CS216: Program and Data Representation

University of Virginia Computer Science

Spring 2006

LA Schedule This Week
S e Sections today and Tuesday
< —-Thornton D rooms
J o g’ e Wednesday, Feb 1:
v é Ewn -Go to Ron Rivest’s talk
13_ o £ 8 - 10:3Qam—noon, Newcomb Hall South
oD C - Meeting Room
8 5 lc_nl_ e Thursday, Feb 2:
- E —-Portman Wills, “Saving the World with a

Computer Science Degree”
-3:30pm, MEC 205 (CS290/CS390 +)

http://www.cs.virginia.edu/cs216

UVa CS216 Spring 2006 - Lecture 4: Dynamic Programming, Trees

RSA '
. . Wedn I
(Rivest, Shamir, Adelman 1978) ednesday’s Class
e Public-Key Encryption e Ron Rivest, “Security of Voting
- Allows parties who have not established Systems”
a shared secret to communicate

e Newcomb Hall South Meeting Room,
10:30am-noon

e This replaces CS216 class (so you
don’t have to walk out at 11am)

securely
-Your web browser used it when you see

e Most important algorithm inve
past 100 years 2

¢ Link from notes

TN

UVa CS216 Spring 2006 - Lecture 4: Dynamic Programming, Trees 3 UVa CS216 Spring 2006 - Lecture 4: Dynamic Programming, Trees
Sequence Alignment Sequence Alignment
. - Input size = n=
¢ Brute force algorithm in PS1 * b ptL,Ll'S © " SvlliH Vi
bestAlignment (U, V) = €s |gnmer.1 U V)=
base case if |[U] == 0 or |[V| == 0 base case if [U| == 0 or [V| == 0
otherwise f(bestAlignment (U[1:], V), otherwise

bestAlignment (U, V[1:]),

! f(bestAlignment (U[1:], V), size = n-1
_bestAIlgnn_1.ent (U[L:], Vit bestAlignment (U, V[1:]), size = n-1
. Coﬁr‘goaicrg (tn‘; Fibonacci: bestAlignment (U[1:], V[1:]) size = n-2
base case ifn == 0orn==1 RUNNINg a(n) =a(n-1) + a(n-1) + a(n-2)
g (fibonacci (n-1), time € © _ _
fibonacci (n-2)) 6= 1618. (¢") >a(n-1) + a(n-2) € B(¢")

Running time of bestAlignment € Q(¢")

UVa CS216 Spring 2006 - Lecture 4: Dynamic Programming, Trees 5 UVa CS216 Spring 2006 - Lecture 4: Dynamic Programming, Trees

Growth of Best Alignment

10000000000

| = 3n
1000000000 | f(n) =2f(n-1) +f(n-2) |

100000000
10000000

1000000

2n

100000

10000

1000
100

10

1

123456 7 8 91011121314151617 181920

BLAST

Basic Local Alignment Search Tool
http://www.ncbi.nlm.nih.gov/BLAST/

GCGTTGCTGGCGTTTTTCCATAGGCTCCGCCCCCCTGACGAGCATCACAAAAATCGACGCGGTGGCGAAACCCGAC
AGGACTATAAAGATACCAGGCGTTTCCCCCTGGAAGCTCCCTCGTGTTCCGACCCTGCCGCTTACCGGATACCTGTC
CGCCTTTCTCCCTTCGGGAAGCGTGGCTGCTCACGCTGTACCTATCTCAGTTCGGTGTAGGTCGTTCGCTCCAAGC
TGGGCTGTGTGCCGTTCAGCCCGACCGCTGCGCCTTATCCGGTAACTATCGTCTTGAGTCCAACCCGGTAAAGTAG
GACAGGTGCCGGCAGCGCTCTGGGTCATTTTCGGCGAGGACCGCTTTCGCTGGAGATCGGCCTGTCGCTTGCGGT
ATTCGGAATCTTGCACGCCCTCGCTCAAGCCTTCGTCACTCCAAACGTTTCGGCGAGAAGCAGGCCATTATCGCCG
GCATGGCGGCCGACGCGCTGGGCTGGCGTTCGCGACGCGAGGCTGGATGGCCTTCCCCATTATGATTCTTCTCGC
TTCCGGCGGCCCGCGTTGCAGGCCATGCTGTCCAGGCAGGTAGATGACGACCATCAGGGACAGCTTCAACGGCTCT
TACCAGCCTAACTTCGATCACTGGACCGCTGATCGTCACGGCGATTTATGCCGCACATGGACGCGTTGCTGGCGTT
TTTCCATAGGCTCCGCCCCCCTGACGAGCATCACAAACAAGTCAGAGGTGGCGAAACCCGACAGGACTATAAAGAT
ACCAGGCGTTTCCCCCTGGAAGCGCTCTCCTGTTCCGACCCTGCCGCTTACCGGATACCTGTCCGCCTTTCTCCCTT
CGGGCTTTCTCAATGCTCACGCTGTAGGTATCTCAGTTCGGTGTAGGTCGTTCGCTCCAAGCTGACGAACCCCCCG
TTCAGCCCGACCGCTGCGCCTTATCCGGTAACTATCGTCTTGAGTCCAACACGACTTAACGGGTTGGCATGGATTG
TAGGCGCCGCCCTATACCTTGTCTGCCTCCCCGCGGTGCATGGAGCCGGGCCACCTCGACCTGAATGGAAGCCGGC
GGCACCTCGCTAACGGCCAAGAATTGGAGCCAATCAATTCTTGCGGAGAACTGTGAATGCGCAAACCAACCCTTGG
CCATCGCGTCCGCCATCTCCAGCAGCCGCACGCGGCGCATCTCGGGCAGCGTTGGGTCCT

