
1

CS216: Program and Data Representation

University of Virginia Computer Science
Spring 2006 David Evans

Lecture 5:
Logs and

Trees

http://www.cs.virginia.edu/cs216 2UVa CS216 Spring 2006 - Lecture 5: Logs and Trees

Menu

• Ron Rivest’s talk

–Mixnets and voting

–Public-key cryptography (dynamic
programming)

• Trees

• PS1 Grading

3UVa CS216 Spring 2006 - Lecture 5: Logs and Trees

MIXes

C1

C2

C3

C4

M1

M2

M3

M4

Random, secret permutation

Encrypted Votes Decrypted Votes

4UVa CS216 Spring 2006 - Lecture 5: Logs and Trees

Security Properties
C1

C2

C3

C4

M1

M2

M3

M4

1. Voters must be able to create votes,
but not decrypt them.

2. Observer should be able to verify
that output votes correspond to
input votes, but not match up votes.

5UVa CS216 Spring 2006 - Lecture 5: Logs and Trees

Public-Key Cryptography

• Private procedure: E

• Public procedure: D

• Identity: E (D (m)) = D (E (m)) = m

• Secure: cannot determine E from D

• Concept stated by Whitfield Diffie and
Martin Hellman in 1976, but didn’t
know how to find suitable E and D

6UVa CS216 Spring 2006 - Lecture 5: Logs and Trees

RSA
The era of “electronic mail” [Potter1977]
may soon be upon us; we must ensure
that two important properties of the
current “paper mail” system are
preserved: (a) messages are private, and
(b) messages can be signed.

R. Rivest, A. Shamir and L. Adleman. A
Method for Obtaining Digital Signatures
and Public-Key Cryptosystems. Jan 1978.

2

7UVa CS216 Spring 2006 - Lecture 5: Logs and Trees

Public
encryption
function

Private
encryption
function

We will not attempt to explain why
it works and is (probably) secure in
CS216. See links to paper and slides.

8UVa CS216 Spring 2006 - Lecture 5: Logs and Trees

Implementing RSA

def RSAencrypt (M, e, n):
if e == 0:
return 1

else:
return (M * RSAencrypt (M, e - 1, n)) % n

Note: this actually “works” in Python even though RSA

needs 100+-digit values (but not in Java) because
integers are not limited to a fixed size. We’ll consider

number representations later in the class.

200-digit number

9UVa CS216 Spring 2006 - Lecture 5: Logs and Trees

Result

…
File "C:\cs216\workspace\ps2\RSA.py", line 17, in RSAencrypt
return (M * RSAencrypt (M, e - 1, n)) % n

File "C:\cs216\workspace\ps2\RSA.py", line 17, in RSAencrypt
return (M * RSAencrypt (M, e - 1, n)) % n

File "C:\cs216\workspace\ps2\RSA.py", line 17, in RSAencrypt
return (M * RSAencrypt (M, e - 1, n)) % n

RuntimeError: maximum recursion depth exceeded

10UVa CS216 Spring 2006 - Lecture 5: Logs and Trees

Analyzing RSA

def RSAencrypt (M, e, n):
if e == 0: return 1
else:
return (M * RSAencrypt (M, e - 1, n)) % n

How many recursive calls?
The value of the e parameter

(scales as O(2e) size of e)

Can we use dynamic programming
(and math) to make this faster?

11UVa CS216 Spring 2006 - Lecture 5: Logs and Trees

Fast Exponentiation

a9 = a ∗ a ∗ a ∗ a ∗ a ∗ a ∗ a ∗ a

a9

a4 a4 a

a2 a2

a a a a

a2 a2

a a a a

Multiplication
is associative

12UVa CS216 Spring 2006 - Lecture 5: Logs and Trees

Fast Exponentiation

def square (x): return x * x
def RSAencrypt (M, e, n):
if e == 0: return 1
elif e % 2 == 0:
return square(RSAencrypt (M, e/2, n)) % n

else:
return (M * RSAencrypt (M, e - 1, n)) % n

3

13UVa CS216 Spring 2006 - Lecture 5: Logs and Trees

Analysis

• How many recursive calls?

def square (x): return x * x
def RSAencrypt (M, e, n):
if e == 0: return 1
elif e % 2 == 0:
return square(RSAencrypt (M, e/2, n)) % n

else:
return (M * RSAencrypt (M, e - 1, n)) % n

a9

a8 a

a4

a2

aWorst case: e = 2q – 1

2q calls
∈ Θ(log2 e)

14UVa CS216 Spring 2006 - Lecture 5: Logs and Trees

Logarithms Review

• Logarithm is inverse of exponential

• Bases

–Is log2 f(x) ∈ O (log3 f(x))?

