CS216: Program and Data Representation University of Virginia Computer Science

http://www.cs.virginia.edu/cs216

Menu

- Predicting program properties
- Orders of Growth: O, Ω
- Course Survey Results

Everyone should have received an email:

1. Informing you of your PS1 partner
2. Giving the section room locations
3. Explaining that PS1 is now due Monday, Jan 30

UVa CS216 Spring 2006 - Lecture 2: Orders of Growth

- Four notations: $O(f), \Omega(f)$, o(f), $\Theta(f)$
- These notations define sets of functions
-Functions from positive integer to real
- When we say, "Algorithm A is $O(n)$ " we mean,
running time of $\mathrm{A} \in O$ (n)
where n measures the input size to A.

Big O

- Intuition: the set $O(f)$ is the set of functions that grow no faster than f
- More formal definition coming soon
- Asymptotic growth rate
- As input to f approaches infinity, how fast does value of f increase
- Hence, only the fastest-growing term in f matters:
$O\left(n^{3}\right) \subset O\left(12 n^{2}+n\right)$
$O(n) \equiv O(63 n+\log n-423)$
UVa CS216 Spring 2006 - Lecture 2: Orders of Growth

Formal Definition

$f \in O(g)$ means:
There are positive constants c and n_{0} such that

$$
f(n) \leq c g(n)
$$

for all values $n \geq n_{0}$.

O Examples

$f(n) \in O(g(n))$ means: there are positive constants c and n_{0} such that $f(n) \leq c g(n)$ for all values $n \geq n_{0}$.

$$
\begin{array}{ll}
x \in O\left(x^{2}\right) ? & \text { Yes, } \mathrm{c}=1, n_{0}=2 \text { works fine. } \\
10 x \in O(x) ? & \text { Yes, } \mathrm{c}=11, n_{0}=2 \text { works fine. } \\
x^{2} \in O(x) ? & \begin{array}{l}
\text { No, no matter what } c \text { and } n_{0} \\
\text { we pick, } c x^{2}>x \text { for big enough } x
\end{array}
\end{array}
$$

Question

Given $f \in O(h)$ and $g \notin O(h)$ which of these are true:
a. For all positive integers m, $f(m)<g(m)$.
b. For some positive integer m, $f(m)<g(m)$.
c. For some positive integer m_{0}, and all positive integers $m>m_{0}$,
$f(m)<g(m)$.
(left as problem for Exam 1)

a is false:

Prove by Counter-Example $f(n) \in O(h(n))$ and $g(n) \notin O(h(n))$
a. For all positive integers $m, f(m)<g(m)$.

Pick $h(n)=n^{2}, f(n)=5 n^{2}, \mathrm{~g}(n)=n^{3}$. For $m=2, f(m)=20>8=g(m)$. Therefore, a is false.
$f(n) \in O(g(n))$ means there are positive constants c and n_{0} such that $f(n) \leq c g(n)$ for all values $n \geq n_{0}$.

b is true: Intuition

If $f \in O(h)$ and $g \notin O(h)$ then, for some positive integer $m, f(m)<g(m)$.
g must grow faster than h, otherwise g would be in $O(h)$.
f must grow no faster than h, since $f \in O(h)$
So, if g grows faster than h, but f grows as slow or slower than h, eventually, $g(n)>f(n)$ so for some $m, f(m)<g(m)$.

UVa CS216 Spring 2006 - Lecture 2: Orders of Growth

b: Proof by Contradiction

If $f \in O(h)$ and $g \notin O(h)$ then, for some positive integer $m, f(m)<g(m)$.

1. $f \in O(h) \Rightarrow$ there are positive constants c and n_{0} such that $f(n) \leq \operatorname{ch}(n)$ for all values $n \geq n_{0}$
2. $g \notin O(h) \Rightarrow$ there are no positive constants c_{1} and n_{1} such that $g(n) \leq$ $c_{1} h(n)$ for all values $n \geq n_{1}$. So, for all positive constants $c_{2}, g(q) \leq c_{2} h(q)$ for some value q.

Lower Bound: Ω (Omega)

$f(n)$ is $\Omega(g(n))$ means:
There are positive constants c and such that

UVa CS216 Spring 2006 - Lecture 2: Orders of Growth

Honor Disadvantage?

- Do you feel you are at a disadvantage if you follow the course honor policy strictly?
-69 no I hope the majority answer
- 11 yes here will help convince the 11 "yes" answered they are not really at a disadvantage. Long term, being honorable is never a disadvantage.

Course Pledge

- Read this carefully - you are expected to know it and follow it
- Only pledge you need to sign this semester
- Requires:
- No lying, cheating, or stealing
- Helping your classmates learn
- No toleration of dishonorable behavior
- Helping the course staff improve the course

Honor Questions

- How much faith do you think we should put in the honor system for this class?
○-30 Should have complete trust in honor
system
へ - 43 Enough to have take-home exams
- 6 A little, but don't trust take-home exams
- 1 Don't trust the students at all, need to police everything
Exam 1 will be take home
UVa CS216 Spring 2006 - Lecture 2: Orders of Growth

Honor Reporting

If you observed a classmate cheating on a take-home exam, what would you do?

36 Report the student anonymously to the course staff 20 Confront the student
11 Report the student to the course staff
8 Nothing
3 Initiate an honor charge
2 No Selection
Course Pledge disallows this now.
If you can't handle this, don't sign the course pledge and take a different class.

UVa CS216 Spring 2006 - Lecture 2: Orders of Growth
22

Programming Self-Rating

-4	among best
-26	above average
-41	about average
-8	a little below, far below

The programming you will do in this class is different enough from what you have done previously, that you probably don't really know.

Everyone should be confident you will do well in this class. You don't need to be a super code hacker to ace this class.

UVa CS216 Spring 2006 - Lecture 2: Orders of Growth

Charge

- Sections meet today and tomorrow
- Order Notation practice
- Recurrence Relations
- Wednesday: Levels of Abstraction, Introducing Lists
-Read Chapter 3 in the textbook

UVa CS216 Spring 2006 - Lecture 2: Orders of Growth

Survey Results

- More results (as well as my answers to the questions you asked) are posted on the course web page

UVa CS216 Spring 2006 - Lecture 2: Orders of Growth

