
1

CS216: Program and Data Representation

University of Virginia Computer Science
Spring 2006 David Evans

http://www.cs.virginia.edu/cs216

Lecture
24:
Fast

Dictionaries

2UVa CS216 Spring 2006 - Lecture 23: Fast Dictionaries

CS216 Roadmap
Data Representation Program Representation

Bits01001010

Addresses,
Numbers,
Characters

0x42381a,
3.14,

‘x’

Objects“Hello”
Arrays[‘H’,’i’,\0]

Python
code

High-level

language

C code Low-level
language

Virtual Machine
language

JVML

Assemblyx86

Real World Problems

Real World Physics

Rest of
CS216

Note: depending on your

answers to the topic interest

exam question, we might also
look at another VM (CLR) or

another assembly language
(RISC)

3UVa CS216 Spring 2006 - Lecture 23: Fast Dictionaries

Fast Dictionaries

• Problem set 2, question 5...

• Class 6: fastest possible search using
binary comparator is O(log n)

“You may assume Python’s
dictionary type provides lookup
and insert operations that have
running times in O(1).”

Can Python really have an O(1) lookup?

4UVa CS216 Spring 2006 - Lecture 23: Fast Dictionaries

Fast Dictionaries

• If the keys can be anything?

No – best one
comparison can
do is eliminate
½ the elements

Data Representation

Bits01001010

0x42381a,
3.14,

‘x’

Objects“Hello”
Arrays[‘H’,’i’,\0]

The keys must
be bits, so we
can do better!

5UVa CS216 Spring 2006 - Lecture 23: Fast Dictionaries

Lookup Table

......

“white”000101

“green”000100

null000011

“blue”000010

“orange”000001

“red”000000

ValueKey

Works great...unless the key space is sparse.

6UVa CS216 Spring 2006 - Lecture 23: Fast Dictionaries

Sparse Lookup Table

• Keys: names (words of up to 40 7-
bit ASCII characters)

• How big a table do we need?

40 * 7 = 280
2280 = ~1.9*1084 entries

We need lookup tables where many keys
can map to the same entry

2

7UVa CS216 Spring 2006 - Lecture 23: Fast Dictionaries

Hash Table

• Hash Function:

h: Key → [0, m-1]

“purple”“Zeus”m-1

...

“Fred”

“Eve”

null

“Coleen”

“Bob”

“Alice”

Key

......

“white”5

“green”4

null3

“blue”2

“orange”1

“red”0

ValueLocation

Here:
h = firstLetter(Key)

8UVa CS216 Spring 2006 - Lecture 23: Fast Dictionaries

Collisions

• What if we need both “Colleen” and
“Cathy” keys?

9UVa CS216 Spring 2006 - Lecture 23: Fast Dictionaries

“Alice”,

“red”

Separate Chaining

• Each element in hash table is not a
<key, value> pair, but a list of pairs

Entry

...

3

2

1

0

Location

“Coleen”,

“blue”

“Cathy”,
“green”

10UVa CS216 Spring 2006 - Lecture 23: Fast Dictionaries

Hash Table Analysis

• Lookup Running Time?

Worst Case: Θ(N)

N entries, all in same bucket
Hopeful Case: O(1)

Most buckets with < c entries

11UVa CS216 Spring 2006 - Lecture 23: Fast Dictionaries

Requirements for
“Hopeful” Case

• Function h is well distributed for key
space

• Size of table (m) scales linearly with N

–Expected bucket size is Θ(N / m)

for a randomly selected k ∈ K,
probability (h(k) = i) = 1/m

Finding a good h can be tough
(more later…)

12UVa CS216 Spring 2006 - Lecture 23: Fast Dictionaries

Saving Memory

“Alice”,

“red”

Entry

...

3

2

1

0

Location

“Coleen”,
“blue”

“Cathy”,

“green”

Can we avoid the overhead of all
those linked lists?

3

13UVa CS216 Spring 2006 - Lecture 23: Fast Dictionaries

Linear Open Addressing

...

“Dave”

“Fred”

“Eve”

“Cathy”

“Coleen”

“Bob”

“Alice”

Key

“red”6

“white”5

“green”4

“yellow”3

“blue”2

“orange”1

“red”0

ValueLocation

14UVa CS216 Spring 2006 - Lecture 23: Fast Dictionaries

Sequential Open Addressing

def lookup (T, k):
i = hash (k)
while (not looped all the way around):
if T[i] == null:
return null

else if T[i].key == k:
return T[i].value

else
i = i + 1 mod T.length

15UVa CS216 Spring 2006 - Lecture 23: Fast Dictionaries

Problems with Sequential
• “Primary Clustering”

–Once there is a full chunk of the table,
anything hash in that chunk makes it
grow

–Note that this happens even if h is well
distributed

• Improved strategy?

Don’t look for slots sequentially
i = i + s mod T.length

Doesn’t help – just makes clusters appear scattered

16UVa CS216 Spring 2006 - Lecture 23: Fast Dictionaries

Double Hashing

• Use a second hash function to look
for slots

i = i + hash2 (K) mod T.length

• Desirable properties of hash2:

–Should eventually try all slots

–Should be independent from hash

result of hash2(K) should be
relatively prime to m

(Easiest to make m prime)

17UVa CS216 Spring 2006 - Lecture 23: Fast Dictionaries

Good Hash Functions

• Deterministic

• Arbitrary fixed-size output

• Easy to compute

• Well-distributed

for a randomly selected k ∈ K,
probability (h(k) = i) = 1/m

18UVa CS216 Spring 2006 - Lecture 23: Fast Dictionaries

Reasonable Hash Functions?

