
1

CS216: Program and Data Representation

University of Virginia Computer Science
Spring 2006 David Evans

Lecture 7:
Greedy

Algorithms

http://www.cs.virginia.edu/cs216 2UVa CS216 Spring 2006 - Lecture 7: Greed is Good

Menu

“Life is uncertain. Eat dessert first.”
Ernestine Ulmer

La vita e incerta - mangia
il dolce per primo.

3UVa CS216 Spring 2006 - Lecture 7: Greed is Good

Greed is Good?

• Adam Smith, An Inquiry into the
Nature and Causes of the Wealth of
Nations (1776)

“It is not from the benevolence of the
butcher, the brewer, or the baker, that
we expect our dinner, but from their
regard to their own interests.”

• Invisible hand: individuals acting on
personal greed produces (nearly)
globally optimal results

4UVa CS216 Spring 2006 - Lecture 7: Greed is Good

Greedy Algorithms
• Make the locally best choice

“myopically” at each step

–Need to figure out what “dessert” is

• Hope it leads to a globally good
solution

–Sometimes, can prove it leads to an
optimal solution

–Other times (like phylogeny), non-
optimal, but usually okay if you get lucky

5UVa CS216 Spring 2006 - Lecture 7: Greed is Good

Interval Scheduling Problem

• Input: R, a set of n resource
requests:

{<s0, f0>, <s1, f1>, …, <sn-1, fn-1>}

• Output: a subset S of R with no
overlapping requests (si > sj < fj for
any <si, fi>, <sj, fj> ∈ S) such that

|S| ≥ |T| for any T ⊆ R with no
overlapping requests

6UVa CS216 Spring 2006 - Lecture 7: Greed is Good

Example
R = {<0, 3>, <1, 2>, <1, 5>,

<2, 5>, <2.5, 4>, <4, 4.5> }

0 1 2 3 4 5

2

7UVa CS216 Spring 2006 - Lecture 7: Greed is Good

Solution
R = {<0, 3>, <1, 2>, <1, 5>,

<2, 5>, <2.5, 4>, <4, 4.5> }

0 1 2 3 4 5

8UVa CS216 Spring 2006 - Lecture 7: Greed is Good

Brute Force Algorithm

• Try all possible subsets

–Filter out ones with overlapping
intervals

–Pick the largest subset

• Running time

–How many subsets?

–Constant work for each subset

– Θ(2n)

2n

9UVa CS216 Spring 2006 - Lecture 7: Greed is Good

Greedy Approaches

• Need to pick best subset by making
myopic decisions, one element at a
time

• Many possible criteria for making
myopic decision

–Earliest starting time?

–Latest ending time?

–Shortest?

10UVa CS216 Spring 2006 - Lecture 7: Greed is Good

Greedy Approach:
Earliest Starting

0 1 2 3 4 5

Not optimal:
|S| < |best| = 3

11UVa CS216 Spring 2006 - Lecture 7: Greed is Good

Greedy Approach:
Earliest Finishing

0 1 2 3 4 5

Not optimal:
|S| < |best| = 3

12UVa CS216 Spring 2006 - Lecture 7: Greed is Good

Greedy Approach:
Shortest Length

0 1 2 3 4 5

?

3

13UVa CS216 Spring 2006 - Lecture 7: Greed is Good

Greedy Approach:
Shortest Length

0 1 2 3 4 5

R = {<0, 2.5>, <2, 3>, <2.5, 5>}

Not optimal:
|S| < |best| = 2

14UVa CS216 Spring 2006 - Lecture 7: Greed is Good

Greedy Approach:
Pick Earliest Finishing Time

0 1 2 3 4 5

15UVa CS216 Spring 2006 - Lecture 7: Greed is Good

Greedy Algorithm:
Running Time Analysis

• Straightforward implementation:

–Search to find earliest finishing: O(n)

–Eliminate matching elements: O(n)

–Repeat (up to n times): O(n2)

• Smarter implementation:

–Sort by finishing time: O(n log n)

–Go through list, selecting if non-
overlapped: O(n)

–Running time ∈ O(n log n)

16UVa CS216 Spring 2006 - Lecture 7: Greed is Good

Correctness?
• How to prove a greedy algorithm is
nonoptimal

–Find a counterexample: some input where
the greedy algorithm does not find the best
solution