– Is log2 f(x) ∈ Ω (log3 f(x))?

x = logb bx = blogb x

15UVa CS216 Spring 2006 - Lecture 5: Logs and Trees

Changing Bases

x = blogb x

loga x = loga (blog
b

x)

loga x = loga b × loga (logb x)

1 = loga b / loga x × logb x

logb x = loga x / loga b

So, within O, Θ, Ω the base doesn’t matter

16UVa CS216 Spring 2006 - Lecture 5: Logs and Trees

Logs and Trees

• Many tree algorithms have running
time ∈ log(N) where N is the number
of nodes in the tree, since for a well
balanced tree

N = bh+1 + 1

h ~ logb(N)

17UVa CS216 Spring 2006 - Lecture 5: Logs and Trees

Implementing RSA

• Recursive calls ∈ Θ(log2 e)

• Running time ∈ Θ(log2 e) if
multiplication time is O(1)

def square (x): return x * x
def RSAencrypt (M, e, n):
if e == 0: return 1
elif e % 2 == 0:
return square(RSAencrypt (M, e/2, n)) % n

else:
return (M * RSAencrypt (M, e - 1, n)) % n

a9

a8 a

a4

a2

a

Note that this cannot really be true!

18UVa CS216 Spring 2006 - Lecture 5: Logs and Trees

Public-Key Applications:
Privacy

• Alice encrypts message to Bob using
Bob’s Private Key

• Only Bob knows Bob’s Private Key ⇒

only Bob can decrypt message

Encrypt DecryptPlaintext
Ciphertext

Plaintext

Alice Bob

Bob’s Public Key Bob’s Private Key

4

19UVa CS216 Spring 2006 - Lecture 5: Logs and Trees

Signatures

• Bob knows it was from Alice, since only
Alice knows Alice’s Private Key

• Non-repudiation: Alice can’t deny signing
message (except by claiming her key was
stolen!)

• Integrity: Bob can’t change message
(doesn’t know Alice’s Private Key)

Encrypt DecryptPlaintext

Signed
Message

Plaintext

Alice
Bob

Alice’s Private Key Alice’s Public Key

20UVa CS216 Spring 2006 - Lecture 5: Logs and Trees

MIXes

C1

C2

C3

C4

M1

M2

M3

M4

Random, secret permutation

Encrypted
Votes

Decrypted Votes

Mux keys: KUM, KRM

C1 = EKUM[“Kerry”]

M = EKRM[C]

Opps…doesn’t work: anyone
can use public key to
compute EKUM[M] for outputs
and compare to inputs.

21UVa CS216 Spring 2006 - Lecture 5: Logs and Trees

MIXes

C1

C2

C3

C4

M1

M2

M3

M4

Random, secret permutation

Encrypted
Votes

Mux keys: KUM, KRM

C1 = EKUM[“Kerry” + R1]

M = left part of EKRM[C]

Random, secret
value picked by
voter

22UVa CS216 Spring 2006 - Lecture 5: Logs and Trees

Voting ApplicationC1

C2

C3

C4

M1

M2

M3

M4
Republicrat

Party
Democrican

Party
Orange
Party

C = EKUR [EKUD [EKUG [“Badnarik” || R1] R2] R3]

Each mux decrypts with private key and removes R

23UVa CS216 Spring 2006 - Lecture 5: Logs and Trees

Voting ApplicationC1

C2

C3

C4

M1

M2

M3

M4
Republicrat

Party
Democrican

Party
Orange
Party

“Nader”

“Nader”

“Nader”

“Nader”

C = EKUG [“Badnarik” || R1]

Does publishing R1 help?

