CS216: Program and Data Representation
University of Virginia Computer Science
Spring 2006 David Evans

Fast = °
Dictionaries

http://www.cs.virginia.edu/cs216

Exam 2 Review Questions

e JVML: Do istore_1 and astore_1 share
the same memory location?

e Memory management: Explain
memory leaks

e Complexity classes: What is NP-
Complete?

UVa CS216 Spring 2006 - Lecture 23: Fast Dictionaries 3

Fast Dictionaries

e Problem set 2, question 5...

“You may assume Python'’s
dictionary type provides lookup
and insert operations that have
running times in O(1).”

e Class 6: fastest possible search using
binary comparator is O(log n)

|Can Python really have an 0O(1) Iookup?|

UVa CS216 Spring 2006 - Lecture 23: Fast Dictionaries 5

Announcements

e PS7 Comments will be posted later today

e Exam 2 will be posted Thursday after 5pm

¢ Office hours: Today: 2-3pm; Tomorrow: 10-
llam

e After Thursday, I will start charging storage
fees on uncollected graded assignments:
- Exam 1: 1 point per page per day
- Problem Sets: 1 star color per week

UVa CS216 Spring 2006 - Lecture 23: Fast Dictionaries 2

CS216 Roadmap

Data Representation Program Representation

Rest of
CS216 \ Real World Problems
“Hel Objects Python :—"gh—level
['H’,"i",\8 Arrays code anguage
38 Low-level

0x42381a, Addresses, C code

language
Note: depending on your Virtual Machine
answers to the topic interest 3 JVML language
exam question, we might also 86 Assembl
01 ook at another VM (CLR) or —— Y
another assembly language
(RISC) .
—rcurvworra—hYSIiCS
UVa CS216 Spring 2006 - Lecture 23: Fast Dictionaries 4

Fast Dictionaries
Data Representation
e If the keys can be anything?

No - best one

comparison can “Hello” [l—— Objects
do is eliminate pH’,i",\0] [l — Arrays
> the elements 0x42381a,

.4, —
!

X

The keys must
be bits, so we 01001010
can do better!

Bits

UVa CS216 Spring 2006 - Lecture 23: Fast Dictionaries 6

Lookup Table

Key Value
000000 “red”
000001 “orange”
000010 “blue”
000011 null
000100 “green”
000101 “white”

Works great...unless the key space is sparse.

UVa CS216 Spring 2006 - Lecture 23: Fast Dictionaries

7

Sparse Lookup Table

e Keys: names (words of up to 40 7-
bit ASCII characters)

e How big a table do we need?

40 * 7 = 280
2280 = ~1,9*%1084 entries

We need lookup tables where many keys
can map to the same entry

UVa CS216 Spring 2006 - Lecture 23: Fast Dictionaries

Hash Table
Location Key Value
e Hash Function: 0 “Alice” |“red”
h: Key — [0, m-1] 1 “Bob” |“orange”
2 “Coleen” |“blue”
3 null null
Here: 2 “Eve” “green”
h = firstLetter(Key)
5 “Fred” “white”
m-1 |“Zeus” |“purple”

UVa CS216 Spring 2006 - Lecture 23: Fast Dictionaries

Collisions

e What if we need both “"Colleen” and
“Cathy” keys?

UVa CS216 Spring 2006 - Lecture 23: Fast Dictionaries

10

Separate Chaining

e Each element in hash table is not a
<key, value> pair, but a list of pairs

Location Entry
“Alice”,

0 — s |/
1

Lo |
2 blue
3 “Cathy”,

“green” '

UVa CS216 Spring 2006 - Lecture 23: Fast Dictionaries

11

Hash Table Analysis

e Lookup Running Time?

Worst Case: O(N)

N entries, all in same bucket
Hopeful Case: O(1)

Most buckets with < ¢ entries

UVa CS216 Spring 2006 - Lecture 23: Fast Dictionaries

12

Requirements for
“Hopeful” Case

e Function £ is well distributed for key
space
for a randomly selected k € K,
probability (h(k) =i) = 1/m
e Size of table (m) scales linearly with N
- Expected bucket size is O(N/m)

Finding a good / can be tough
(more next class)

Saving Memory

Location Entry
0 — =
1 - -
5 | bone]y |
2 Leen)/]

Can we avoid the overhead of all
those linked lists?

UVa CS216 Spring 2006 - Lecture 23: Fast Dictionaries 13

UVa CS216 Spring 2006 - Lecture 23: Fast Dictionaries 14

Linear Open Addressing

Location Key Value
0 “Alice” “red”
1 “Bob” “orange”
2 “Coleen” “blue”
3 “Cathy” “yellow”
4 “Eve” “green”
5 “Fred” “white”
6 “Dave” “red”

Sequential Open Addressing

def lookup (T, k):
i = hash (k)
while (not looped all the way around):
if T[i] == null:
return null
else if T[i].key == k:
return T[i].value
else
i =i+ 1mod T.length

UVa CS216 Spring 2006 - Lecture 23: Fast Dictionaries 15

UVa CS216 Spring 2006 - Lecture 23: Fast Dictionaries 16

Problems with Sequential

¢ “Primary Clustering”

—Once there is a full chunk of the table,
anything hash in that chunk makes it
grow

- Note that this happens even if & is well
distributed

e Improved strategy?
Don‘t look for slots sequentially

i =i+ s mod T.length
|Doesn’t help - just makes clusters appear scattered |

Double Hashing

e Use a second hash function to look
for slots
i =i+ hash2 (K) mod T.length
e Desirable properties of hash2:
—-Should eventually try all slots

result of hash2(K) should be
relatively prime to m
(Easiest to make m prime)

—-Should be independent from hash

UVa CS216 Spring 2006 - Lecture 23: Fast Dictionaries 17

UVa CS216 Spring 2006 - Lecture 23: Fast Dictionaries 18

Charge (Announcements)

e PS7 Comments will be posted later today
e Exam 2 will be posted Thursday after 5pm
e Office hours: Today: 2-3pm; Tomorrow:
10-11am
e After Thursday, I will start charging
storage fees on uncollected graded
assignments:
- Exam 1: 1 point per page per day
- Problem Sets: 1 star color per week

UVa CS216 Spring 2006 - Lecture 23: Fast Dictionaries

19

