
1

CS216: Program and Data Representation

University of Virginia Computer Science
Spring 2006 David Evans

Lecture 20:
Hair-Dryer

Attacks
and

Introducing
x86

http://www.cs.virginia.edu/cs216

Image from www.clean-funny.com, GoldenBlue LLC.

2UVa CS216 Spring 2006 - Lecture 20: Introducing Asm

Java Security

javac
Compiler

malcode.java
malcode.class

JVML

Java Bytecode Verifier

JavaVM

“Okay”

Invalid

STOP

T
ru
s
te
d
 C
o
m
p
u
ti
n
g
 B
a
s
e

3UVa CS216 Spring 2006 - Lecture 20: Introducing Asm

Bytecode Verifier
• Checks JVML code satisfies safety
properties
–Simulates program execution to know
types are correct, but doesn’t need to
examine any instruction more than once

–After code is verified, it is trusted: is not
checked for type safety at run time
(except for casts, array stores)

Key assumption: when a value is written to a
memory location, the value in that memory
location is the same value when it is read.

4UVa CS216 Spring 2006 - Lecture 20: Introducing Asm

Violating the Assumption

…
// The object on top of the stack is a SimObject

astore_0
// There is a SimObject in location 0

aload_0
// The value on top of the stack is a SimObject

If a cosmic ray hits the right bit of memory,
between the store and load, the assumption
might be wrong.

5UVa CS216 Spring 2006 - Lecture 20: Introducing Asm

Improving the Odds

• Set up memory so that a single bit
error is likely to be exploitable

• Mistreat the hardware memory to
increase the odds that bits will flip

Following slides adapted (with permission) from
Sudhakar Govindavajhala and Andrew W. Appel, Using

Memory Errors to Attack a Virtual Machine, July 2003.

6UVa CS216 Spring 2006 - Lecture 20: Introducing Asm

Making Bit Flips Useful
Fill up memory with Filler objects, and one Pointee
object:

class Filler { class Pointee {
Pointee a1; Pointee a1;
Pointee a2; Pointee a2;
Pointee a3; Filler f;

Pointee a4; int b;

Pointee a5; Pointee a5;
Pointee a6; Pointee a6;
Pointee a7; Pointee a7;

} }

2

7UVa CS216 Spring 2006 - Lecture 20: Introducing Asm

Filling Up
Memory

Pointee p = new Pointee ();

Vector fillers = new Vector ();

try {
while (true) {

Filler f = new Filler ();
f.a1 = p; f.a2 = p; f.a3 = p; …; f.a7 =p;

fillers.add (f);

}
} catch (OutOfMemoryException e) { ; }

a1

a2

a3

a4

a5

a6

a7

F
il
le
r
O
b
je
c
t

a1

a2

f

b

a5

a6

a7

P
o
in
te
e
O
b
je
c
t

a1

a2

a3

a4

Filler Object

8UVa CS216 Spring 2006 - Lecture 20: Introducing Asm

Wait for a bit
flip…

• Remember: there are
lots of Filler objects
(fill up all of memory)

• If a bit flips, good
chance (~70%) it will
be in a field of a Filler
object and it will now
point to a Filler object
instead of a Pointee
object

a1

a2

a3

a4

a5

a6

a7

F
il
le
r
O
b
je
c
t

a1

a2

f

b

a5

a6

a7

P
o
in
te
e
O
b
je
c
t

a1

a2

a3

a4

Filler Object

9UVa CS216 Spring 2006 - Lecture 20: Introducing Asm

Type Violation

After the bit flip, the

value of f.a2 is a

Filler object, but

f.a2 was declared

as a Pointee object!

a1

a2

a3

a4

a5

a6

a7

F
il
le
r
O
b
je
c
t

a1

a2

f

b

a5

a6

a7

P
o
in
te
e
O
b
je
c
t

a1

a2

a3

a4

Filler Object

Can an attacker exploit this?

10UVa CS216 Spring 2006 - Lecture 20: Introducing Asm

Finding the Bit
Flip

while (true) {
for (Enumeration e = fillers.elements ();

e.hasMoreElements () ;) {
Filler f = (Filler) e.nextElement ();
if (f.a1 != p) { // bit flipped!

…
} else if (f.a2 != p) {

…
}

}

Pointee p = new Pointee ();

Vector fillers = new Vector ();
try {

while (true) {
Filler f = new Filler ();
f.a1 = p; f.a2 = p; f.a3 = p; …; f.a7 =p;

fillers.add (f);
}

} catch (OutOfMemoryException e) { ; }

11UVa CS216 Spring 2006 - Lecture 20: Introducing Asm

Violating Type
Safety

Filler f = (Filler) e.nextElement ();
if (f.a1 != p) { // bit flipped!

Object r = f.a1; //
Filler fr = (Filler) r; // Cast is checked at run-time

class Filler { class Pointee {

Pointee a1; Pointee a1;
Pointee a2; Pointee a2;

Pointee a3; Filler f;
Pointee a4; int b;

Pointee a5; Pointee a5;

Pointee a6; Pointee a6;
Pointee a7; Pointee a7;

} }

Declared Type
f.a1 Pointee
f.a1.b int
fr == f.a1 Filler
fr.a4 == f.a1.b Pointee

12UVa CS216 Spring 2006 - Lecture 20: Introducing Asm

Violating Type
Safety

Filler f = (Filler) e.nextElement ();
if (f.a1 != p) { // bit flipped!
Object r = f.a1; //
Filler fr = (Filler) r; // Cast is checked at run-time
f.a1.b = 1524383; // Address of the SecurityManager
fr.a4.a1 = null; // Set it to a null
// Do whatever you want! No security policy now…
new File (“C:\thesis.doc”).delete ();

class Filler { class Pointee {

Pointee a1; Pointee a1;
Pointee a2; Pointee a2;

Pointee a3; Filler f;
Pointee a4; int b;

Pointee a5; Pointee a5;

Pointee a6; Pointee a6;
Pointee a7; Pointee a7;

} }

3

13UVa CS216 Spring 2006 - Lecture 20: Introducing Asm

Getting a Bit Flip
• Wait for a Cosmic Ray

–You have to be really, really patient… (or
move machine out of Earth’s atmosphere)

• X-Rays

–Expensive, not enough power to generate
bit-flip

• High energy protons and neutrons

–Work great - but, you need a particle
accelerator

• Hmm….