24UVa CS216 Spring 2006 - Lecture 5: Logs and Trees

Auditing MuxesC1

C2

C3

C4

M
1
M
2
M
3
M
4Republicrat

Party
Democrican

Party
Orange
Party

“Nader”

“Nader”

“Nader”

“Nader”

Inputi = EKUR [EKUD [EKUG [v || R1] R2] R3]

Outputj = EKUD [EKUG [v || R1] R2]

If R reveals j and R3, D can check EKUR [Outputj || R3] = Inputi

5

25UVa CS216 Spring 2006 - Lecture 5: Logs and Trees

Catching Cheaters

• Probability a mux can cheats on k
votes without getting caught =

• Probability a voters vote is revealed
to eavesdropper

• If muxes collude, all bets are off

½k

m muxes
½m

Note: unaudited votes only be
one of n/2 possible outputs!

26UVa CS216 Spring 2006 - Lecture 5: Logs and Trees

Voting Caveat

• Real problems with voting have very
little to do with cryptography or
mixes…

27UVa CS216 Spring 2006 - Lecture 5: Logs and Trees

Trees

28UVa CS216 Spring 2006 - Lecture 5: Logs and Trees

Tree Node Operations

• getLeftChild (Node)

• getRightChild (Node)

• getInfo (Node)

def isLeaf (self):
return self.getLeftChild () == None
and self.getRightChild () == None

29UVa CS216 Spring 2006 - Lecture 5: Logs and Trees

Calculating Height

def height (self):

if self.isLeaf ():

return 0

else:

return 1

+ max(self.getLeftChild().height(),

self.getRightChild().height())

Height of a Node:
length of the
longest path from
that node to a
leaf

30UVa CS216 Spring 2006 - Lecture 5: Logs and Trees

Analyzing Height

• What is the asymptotic running time
or our height procedure?

def height (self):

if self.isLeaf ():

return 0

else:

return 1

+ max(self.getLeftChild().height(),

self.getRightChild().height())

6

31UVa CS216 Spring 2006 - Lecture 5: Logs and Trees

Tree Preorder Traversal

B

A

C

J

E

KH

D

I

F

L

G

M

32UVa CS216 Spring 2006 - Lecture 5: Logs and Trees

Preorder Traversal

def preorder (t):
print t.info()
for c in t.children():

c.preorder ()
N is number of nodes in t
Running time: Θ(N)

Space use: worst case: O(N)

well-balanced case: O(log N)

33UVa CS216 Spring 2006 - Lecture 5: Logs and Trees

PS1

Returned in section today

34UVa CS216 Spring 2006 - Lecture 5: Logs and Trees

CS216 PS Grading Scale
�Gold Star – Excellent Work. You got
everything I wanted on this PS.

�Green Star – Better than good work

�Blue Star – Good Work. You got most
things on this PS, but some answers
could be better.

�Silver Star – Some problems. Make
sure you understand the comments.

�Red Star – Serious problems and lack of
effort. PS1 Average: ����

35UVa CS216 Spring 2006 - Lecture 5: Logs and Trees

No upper limit
�� - Double Gold Star: exceptional work!

Better than I expected anyone would do.

���- Triple Gold Star: Better than I thought

possible

����- Quadruple Gold Star: You have broken

important new ground in CS which should be
published in a major journal! (e.g., invented a
alignment algorithm better than BLAST)

�����- Quintuple Gold Star: You deserve a

Turing Award! (find an O(nk) solution to finding
optimal phylogenies)

36UVa CS216 Spring 2006 - Lecture 5: Logs and Trees

Philosophy

“This generation of students got into Harvard
by doing exactly and precisely what teacher
wants. If teacher is vague about what he [sic]
wants, they work a lot harder to figure out
what they want and whether or not it is good.
The vaguer the directions, the more likely the
opportunity for serendipity to happen. It drives
them nuts!”

Harvard Professor John Stilgoe
(on 60 Minutes, 4 January 2004)

7

37UVa CS216 Spring 2006 - Lecture 5: Logs and Trees

Charge

• Today and tomorrow:

–Sections in Thorton D classrooms

• Wednesday: PS2 is Due!

