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CS216: Program and Data Representation

University of Virginia Computer Science
Spring 2006 David Evans

Lecture 5:
Logs and

Trees
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Menu

• Ron Rivest’s talk

–Mixnets and voting

–Public-key cryptography (dynamic 
programming)

• Trees

• PS1 Grading
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MIXes

C1

C2
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M1

M2

M3

M4

Random, secret permutation

Encrypted Votes Decrypted Votes
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Security Properties
C1

C2

C3

C4

M1

M2

M3

M4

1. Voters must be able to create votes,
but not decrypt them.

2. Observer should be able to verify
that output votes correspond to
input votes, but not match up votes.
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Public-Key Cryptography

• Private procedure: E

• Public procedure: D

• Identity: E (D (m)) = D (E (m)) = m

• Secure: cannot determine E from D

• Concept stated by Whitfield Diffie and 
Martin Hellman in 1976, but didn’t 
know how to find suitable E and D

6UVa CS216 Spring 2006 - Lecture 5: Logs and Trees

RSA
The era of “electronic mail” [Potter1977] 
may soon be upon us; we must ensure 
that two important properties of the 
current “paper mail” system are 
preserved: (a) messages are private, and 
(b) messages can be signed.

R. Rivest, A. Shamir and L. Adleman.  A 
Method for Obtaining Digital Signatures 
and Public-Key Cryptosystems. Jan 1978. 



2

7UVa CS216 Spring 2006 - Lecture 5: Logs and Trees

Public
encryption 
function

Private
encryption 
function

We will not attempt to explain why
it works and is (probably) secure in
CS216.  See links to paper and slides.
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Implementing RSA

def RSAencrypt (M, e, n):
if e == 0:
return 1

else:
return (M * RSAencrypt (M, e - 1, n)) % n

Note: this actually “works” in Python even though RSA 

needs 100+-digit values (but not in Java) because 
integers are not limited to a fixed size.  We’ll consider 

number representations later in the class. 

200-digit number
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Result

…
File "C:\cs216\workspace\ps2\RSA.py", line 17, in RSAencrypt
return (M * RSAencrypt (M, e - 1, n)) % n

File "C:\cs216\workspace\ps2\RSA.py", line 17, in RSAencrypt
return (M * RSAencrypt (M, e - 1, n)) % n

File "C:\cs216\workspace\ps2\RSA.py", line 17, in RSAencrypt
return (M * RSAencrypt (M, e - 1, n)) % n

RuntimeError: maximum recursion depth exceeded
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Analyzing RSA

def RSAencrypt (M, e, n):
if e == 0: return 1
else: 
return (M * RSAencrypt (M, e - 1, n)) % n

How many recursive calls?
The value of the e parameter

(scales as O(2e) size of e)

Can we use dynamic programming
(and math) to make this faster?
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Fast Exponentiation

a9 = a ∗ a ∗ a ∗ a ∗ a ∗ a ∗ a ∗ a

a9

a4 a4 a

a2 a2

a a a a

a2 a2

a a a a

Multiplication
is associative

12UVa CS216 Spring 2006 - Lecture 5: Logs and Trees

Fast Exponentiation

def square (x): return x * x
def RSAencrypt (M, e, n):
if e == 0: return 1
elif e % 2 == 0:
return square(RSAencrypt (M, e/2, n)) % n

else:
return (M * RSAencrypt (M, e - 1, n)) % n
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Analysis

• How many recursive calls?

def square (x): return x * x
def RSAencrypt (M, e, n):
if e == 0: return 1
elif e % 2 == 0:
return square(RSAencrypt (M, e/2, n)) % n

else:
return (M * RSAencrypt (M, e - 1, n)) % n

a9

a8 a

a4

a2

aWorst case: e = 2q – 1

2q calls
∈ Θ(log2 e)
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Logarithms Review

• Logarithm is inverse of exponential

• Bases

–Is log2 f(x) ∈ O (log3 f(x))?

– Is log2 f(x) ∈ Ω (log3 f(x))?

x = logb bx = blogb x
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Changing Bases

x = blogb x

loga x = loga (blog
b

x)

loga x = loga b × loga (logb x)

1 = loga b / loga x × logb x

logb x = loga x / loga b

So, within O, Θ, Ω the base doesn’t matter
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Logs and Trees

• Many tree algorithms have running 
time ∈ log(N) where N is the number 
of nodes in the tree, since for a well 
balanced tree

N = bh+1 + 1

h ~ logb(N)
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Implementing RSA

• Recursive calls ∈ Θ(log2 e)

• Running time ∈ Θ(log2 e) if 
multiplication time is O(1)

def square (x): return x * x
def RSAencrypt (M, e, n):
if e == 0: return 1
elif e % 2 == 0:
return square(RSAencrypt (M, e/2, n)) % n

else:
return (M * RSAencrypt (M, e - 1, n)) % n

a9

a8 a

a4

a2

a

Note that this cannot really be true!
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Public-Key Applications: 
Privacy

• Alice encrypts message to Bob using 
Bob’s Private Key

• Only Bob knows Bob’s Private Key ⇒

only Bob can decrypt message

Encrypt DecryptPlaintext
Ciphertext

Plaintext

Alice Bob

Bob’s Public Key Bob’s Private Key
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Signatures

• Bob knows it was from Alice, since only 
Alice knows Alice’s Private Key

• Non-repudiation: Alice can’t deny signing 
message (except by claiming her key was 
stolen!)

