army officials received Israeli data indicating some loss in accuracy after the system had been running for 8 consecutive hours. Consequently, Army officials modified the software to improve the system's accuracy. However, the modified software did not reach Dhahran until February 26, 1991--the day after the Scud incident.

GAO Report

21

UVa CS216 Spring 2006 - Lecture 16: Numbers

Better Floating Point: Use More Bits				
• IEEE Double Pr 1 11 bits	recision (64 bits) 52 bits			
Exponent	Fraction			
Single Precision: 0.1 = 209715/2097152 Error = 9.5*10 ⁻⁸ (20 hours to miss target)				
Double Precision: 0.1 = 56294995342131/562949953421312 Error = 3.608 *10 ⁻¹⁶ (2,172,375,450 years to miss)				
IVa CS216 Spring 2006 - Lecture 16: Numbers				

Charge If you have to worry about how numbers are represented, you are doing low-level programming Are there any high-level programming languages yet? Java: only if you never use floating point numbers or integers bigger than 2 147 483 647 (can keep track of National Debt for about 23 hours) Python: almost a "high-level language" (but still need to worry about floating point numbers) Scheme (PLT implementation): is a "high-level" language (code used to calculate error values)

 Code

 ; smarter implementation would compute these...

 (define seq (list 4 5 8 9 12 13 16 17 20 21))

 (define seq64 (list 4 5 8 9 12 13 16 17 20 21 24 25 28 29 32 33 36 37 40 41 44 45 48 49))

 (define (value seq)

 (if (null? seq) 0 (+ (/ 1 (expt 2 (car seq))) (value (cdr seq)))))

