

- Newcomb Hall South Meeting Room, 10:30am-noon
- This replaces CS216 class (so you don't have to walk out at 11am)

 Brute force algorithm in PS1 bestAlignment (U, V) = base case if |U| == 0 or |V| == 0otherwise f (bestAlignment (U[1:], V), bestAlignment (U, V[1:]), bestAlignment (U[1:], V[1:]) • Compare to Fibonacci: fibonacci (n) = Running base case if n == 0 or n == 1g (fibonacci (n-1), time $\in \Theta(\phi^n)$ fibonacci (n-2)) $\phi = 1.618...$ JVa CS216 Spring 2006 - Lecture 4: Dynamic Programming, Trees

	Finished Matrix										
		-	С	А	Т	G					
	-	0 ←	2 +	4 ←	6 +	8					
	А	-2	0	8 -	- 6 -	- 4					
	Т	-4	-2	6	18 -	- 16					
	G	-6	-4	4	16	28					
	G	-8	-6	2	14	26					
UVa CS216 Spring 2006 - Lecture 4: Dynamic Programming, Trees											

Start in bottom right corner; follow arrows:			nding Alignment							
↑gap U ↑no gap				С		А		Т	G	
	-	0	•	2	+	4	ţ	6 •	-8	
	А	-2	2	0		8	1 1	- 6	4	
	Т	-2 t	1	-2		6 †	1	18	16	
	G		5	/	G	4		16	28	
	G		A	T G	G	2		14	26	
UVa CS	UVa CS216 Spring 2006 - Lecture 4: Dynamic Programming, Trees									

N-W Correctness

• Informal argument:

UVa CS216 Spring 2006 - Lecture 4: Dynamic Programming, Trees

- Fills each cell by picking the best possible choice
- Finds the best possible path using the filled in matrix
- Guaranteed to find the best possible alignment since all possibilities are considered

17