• Integrity: Bob can’t change message 
(doesn’t know Alice’s Private Key)

Encrypt DecryptPlaintext

Signed
Message

Plaintext

Alice
Bob

Alice’s Private Key Alice’s Public Key
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MIXes

C1

C2

C3

C4

M1

M2

M3

M4

Random, secret permutation

Encrypted 
Votes

Decrypted Votes

Mux keys: KUM, KRM

C1 = EKUM[“Kerry”]

M = EKRM[C]

Opps…doesn’t work: anyone 
can use public key to 
compute EKUM[M] for outputs
and compare to inputs.
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MIXes

C1

C2

C3

C4

M1

M2

M3

M4

Random, secret permutation

Encrypted 
Votes

Mux keys: KUM, KRM

C1 = EKUM[“Kerry” + R1]

M = left part of EKRM[C]

Random, secret
value picked by
voter

22UVa CS216 Spring 2006 - Lecture 5: Logs and Trees

Voting ApplicationC1

C2

C3

C4

M1

M2

M3

M4
Republicrat

Party
Democrican

Party
Orange
Party

C = EKUR [EKUD [EKUG [“Badnarik” || R1] R2] R3]

Each mux decrypts with private key and removes R
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Voting ApplicationC1

C2

C3

C4

M1

M2

M3

M4
Republicrat

Party
Democrican

Party
Orange
Party

“Nader”

“Nader”

“Nader”

“Nader”

C = EKUG [“Badnarik” || R1]

Does publishing R1 help?
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Auditing MuxesC1

C2

C3

C4

M
1
M
2
M
3
M
4Republicrat

Party
Democrican

Party
Orange
Party

“Nader”

“Nader”

“Nader”

“Nader”

Inputi = EKUR [EKUD [EKUG [v || R1] R2] R3]

Outputj = EKUD [EKUG [v || R1] R2]

If R reveals j and R3, D can check EKUR [Outputj || R3] = Inputi
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Catching Cheaters

• Probability a mux can cheats on k
votes without getting caught =

• Probability a voters vote is revealed 
to eavesdropper

• If muxes collude, all bets are off

½k

m muxes
½m

Note: unaudited votes only be
one of n/2 possible outputs!
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Voting Caveat

• Real problems with voting have very 
little to do with cryptography or 
mixes…
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Trees
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Tree Node Operations

• getLeftChild (Node)

• getRightChild (Node)

• getInfo (Node)

def isLeaf (self):
return self.getLeftChild () == None
and self.getRightChild () == None
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Calculating Height

def height (self):

if self.isLeaf ():

return 0

else:

return 1 

+ max(self.getLeftChild().height(),

self.getRightChild().height())

Height of a Node: 
length of the 
longest path from 
that node to a 
leaf
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Analyzing Height

• What is the asymptotic running time 
or our height procedure?

def height (self):

if self.isLeaf ():

return 0

else:

return 1 

+ max(self.getLeftChild().height(),

self.getRightChild().height())
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Tree Preorder Traversal

B

A

C

J

E

KH

D

I

F

L

G

M
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Preorder Traversal

def preorder (t):
print t.info()
for c in t.children():

c.preorder ()
N is number of nodes in t
Running time: Θ(N) 

Space use: worst case: O(N)

well-balanced case: O(log N)
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PS1

Returned in section today
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CS216 PS Grading Scale
�Gold Star – Excellent Work.  You got 
everything I wanted on this PS. 

�Green Star – Better than good work

�Blue Star – Good Work.  You got most 
things on this PS, but some answers 
could be better.

�Silver Star – Some problems.  Make 
sure you understand the comments.

�Red Star – Serious problems and lack of 
effort. PS1 Average: ����
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No upper limit
�� - Double Gold Star: exceptional work!  

Better than I expected anyone would do.

���- Triple Gold Star: Better than I thought 

possible

����- Quadruple Gold Star: You have broken 

important new ground in CS which should be 
published in a major journal! (e.g., invented a 
alignment algorithm better than BLAST)

�����- Quintuple Gold Star: You deserve a 

Turing Award! (find an O(nk) solution to finding 
optimal phylogenies)
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Philosophy

“This generation of students got into Harvard 
by doing exactly and precisely what teacher 
wants. If teacher is vague about what he [sic] 
wants, they work a lot harder to figure out 
what they want and whether or not it is good. 
The vaguer the directions, the more likely the 
opportunity for serendipity to happen. It drives 
them nuts!”

Harvard Professor John Stilgoe
(on 60 Minutes, 4 January 2004) 
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Charge

• Today and tomorrow:

–Sections in Thorton D classrooms

• Wednesday: PS2 is Due!