Dinosaur DNA from Jurassic Park (p. 103)

UVa CS216 Spring 2006 - Lecture 4: Dynamic Programming, Trees 7

UVa CS216 Spring 2006 - Lecture 4: Dynamic Programming, Trees 8

formatting B L f\q rl‘

Vour request has been suscessfully submitted and put into the Blast Queue

Query = (1200 letters)

The request [D s “H]EEEDEEH B164-102585574167 BLASTQ4 |
[Formatl Eramran)

The rssults are estimated to be ready in 10 seconds but may be done sooner

Flease press "FORMATI" when you wish to check your results. Tou may change the formating options for your
"FORMATI" agein, You may also request results of & different search by entering any other vatid request ID to se

results of BLAST

BLASTN 2.2.13 [Nov-27-2005]

protein database search programs”, Nasleic Avids Res. 25:0389-3102.

RID: 1138550623-16164-102585974167. BLASTO

‘é;;,"é::;;;:::":‘;ﬁ;f::‘:i":' Ul = 1200
o : [Vl > 16.5 Billion

If you have any problems or questions with the results of this search
Please refer to the BLAST FAGs
Tasonowy reports

ouery=
Lengen=1200

of 495 Blast Hits on the Query Sequence

Mouse over o see the define, click to show slignments

Color key for alignment scores

<40 4050 80200 =
e e ——
b T T T T T |
) 200 400 600 800 1000 1200

UVa CS216 Spring 2006 - Lecture 4: Dynamic Programming, Trees 9

UVa CS216 Spring 2006 - Lecture 4: Dynamic Programming, Trees 10

Needleman-Wunsch Algorithm

¢ Avoid effort duplication by storing
intermediate results

e Computing a matrix showing the best
possible score up to each pair of
positions

¢ Find the alignment by following a
path in that matrix

N-W Initialization gequence v

UVa CS216 Spring 2006 - Lecture 4: Dynamic Programming, Trees 11

- C A T G
- (1]
D A
Y
c T
(0]
S G
O
(0]
0
G
UVa CS216 Spring 2006 - Lecture 4: Dynamic Programming, Trees 12

Filling Matrix

- F A T G
[CATG
R 0 -2+ T4 4 -6-.-8
] -
AT
A | 2086 — 4
f AT
T | -4
t
I € score = score[€] - g
G -6 A score = score[N] - g
i R match: score = score[R] + ¢
G -8 no match: score = score[&]
UVa CS216 Spring 2006 - Lecture 4: Dynamic Programming, Trees 14

Start in bottom
right corner;

follow arrows: ndlng Allgnment

€gap V

Filling Matrix Sequence V
- C A T G
- 0 |For each square consider:
i € GapinU
> A | N score = score[€] - g
g A GapinV
GC) T score = score[A] - g
> R Nogap
g G match: score = score[R] + ¢
n
G no match: score = score[]
[[[|
UVa CS216 Spring 2006 - Lecture 4: Dynamic Programming, Trees 13
Finished Matrix
- C A T G
- 0 -2« -4+ -6 T -8
S
A -2 0 8 T 6 T 4
t t t
T -4 -2 6 18 — 16
t . — —
G -6 -4 4 16 28
t t $ "t
G -8 -6 2 14 26
UVa CS216 Spring 2006 - Lecture 4: Dynamic Programming, Trees 15

N U
@ggpgap C A T G
- 042444 -6--8
N
Al 2] 0 | 864
+ i t
T -4 -2 6 18 «~ 16
¢ t b= N
G 4 4 16 28
clalt|-[cl— N)
G “lalT|clc]| 2 14
UVa CS216 Spring 2006 - Lecture 4: Dynamic Programming, Trees 16

N-W Correctness

e Informal argument:

- Fills each cell by picking the best
possible choice

- Finds the best possible path using the
filled in matrix
e Guaranteed to find the best possible
alignment since all possibilities are
considered

UVa CS216 Spring 2006 - Lecture 4: Dynamic Programming, Trees 17

N-W Analysis

e What is the space usage?

Need to store the matrix:
=(U+1)*(AVI+1)

UVa CS216 Spring 2006 - Lecture 4: Dynamic Programming, Trees 18

N-W Running Time

e Time to fill matrix | € score=score[€]-¢

- Each square € 0(1) A score =score[] - g
A X R match: score = score[R] + ¢
- Assumes:

o Lookups are O(1)
- Time scales with number of cells:

O (IUl = IVI)

e Time to find alignment
- One decision for each entry in answer

O (Ul + IVI)
« Total running time ¢ @ (IU[* [V])

no match: score = score[&]

UVa CS216 Spring 2006 - Lecture 4: Dynamic Programming, Trees 19

resuttz ot BLAST

BLASTN 2.2.13 [Nov-27-2005]

Good enough?

