CS216: Program and Data Representation University of Virginia Computer Science

Lecture 16: Numbers

Directions for Getting 6

1. Choose any regular accumulator (ie. Accumulator \#9).
2. Direct the Initiating Pulse to terminal 5 .
3. The initiating pulse is produced by the initiating unit's Io terminal each time the Eniac is started. This terminal is usually, by default, plugged into Program Line 1-1 (described later). Simply connect a program cable from Program Line 1-1 to terminal 5i on this Accumulator.
4. Set the Repeat Switch for Program Control 5 to 6.
5. Set the Operation Switch for Program Control 5 to ADD.
6. Set the Clear-Correct switch to C.
7. Turn on and clear the Eniac.
8. Normally, when the Eniac is first started, a clearing process is begun. If the Eniac had been previously started, or if there are random neons illuminated in the accumulators, the " Initial Clear" button of the Initiating device can be pressed
9. Press the "Initiating Pulse Switch" that is located on the Initiating device.
10.Stand back.

Va CS216 Spring 2006 - Lecture 16: Numbers

Binary Number Representations

- First presented by Gottfried Leibniz, 1705 ("Explication de l'Arithmétique

- George Boole ("Boolean" logic), 1854
- Claude Shannon's 1937 Master's thesis: implemented Boolean algebra with switches and relays
- Used by Atanasoff-Berry Computer, Colossus and Z3

Va CS216 Spring 2006 - Lecture 16: Numbers

ENIAC

- Started 1943 early electronic programmable computer
- Operational in 1946
- Computed ballistics tables
- 17,468 vacuum tubes
- 150 kW of power

Earlier Computers: Z3 (Konrad Zuse) 1941 Colossus 1943

ENIAC number representation

- Decimal system
- Ring of 36 vacuum tubes to store one digits (10 flip-flops to store 0-9)
- Designed to emulate mechanical adding machine electronically
- 20 accumulators (\sim registers), each stores 10-digits
- 5,000 cycles per second
- Perform addition/subtraction between 2 accumulators each cycle

UVa CS216 Spring 2006 - Lecture 16: Numbers

Binary Representation

$$
\begin{aligned}
& \mathrm{b}_{\mathrm{n}-1} \mathrm{~b}_{\mathrm{n}-2} \mathrm{~b}_{\mathrm{n}-3} \cdots \mathrm{~b}_{2} \mathrm{~b}_{1} \mathrm{~b}_{0} \\
& 0+0=0 \\
& 0+1=1 \\
& 0+1=1 \\
& \text { Value }=\sum_{i=0 . . n-1} \mathrm{~b}_{i} * 2^{i} \quad 1+0=1 \\
& 1+1=0
\end{aligned}
$$

What should n be?
UVa CS216 Spring 2006 - Lecture 16: Numbers

What is n ?

- Java:
- byte, char = 8 bits
-short = 16 bits
-int $=\mathbf{3 2}$ bits
- long = 64 bits
- C: implementation-defined
- int: can hold between 0 and UINT_MAX
- UINX_MAX must be at least 65535

$$
n>=16, \text { typical current machines } n=32
$$

- Python? n is not fixed (numbers work)

Endianness

- Its a "religious" argument: names taken from Big-Endians and Little-Endians in Gulliver's Travels who argued over which end of an egg to crack
- Different orderings problematic
- Consider what << means in C
- big endian \sim divide by 2
- little endian \sim multiply by 2
- Some architectures support both ("biendian"): PowerPC, DEC Alpha, IA/64
- Most Internet standards: big-endian

The Great Debate

- "Big Endian": most significant first (lowest address) $1000000000000000=2^{15}=32768$
- "Little Endian": most significant last
(highest address)
$1000000000000000=2^{0}=1$
Which is better?

