
1

CS216: Program and Data Representation

University of Virginia Computer Science
Spring 2006 David Evans

http://www.cs.virginia.edu/cs216

Lecture
23:

Review
/

Fast
Dictionaries

2UVa CS216 Spring 2006 - Lecture 23: Fast Dictionaries

Announcements
• PS7 Comments will be posted later today

• Exam 2 will be posted Thursday after 5pm

• Office hours: Today: 2-3pm; Tomorrow: 10-
11am

• After Thursday, I will start charging storage
fees on uncollected graded assignments:

– Exam 1: 1 point per page per day

– Problem Sets: 1 star color per week

3UVa CS216 Spring 2006 - Lecture 23: Fast Dictionaries

Exam 2 Review Questions

• JVML: Do istore_1 and astore_1 share
the same memory location?

• Memory management: Explain
memory leaks

• Complexity classes: What is NP-
Complete?

4UVa CS216 Spring 2006 - Lecture 23: Fast Dictionaries

CS216 Roadmap
Data Representation Program Representation

Bits01001010

Addresses,
Numbers,
Characters

0x42381a,
3.14,

‘x’

Objects“Hello”
Arrays[‘H’,’i’,\0]

Python
code

High-level

language

C code Low-level
language

Virtual Machine
language

JVML

Assemblyx86

Real World Problems

Real World Physics

Rest of
CS216

Note: depending on your

answers to the topic interest

exam question, we might also
look at another VM (CLR) or

another assembly language
(RISC)

5UVa CS216 Spring 2006 - Lecture 23: Fast Dictionaries

Fast Dictionaries

• Problem set 2, question 5...

• Class 6: fastest possible search using
binary comparator is O(log n)

“You may assume Python’s
dictionary type provides lookup
and insert operations that have
running times in O(1).”

Can Python really have an O(1) lookup?

6UVa CS216 Spring 2006 - Lecture 23: Fast Dictionaries

Fast Dictionaries

• If the keys can be anything?

No – best one
comparison can
do is eliminate
½ the elements

Data Representation

Bits01001010

0x42381a,
3.14,

‘x’

Objects“Hello”
Arrays[‘H’,’i’,\0]

The keys must
be bits, so we
can do better!

2

7UVa CS216 Spring 2006 - Lecture 23: Fast Dictionaries

Lookup Table

......

“white”000101

“green”000100

null000011

“blue”000010

“orange”000001

“red”000000

ValueKey

Works great...unless the key space is sparse.

8UVa CS216 Spring 2006 - Lecture 23: Fast Dictionaries

Sparse Lookup Table

• Keys: names (words of up to 40 7-
bit ASCII characters)

• How big a table do we need?

40 * 7 = 280
2280 = ~1.9*1084 entries

We need lookup tables where many keys
can map to the same entry

9UVa CS216 Spring 2006 - Lecture 23: Fast Dictionaries

Hash Table

• Hash Function:

h: Key → [0, m-1]

“purple”“Zeus”m-1

...

“Fred”

“Eve”

null

“Coleen”

“Bob”

“Alice”

Key

......

“white”5

“green”4

null3

“blue”2

“orange”1

“red”0

ValueLocation

Here:
h = firstLetter(Key)

10UVa CS216 Spring 2006 - Lecture 23: Fast Dictionaries

Collisions

• What if we need both “Colleen” and
“Cathy” keys?

11UVa CS216 Spring 2006 - Lecture 23: Fast Dictionaries

“Alice”,

“red”

Separate Chaining

• Each element in hash table is not a
<key, value> pair, but a list of pairs

Entry

...

3

2

1

0

Location

“Coleen”,

“blue”

“Cathy”,
“green”

12UVa CS216 Spring 2006 - Lecture 23: Fast Dictionaries

Hash Table Analysis

• Lookup Running Time?

Worst Case: Θ(N)

N entries, all in same bucket
Hopeful Case: O(1)

Most buckets with < c entries

3

13UVa CS216 Spring 2006 - Lecture 23: Fast Dictionaries

Requirements for
“Hopeful” Case

• Function h is well distributed for key
space

• Size of table (m) scales linearly with N

–Expected bucket size is Θ(N / m)

for a randomly selected k ∈ K,
probability (h(k) = i) = 1/m

Finding a good h can be tough
(more next class)

14UVa CS216 Spring 2006 - Lecture 23: Fast Dictionaries

Saving Memory

“Alice”,

“red”

Entry

...

3

2

1

0

Location

“Coleen”,
“blue”

“Cathy”,

“green”

Can we avoid the overhead of all
those linked lists?

15UVa CS216 Spring 2006 - Lecture 23: Fast Dictionaries

Linear Open Addressing

...

“Dave”

“Fred”

“Eve”

“Cathy”

“Coleen”

“Bob”

“Alice”

Key

“red”6

“white”5

“green”4

“yellow”3

“blue”2

“orange”1

“red”0

ValueLocation

16UVa CS216 Spring 2006 - Lecture 23: Fast Dictionaries

Sequential Open Addressing

def lookup (T, k):
i = hash (k)
while (not looped all the way around):
if T[i] == null:
return null

else if T[i].key == k:
return T[i].value

else
i = i + 1 mod T.length

17UVa CS216 Spring 2006 - Lecture 23: Fast Dictionaries

Problems with Sequential
• “Primary Clustering”

–Once there is a full chunk of the table,
anything hash in that chunk makes it
grow

–Note that this happens even if h is well
distributed

• Improved strategy?

Don’t look for slots sequentially
i = i + s mod T.length

Doesn’t help – just makes clusters appear scattered

18UVa CS216 Spring 2006 - Lecture 23: Fast Dictionaries

Double Hashing

• Use a second hash function to look
for slots

i = i + hash2 (K) mod T.length

• Desirable properties of hash2:

–Should eventually try all slots

–Should be independent from hash

result of hash2(K) should be
relatively prime to m

(Easiest to make m prime)

4

19UVa CS216 Spring 2006 - Lecture 23: Fast Dictionaries

Charge (Announcements)

• PS7 Comments will be posted later today

• Exam 2 will be posted Thursday after 5pm

• Office hours: Today: 2-3pm; Tomorrow:
10-11am

• After Thursday, I will start charging
storage fees on uncollected graded
assignments:

– Exam 1: 1 point per page per day

– Problem Sets: 1 star color per week

