CS216: Program and Data Representation

University of Virginia Computer Science
Spring 2006 David Evans

Lecture 20:
Hair-Dryer
Attacks

and
Introducing

X86 Image from www.clean-funny.com, GoldenBlue LLC.

http://www.cs.virginia.edu/cs216

Java Security

javac malcode.class
Compiler JVML

——

‘ Java Bytecode Verifier ‘

malcode.java|—

Invalid

“Okay”

Trusted Computing Base

UVa CS216 Spring 2006 - Lecture 20: Introducing Asm

Bytecode Verifier

e Checks JVML code satisfies safety

properties

- Simulates program execution to know
types are correct, but doesn’t need to
examine any instruction more than once

- After code is verified, it is trusted: is not
checked for type safety at run time
(except for casts, array stores)

Key assumption: when a value is written to a
memory location, the value in that memory
location is the same value when it is read.

Violating the Assumption

// The object on top of the stack is a SimObject
astore_0
// There is a SimObject in location 0

aload_0
// The value on top of the stack is a SimObject

If a cosmic ray hits the right bit of memory,
between the store and load, the assumption
might be wrong.

UVa CS216 Spring 2006 - Lecture 20: Introducing Asm 3

UVa CS216 Spring 2006 - Lecture 20: Introducing Asm

Improving the Odds

e Set up memory so that a single bit
error is likely to be exploitable

¢ Mistreat the hardware memory to
increase the odds that bits will flip

Following slides adapted (with permission) from
Sudhakar Govindavajhala and Andrew W. Appel, Using
Memory Errors to Attack a Virtual Machine, July 2003.

Making Bit Flips Useful

Fill up memory with Filler objects, and one Pointee
object:

class Filler { class Pointee {
Pointee al; Pointee al;
Pointee a2; Pointee a2;
Pointee a3; Filler f;
Pointee a4; int b;
Pointee a5; Pointee a5;
Pointee a6; Pointee a6;
Pointee a7; Pointee a7;

} }

UVa CS216 Spring 2006 - Lecture 20: Introducing Asm 5

UVa CS216 Spring 2006 - Lecture 20: Introducing Asm

- - al
Wait for a bit [,
H a3 ﬁf‘_}\
ﬂlp 13

e Remember: there are s |2
lots of Filler objects 167
(fill up all of memory) "

o If a bit flips, good a2 g
chance (~70%) it will g
be in a field of a Filler b 8
object and it will now G =
point to a Filler object aé
instead of a Pointee :Z
ObJeCt Filler Object | - a2

UVa CS216 Spring 2006 - Lecture 20: Introducing Asm :; 8

TIn al
Filling Up 2|,
a3 ﬁf‘_}\
Memory v -
a5 E
=
Pointee p = new Pointee (); a6
Vector fillers = new Vector (); a7
try { al
while (true) { a2 8
Filler f = new Filler (); Sy
f.al = p; f.a2 = p; f.a3 = p; ...; f.a7 =p; 2
fillers.add (f); b 8
} 5 |5
} catch (OutOfMemoryException €) { ; } a6 &
a7
al
Filler Object a2
UVa CS216 Spring 2006 - Lecture 20: Introducing Asm :; 7
al
. . [a2 -
Type Violation = |8
a4 8
After the bit flip, the :Z 2
value of f.a2 is a a7
Filler object, but s
L
f.a2 was declared f 8
. . b 9
as a Pointee object! — £
o
a6 &
Can an attacker exploit this? a7
al
Filler Object a2
UVa CS216 Spring 2006 - Lecture 20: Introducing Asm :; 9

Pointee p = new Pointee ();
Vector fillers = new Vector ();

Ve Finding the Bit

while (true) { 1
Filler f = new Filler (); FI I p
fal =p;faz=p;fa3=p; .. fa7=p;
fillers.add (f);

¥
} catch (OutOfMemoryException e) { ; }

while (true) {
for (Enumeration e = fillers.elements ();
e.hasMoreElements () ;) {
Filler f = (Filler) e.nextElement ();
if (f.al != p) { // bit flipped!

}else if (a2 1= p) {

}
b

UVa CS216 Spring 2006 - Lecture 20: Introducing Asm 10

class Filler { class Pointee {
Pointee al; Pointee al;
Pointee a2; Pointee a2;
Pointee a3; Filler f;
Pointee a4; intb;

Violating Type
Safety

Pointee a5; Pointee a5;
Pointee a6; Pointee a6;
Pointee a7; Pointee a7;

Filler f = (Filler) e.nextElement ();
if (f.al !=p) { // bit flipped!
Object r = f.al; //
Filler fr = (Filler) r; // Cast is checked at run-time

Declared Type

f.al Pointee
f.al.b int
fr == f.al Filler

fr.a4 == f.al.b Pointee

UVa CS216 Spring 2006 - Lecture 20: Introducing Asm

11

class Filler { class Pointee {
Pointee al; Pointee al;
Pointee a2; Pointee a2;
Pointee a3; Filler f;
Pointee a4; intb;

Violating Type
Safety

Pointee a5; Pointee a5;

Pointee a6; Pointee a6;

Pointee a7; Pointee a7;
¥ ¥

Filler f = (Filler) e.nextElement ();
if (f.al != p) { // bit flipped!

Object r = f.al; //
Filler fr = (Filler) r; // Cast is checked at run-time
f.al.b = 1524383; // Address of the SecurityManager
fr.a4.al = null; // Set it to a null
// Do whatever you want! No security policy now...
new File ("C:\thesis.doc”).delete ();

UVa €S216 Spring 2006 - Lecture 20: Introducing Asm 12

Getting a Bit Flip
e Wait for a Cosmic Ray

-You have to be really, really patient... (or
move machine out of Earth’s atmosphere)

e X-Rays
- Expensive, not enough power to generate
bit-flip
¢ High energy protons and neutrons

-Work great - but, you need a particle
acceleratc

e Hmm....