Other Kinds of Numbers

- Positive and Negative Integers
- Sign Bit, Ones Complement, Twos Complement
-Section this week
- Real numbers

UVa CS216 Spring 2006 - Lecture 16: Numbers

Pentium II

Example

$1 / 10=0.1$ (Decimal)
What is this in binary?

$$
1 / 10 \approx \underbrace{1 / 16+1 / 32}_{3 / 32}
$$

$$
\begin{aligned}
& .2 / 32=2 / 320 \approx \underbrace{1 / 256+1 / 512}_{\begin{array}{c}
3 / 512=1.875 / 320
\end{array}} \\
& =0011001100110011 \ldots . .
\end{aligned}
$$

0.001100110011001100110011...	
1010	10.00000000
	1100
	1010
	10000
	1010
	110
	Even common cannot be repr
Uva cs216 spr	Sping 2006- Leeture 6: Numbers

Patriot Design

- Intended to operate only for a few hours
- Defend Europe from Soviet aircraft and missile
- Four 24-bit registers (1970s design!)
- Kept time with integer counter: incremented every $1 / 10$ second
- Calculate speed of incoming missile to predict future positions:
velocity $=$ loc $_{1}-$ loc $_{0} /\left(\right.$ count $_{1}-$ count $\left._{0}\right) * 0.1$
- But, cannot represent 0.1 exactly!

UVa CS216 Spring 2006 - Lecture 16: Numbers

Two weeks before the incident, Army officials received Israeli data indicating some loss in accuracy after the system had been running for 8 consecutive hours. Consequently, Army officials modified the software to improve the system's accuracy. However, the modified software did not reach Dhahran until February 26, 1991--the day after the Scud incident.

GAO Report

UVa CS216 Spring 2006 - Lecture 16: Numbers

Better Floating Point (?)

- IBM Floating Point ("Hexadecimal")
- Use more bits in fraction, fewer in exponent ($7 / 24$ and $7 / 56$ instead of $8 / 23$ and 11/52)
- Decimal Formats (IEEE 754d)
- Naive: 1 decimal digit into 4 binary digits
- Cowlishaw encoding:
- Exact representation of decimals (e.g., 0.1)
- 3 decimal digits ($0-999$) into 10 binary digits (0-1023) (24 wasted out of 1024)

UVa CS216 Spring 2006 - Lecture 16: Numbers

Floating Imprecision

- 24-bits:
$0.1=1 / 2^{4}+1 / 2^{5}+1 / 2^{8}+1 / 2^{9}$
$+1 / 2^{12}+1 / 2^{13}+1 / 2^{16}+1 / 2^{17}$
$+1 / 2^{20}+1 / 2^{21}$
$=209715 / 2097152$
Error is $0.2 / 2097152=1 / 10485760$
One hour = 3600 seconds
$3600 * 1 / 10485760 * 10=0.0034 \mathrm{~s}$
20 hours $=0.0687 \mathrm{~s}$ Miss target! (137 meters)
UVa CS216 Spring 2006-Lecture 16: Numbers

\section*{Better Floating Point: Use More Bits
 - IEEE Double Precision (64 bits)
 11 bits $\quad 52$ bits
 | Exponent | Fraction |
| :---: | :---: |

Single Precision:
$0.1=209715 / 2097152$
Error $=9.5^{*} 10^{-8}$ (20 hours to miss target)
Double Precision:
$0.1=56294995342131 / 562949953421312$
Error $=3.608 * 10^{-16}(2,172,375,450$ years to miss $)$
UVa CS216 Spring 2006 - Lecture 16: Numbers
22

Smaller Floating Point

-16-bit floating point representations

- Minifloat: 1 sign, 5-bit exponent (-15), 10-bit mantissa
- Range from 2.98×10^{-8} to 65504

Your graphics card uses this (if you have a good one)
n VIDIA. 40B Floating Point Ops per second (3 GHZ Pentium $=12 \mathrm{~B}$)

Charge

- If you have to worry about how numbers are represented, you are doing low-level programming
- Are there any high-level programming languages yet?
- Java: only if you never use floating point numbers or integers bigger than 2147483647 (can keep track of National Debt for about 23 hours)
- Python: almost a "high-level language" (but still need to worry about floating point numbers)
- Scheme (PLT implementation): is a "high-level" language (code used to calculate error values)

Code

DrScheme Interactions
$>$ (define onetenth (value seq))
$>$ onetenth
209715/2097152
$>$ (define onetenth64 (value seq64))
$>$ onetenth64
56294995342131/562949953421312
> (-. 1 onetenth)
$9.536743164617612 \mathrm{e}-008$
$>(-.1$ onetenth64)
$3.608224830031759 \mathrm{e}-016$
> (* 203600 (- .1 onetenth))
0.00686645507852468
$>(/(* 203600(-.1$ onetenth $))(-.1$ onetenth64) $)$
19030008943384.617
$>(/(/(/(* 203600(-.1$ onetenth $))(-.1$ onetenth64)) 24) 365) 2172375450.1580615