• Just take the first log m bits

• Just take the lowest log m bits

• Sum all key characters

• PS6 Mystery code (SHA-1)

hash = Σ ki mod m

i in indexes(k)

4

19UVa CS216 Spring 2006 - Lecture 23: Fast Dictionaries

What does Python do?

long
PyObject_Hash(PyObject *v)

{
PyTypeObject *tp = v->ob_type;

if (tp->tp_hash != NULL)

return (*tp->tp_hash)(v);
if (tp->tp_compare == NULL && RICHCOMPARE(tp) == NULL) {

return _Py_HashPointer(v); /* Use address as hash value */
}

/* If there's a cmp but no hash defined, the object can't be hashed */

PyErr_SetString(PyExc_TypeError, "unhashable type");
return -1;

}

Types can have
their own hash functions

Python-2.4/Objects/object.c

20UVa CS216 Spring 2006 - Lecture 23: Fast Dictionaries

_Py_HashPointer
long
_Py_HashPointer(void *p)

{
#if SIZEOF_LONG >= SIZEOF_VOID_P

return (long)p;
#else

/* convert to a Python long and hash that */
PyObject* longobj;

long x;
if ((longobj = PyLong_FromVoidPtr(p)) == NULL) {

x = -1;
goto finally;

}
x = PyObject_Hash(longobj);

finally:
Py_XDECREF(longobj);

return x;
#endif

}

What does this
mean for Python’s
garbage collector?

21UVa CS216 Spring 2006 - Lecture 23: Fast Dictionaries

Dictionary

Python-2.4/Objects/dictobject.c

/*
Major subtleties ahead: Most hash schemes depend on having
a "good" hash function, in the sense of simulating randomness.
Python doesn't: its most important hash functions (for strings
and ints) are very regular in common cases:
>>> map(hash, (0, 1, 2, 3))
[0, 1, 2, 3]
>>> map(hash, ("namea", "nameb", "namec", "named"))
[-1658398457, -1658398460, -1658398459, -1658398462]
>>>

This isn't necessarily bad! ...

22UVa CS216 Spring 2006 - Lecture 23: Fast Dictionaries

To the contrary, in a table of size 2**i, taking
the low-order i bits as the initial table index is
extremely fast, and there are no collisions at all for
dicts indexed by a contiguous range of ints.
The same is approximately true when keys are
"consecutive" strings. So this gives better-than-
random behavior in common cases, and that's very
desirable.

OTOH, when collisions occur, the tendency to fill
contiguous slices of the hash table makes a good
collision resolution strategy crucial.

23UVa CS216 Spring 2006 - Lecture 23: Fast Dictionaries

Collision Avoidance

Taking only the last i bits of the hash
code is also vulnerable: for example,
consider
[i << 16 for i in range(20000)]
as a set of keys. Since ints are their
own hash codes, and this fits in a dict of
size 2**15, the last 15 bits of every
hash code are all 0: they *all* map to
the same table index.

24UVa CS216 Spring 2006 - Lecture 23: Fast Dictionaries

Impact

Scott Crosby, Dan Wallach. Denial of
Service via Algorithmic Complexity
Attacks. USENIX Security 2003.

http://www.cs.rice.edu/~scrosby/hash/

Python Example:
10,000 inputs in dictionary:
Expected case: 0.2 seconds
Collision-constructed case: 20 seconds

5

25UVa CS216 Spring 2006 - Lecture 23: Fast Dictionaries

From: Guido van Rossum guido@python.org
Subject: [Python-Dev] Algoritmic Complexity Attack on Python

Date: Fri, 30 May 2003 07:39:18 -0400
[Tim Peters]
> I'm uninterested in trying to "do something" about these. If

> resource-hogging is a serious potential problem in some context, then
> resource limitation is an operating system's job, ...

[Scott Crosby]
> I disagree. Changing the hash function eliminates these attacks...

At what cost for Python? 99.99% of all Python programs are not vulnerable to this
kind of attack, because they don't take huge amounts of arbitrary input from an

untrusted source. If the hash function you propose is even a *teensy* bit slower
than the one we've got now (and from your description I'm sure it has to be),

everybody would be paying for the solution to a problem they don't have. You
keep insisting that you don't know Python. Hashing is used an awful lot in Python

-- as an interpreted language, most variable lookups and all method and instance
variable lookups use hashing. So this would affect every Python program.

Scott, we thank you for pointing out the issue, but I think you'll be wearing out
your welcome here quickly if you keep insisting that we do things your way based

on the evidence you've produced so far.
--Guido van Rossum

http://mail.python.org/pipermail/python-dev/2003-May/035874.html

26UVa CS216 Spring 2006 - Lecture 23: Fast Dictionaries

Charge

• Start thinking about what you
want to do for PS8 now

• You will receive an email by
tomorrow night