UVa CS216 Spring 2006 - Lecture 20: Introducing Asm 13

Should Anyone be Worried?

Java virtual machine

UVa CS216 Spring 2006 - Lecture 20: Introducing Asm 15

Using Heat
e 50-watt =
spotlight bulb

e Between 80° -
100°C,
memory starts
to have a few
failures

e Attack applet
is successful
(at least half
the time)!

e Hairdryer
works too, but _
it fries too Picture from Sudhakar Govindavajhala
many bits at
once

UVa CS216 Spring 2006 - Lecture 20: Introducing Asm 14

Recap
e Verifier assumes the value you write is the
same value when you read it
¢ By flipping bits, we can violate this
assumption
¢ By violating this assumption, we can
violate type safety: get two references to

the same storage that have inconsistent
types

* By violating type safety, we can get around
all other security measures

e For details, see paper linked from notes

UVa CS216 Spring 2006 - Lecture 20: Introducing Asm 16

CS216 Roadmap
Data Representation Program Representation
Real World Problems

“Hello” [l Objects Python :*igh-level
[H,"\0] [ll—— Arrays code ngtade
0x42381a, Addresses, C code Iaor\lN-ueavee
3.14, «—— Numbers, guag
‘X Characters JVML ;Q;tguja‘ghgachfne
. x86 Assembly
01001010 Bits

Real World Physics

From JVML to x86

e More complex instructions:

-JVML: 1-byte opcodes, all instructions are
1 byte plus possible params on stack

-x86: 1-, 2-, and 3-byte opcodes
e Lower-level memory:
-JVML: stack and locations, managed by VM

-x86: registers and memory, managed
(mostly) by programmer

|Why is x86 instruction set more complex?

UVa CS216 Spring 2006 - Lecture 20: Introducing Asm 17

UVa CS216 Spring 2006 - Lecture 20: Introducing Asm 18

Xx86 Historype

e 1960s: Project Apollo

e 1971: Intel 4004 Processor
- First commercial microprocessor
—-Target market: calculators

- (RA0A
10
) ‘ W80

UVa €S216 Spring 2006 - Lecture 20: Introducing Asm 19

00-03

*mi 16 4-bit registers

Intel 4004

x86 History

¢ 1971: 4004
- 46 instructions (41 8-bit wide, 5 16-bits)
- Separate program and data store

e 1974: 8080
- 8-bit processor !
—Used in MITS Atair | e———

* 1978: 8086, 8088
- 16-bit architecture
—-Assembly backwards compatible with 8080

UVa CS216 Spring 2006 - Lecture 20: Introducing Asm 21

N——)
T jp |
ot
Program Counter o 1
I s 5B
i
§ Lovel No. 2 § ¢ s
we o
£
Addrass! [2
stk i 1
m—
[Ey——— e ey)
B ~mmme 3-deep stack
UVa CS216 Spring 2006 - Lecture 20: Introducing Asm 20

e 1982: 80186
- Backwards compatible with 8086
- Added some new instructions

e 1982: 80286
e 1986: 386

- First 32-bit version (but still backwards compatible
with 16-bit 8086)

e 1989: 486 (Added a few instructions)
e 1993: Pentium™ (can't trademark numbers)
e Now: Athlon 64, x86-64

- 64-bit versions, but still backwards compatible

UVa CS216 Spring 2006 - Lecture 20: Introducing Asm 22

x86 Reglsters

6 bits ™

bits
§ | EAX AX AH AL
g
a
§ EBX BX BH BL
g ECX CX CH L
Q
5 EDX DX DH DL
o
©
o ESI
5
8 EDI
ESP
(stack pointer)
EBP
(base pointer) 32 bits
-
(instruction pointer)
UVa CS216 Spring 2006 - Lecture 20: Introducing Asm 23

x86 Instructions

¢ Variable length: 1-17 bytes long
(average is ~3 bytes)

e Opcodes: 1-4 bytes long
-e.g., 660F3A0FC108H = PALIGNR

e Parameters: registers, memory
locations, constants

- Need different opcodes to distinguish
them

UVa €S216 Spring 2006 - Lecture 20: Introducing Asm 24

Move Instruction
mov [destination], [source]

e Copies the value in source into the
location destination

e Many different versions depending on
types of destination and source:
—destination: register, memory
—source: register, memory, constant

¢ Not all combinations are possible:
cannot have both destination and
source be memory locations

UVa CS216 Spring 2006 - Lecture 20: Introducing Asm

25

Move Examples

e mov eax, [ebx]
-[<reg>]: the value of the memory
location referenced by <reg>
- Copies the 4-byte value in location
[ebx] into register eax
e mov [ebp+4], eax
- Copies the 4-byte value in register eax

into the location [ebp+4] (typically this
is the first local variable)

UVa CS216 Spring 2006 - Lecture 20: Introducing Asm

26

More Moves

e mov [ebx], 2
- Ambiguous: is it moving
0b0000010
mov BYTE PTR [ebx], 2
or 0b000000000000010
mov WORD PTR [ebx], 2
or 0b[30 zeros]10
mov DWORD PTR [ebx], 2

UVa CS216 Spring 2006 - Lecture 20: Introducing Asm

27

Charge

e Section this week: understanding
x86 assembly
e Problem Set 7: out today, due in 1
week
-Reading and writing x86 assembly code
- Figuring out what code is generated for
different program constructs

e Exam 2: out next Wednesday

UVa CS216 Spring 2006 - Lecture 20: Introducing Asm

28