Ul = 1200
IVI>16.5 Billion

ion of 498 Blast Hits on the Query Sequence

Mause averto see the define, dick o show alignmens

Golor key for alignment scores

<40 4050 20200 >=200
auery

o 200 400 600 800 1000 1200

UVa CS216 Spring 2006 - Lecture 4: Dynamic Programming, Trees 20

Heuristic Alignment

e BLAST needs to be faster
¢ No asymptotically faster algorithm is
guaranteed to find best alignment

- Only way to do better is reject some
alignments without considering them

e BLAST uses heuristics:

- Looks for short sequences (~3 proteins = 9
nucleotides) that match well without gaps

- Extend those sequences into longer sequences

UVa CS216 Spring 2006 - Lecture 4: Dynamic Programming, Trees 21

PS2

e Part 1 (1-3): List representations

e Part 2 (4-5): Dynamic programming
implementation of sequence alignment

e Part 3 (6-10): Brute force
implementation of phylogeny

—lilko alinnmant hriite farce dnocn’t crala

PS2 is longer and harder than PS1.
You have 10 days to complete it -
Get started early!

S TTITS WIT D€ parc ur roo

UVa CS216 Spring 2006 - Lecture 4: Dynamic Programming, Trees 22

Data Structures

o If we have a good list implementation,
do we need any other data structures?
e For computing: no
-We can compute everything with just lists
(actually even less). The underlying
machine memory can be thought of as a
list.
e For thinking: yes

- Lists are a very limited way of thinking
about problems.

UVa CS216 Spring 2006 - Lecture 4: Dynamic Programming, Trees 23

List Limitations

Info: Info: Info:

(
Next: o] | Next: © Next:@

Node Node Node
In a list, every element has direct
relationships with only two things:

predecessor and successor

UVa CS216 Spring 2006 - Lecture 4: Dynamic Programming, Trees 24

Complex
4 Relationships

Bill Cheswick’s
Map of the Internet

http://research.lumeta.com/ches/map/gallery/

List — Tree

e List: each element has relationships
with up to 2 other elements:
Predecessor |—| Element |—>| Successor

e Binary Tree: each element has

relationships with up to 3 other
elements:
Left Child| [Right Child

UVa CS216 Spring 2006 - Lecture 4: Dynamic Programming, Trees 25

UVa CS216 Spring 2006 - Lecture 4: Dynamic Programming, Trees 26

Language
Phylogeny

French

Romanian
Spanish
Italian
Norwegian
Czech
English oo Andlos@en I From Lecture 1.

UVa CS216 Spring 2006 - Lecture 4: Dynamic Programming, Trees 27

Tree Terms Root

Note that CS trees
are usually drawn
upside down!

Height = 3

French

Romanian

Spanish
Italian
Norwegian

Czech Leaf
German Anglo-Saxon K Height =0

English

UVa CS216 Spring 2006 - Lecture 4: Dynamic Programming, Trees 28

Tree Terms

® Root: a node with no parent
—There can only be one root

e Leaf: a node with no children

e Height of a Node: length of the longest
path from that node to a leaf

e Depth of a Node: length of the path
from the Root to that node

e Height of a Tree: maximum depth of a
node in that tree = height of the root

UVa CS216 Spring 2006 - Lecture 4: Dynamic Programming, Trees 29

Perfect Binary Tree

How many leaves?
2h
How > h

many
nodes?

2h+1_q /
All leaves have the same depth
Nodes = 1+2+22+ ... +2h

UVa CS216 Spring 2006 - Lecture 4: Dynamic Programming, Trees 30

Tree Node Operations

e getLeftChild (Node)
e getRightChild (Node)
e getInfo (Node)

def isLeaf (self):
return self.getLeftChild () == None
and self.getRightChild () == None

UVa CS216 Spring 2006 - Lecture 4: Dynamic Programming, Trees 31

Calculating Height

Height of a Node:
length of the
longest path from

def height (self):
if self.isLeaf ():

return 0 that node to a
else: leaf
return 1

+ max(self.getLeftChild().height(),
self.getRightChild().height())

UVa CS216 Spring 2006 - Lecture 4: Dynamic Programming, Trees 32

Analyzing Height

e What is the asymptotic running time
or our height procedure?
def height (self):
if self.isLeaf ():
return 0
else:
return 1
+ max(self.getLeftChild().height(),
self.getRightChild().height())

UVa CS216 Spring 2006 - Lecture 4: Dynamic Programming, Trees 33

Charge

e Today and tomorrow:
- Sections in Thorton D classrooms
e Wednesday:
- Instead of CS216, go to Ron Rivest’s talk

-10:30am, Newcomb Hall South Meeting
Room

e Get started on PS2!

UVa CS216 Spring 2006 - Lecture 4: Dynamic Programming, Trees 34