14UVa CS216 Spring 2006 - Lecture 20: Introducing Asm

Using Heat
• 50-watt
spotlight bulb

• Between 80° -
100°C,
memory starts
to have a few
failures

• Attack applet
is successful
(at least half
the time)!

• Hairdryer
works too, but
it fries too
many bits at
once

Picture from Sudhakar Govindavajhala

15UVa CS216 Spring 2006 - Lecture 20: Introducing Asm

Should Anyone be Worried?

Java virtual machine

16UVa CS216 Spring 2006 - Lecture 20: Introducing Asm

Recap
• Verifier assumes the value you write is the
same value when you read it

• By flipping bits, we can violate this
assumption

• By violating this assumption, we can
violate type safety: get two references to
the same storage that have inconsistent
types

• By violating type safety, we can get around
all other security measures

• For details, see paper linked from notes

17UVa CS216 Spring 2006 - Lecture 20: Introducing Asm

CS216 Roadmap
Data Representation Program Representation

Bits01001010

Addresses,
Numbers,
Characters

0x42381a,
3.14,

‘x’

Objects“Hello”
Arrays[‘H’,’i’,\0]

Python
code

High-level

language

C code Low-level
language

Virtual Machine
language

JVML

Assemblyx86

Real World Problems

Real World Physics

18UVa CS216 Spring 2006 - Lecture 20: Introducing Asm

From JVML to x86
• More complex instructions:

–JVML: 1-byte opcodes, all instructions are
1 byte plus possible params on stack

–x86: 1-, 2-, and 3-byte opcodes

• Lower-level memory:

–JVML: stack and locations, managed by VM

–x86: registers and memory, managed
(mostly) by programmer

Why is x86 instruction set more complex?

4

19UVa CS216 Spring 2006 - Lecture 20: Introducing Asm

x86 History

• 1960s: Project Apollo

• 1971: Intel 4004 Processor

–First commercial microprocessor

–Target market: calculators

20UVa CS216 Spring 2006 - Lecture 20: Introducing Asm

Intel 4004

3-deep stack

16 4-bit registers

21UVa CS216 Spring 2006 - Lecture 20: Introducing Asm

x86 History

• 1971: 4004

–46 instructions (41 8-bit wide, 5 16-bits)

–Separate program and data store

• 1974: 8080

–8-bit processor

–Used in MITS Altair

• 1978: 8086, 8088

–16-bit architecture

–Assembly backwards compatible with 8080

22UVa CS216 Spring 2006 - Lecture 20: Introducing Asm

x86 History
• 1982: 80186

– Backwards compatible with 8086

– Added some new instructions

• 1982: 80286

• 1986: 386

– First 32-bit version (but still backwards compatible
with 16-bit 8086)

• 1989: 486 (Added a few instructions)

• 1993: Pentium (can’t trademark numbers)

• Now: Athlon 64, x86-64

– 64-bit versions, but still backwards compatible

23UVa CS216 Spring 2006 - Lecture 20: Introducing Asm

x86 Registers

32 bits

EAX

EBX

ECX

EDX

ESI

EDI

ESP

(stack pointer)

EBP

(base pointer)

AX

BX

CX

DX

AH

BH

CH

DH

AL

BL

CL

DL

G
e
n
e
ra
l-
p
u
rp
o
se
 R
e
g
is
te
rs

16 bits
8 bits 8 bits

IP

(instruction pointer)

24UVa CS216 Spring 2006 - Lecture 20: Introducing Asm

x86 Instructions

• Variable length: 1-17 bytes long
(average is ~3 bytes)

• Opcodes: 1-4 bytes long

–e.g., 660F3A0FC108H = PALIGNR

• Parameters: registers, memory
locations, constants

–Need different opcodes to distinguish
them

5

25UVa CS216 Spring 2006 - Lecture 20: Introducing Asm

Move Instruction
mov [destination], [source]

• Copies the value in source into the
location destination

• Many different versions depending on
types of destination and source:

–destination: register, memory

–source: register, memory, constant

• Not all combinations are possible:
cannot have both destination and
source be memory locations

26UVa CS216 Spring 2006 - Lecture 20: Introducing Asm

Move Examples

• mov eax, [ebx]

–[<reg>]: the value of the memory
location referenced by <reg>

–Copies the 4-byte value in location
[ebx] into register eax

• mov [ebp+4], eax

–Copies the 4-byte value in register eax
into the location [ebp+4] (typically this
is the first local variable)

27UVa CS216 Spring 2006 - Lecture 20: Introducing Asm

More Moves

• mov [ebx], 2

–Ambiguous: is it moving

0b0000010

or 0b000000000000010

or 0b[30 zeros]10

mov BYTE PTR [ebx], 2

mov WORD PTR [ebx], 2

mov DWORD PTR [ebx], 2

28UVa CS216 Spring 2006 - Lecture 20: Introducing Asm

Charge

• Section this week: understanding
x86 assembly

• Problem Set 7: out today, due in 1
week

–Reading and writing x86 assembly code

–Figuring out what code is generated for
different program constructs

• Exam 2: out next Wednesday