• How to prove a greedy algorithm is
optimal

–By induction: always best up to some size

–By exchange argument: swapping any
element in solution cannot improve result

17UVa CS216 Spring 2006 - Lecture 7: Greed is Good

Proof

• The greedy algorithm produces,

R = { r0, …, rk-1 }

• Suppose there is a better subset,

Q = { q0, …, qk-1, qk }

• Sort both by finishing time, so

fri
< frj

for all 0 ≤ i < j < k

fqi
< fqj

for all 0 ≤ i < j < k+1

18UVa CS216 Spring 2006 - Lecture 7: Greed is Good

Proof

R = { r0, …, rk-1 }

Q = { q0, …, qk-1, qk }

fri
< frj

for all 0 ≤ i < j < k

fqi
< fqj

for all 0 ≤ i < j < k+1

Strategy:
1. Prove by induction fri

≤ fqj
for all i < k

2. Then, since frk-1
≤ fqk-1

if qk is valid, it
would have also been added to R.

4

19UVa CS216 Spring 2006 - Lecture 7: Greed is Good

Induction Proof: fri
≤ fqj

• Basis: fr0
≤ fq0

– Greedy algorithm choose r0 as the element

with the earliest finishing time

– So, fr0
≤ f

j
for all j

• Induction: fri-1
≤ fqj-1

⇒ fri
≤ fqj

– Since fri-1
≤ fqj-1

we know sqi
≥ fri-1

– So, greedy algorithm could choose qi

– If fqi
< frj

, greedy algorithm would have chosen

fqj
instead of frj

R = { r0, …, rk-1 } Q = { q0, …, qk-1, qk }

20UVa CS216 Spring 2006 - Lecture 7: Greed is Good

Knapsack Problems

• You have a collection of
items, each has a value
and weight

• How to optimally fill a
knapsack with as many
items as you can carry

Scheduling: weight = time,
one deadline for all tasks
Budget allocation: weight = cost

21UVa CS216 Spring 2006 - Lecture 7: Greed is Good

General Knapsack Problem

• Input: a set of n items {<name0, value0,
weight0>, …, <namen-1, valuen-1, weightn-1>},
and maxweight

• Output: a subset of the input items
such that the sum of the weights of
all items in the output set is ≤
maxweight and there is no subset with
weight sum ≤ maxweight with a greater
value sum

22UVa CS216 Spring 2006 - Lecture 7: Greed is Good

Brute Force Knapsack
def knapsack (items, maxweight):

best = {}
bestvalue = 0
for s in allPossibleSubsets (items):

value = 0
weight = 0
for item in s:

value += item.value
weight += item.weight

if weight <= maxweight:
if value > bestvalue:

best = s
bestvalue = value

return best

(Defining and
analyzing this
might be a good
Exam 1 question)

23UVa CS216 Spring 2006 - Lecture 7: Greed is Good

Brute Force Knapsack Analysis

• How many subsets are there?

• How much work for each subset?

2n

for item in s:

value += item.value
weight += item.weight

Average size of each subset is n/2
(there are as many subsets
with size c and of size n – c)

Running time ∈ Θ(n2n)

24UVa CS216 Spring 2006 - Lecture 7: Greed is Good

Dynamic Programming

• Section this week: dynamic
programming solution to the
knapsack problem

• Running time in

O(maxweight * n)

5

25UVa CS216 Spring 2006 - Lecture 7: Greed is Good

Greedy Knapsack Algorithm

• Repeat until no more items fit:

–Add the most valuable item that fits

• “Greedy”: always picks the most
valuable item that fits first

26UVa CS216 Spring 2006 - Lecture 7: Greed is Good

Greedy Knapsack Algorithm
def knapsack_greedy (items, maxweight):

result = []

weight = 0
while True:

try to add the best item
weightleft = maxweight - weight

bestitem = None

for item in items:
if item.weight <= weightleft \

and (bestitem == None \

or item.value > bestitem.value):
bestitem = item

if bestitem == None: break
else:

result.append (bestitem)

weight += bestitem.weight
return result

Running Time
∈Θ(n2)

27UVa CS216 Spring 2006 - Lecture 7: Greed is Good

Is Greedy Algorithm Correct?

No.
Proof by counterexample:
Consider input

items = {<“gold”, 100, 1 >,
<“platinum”, 110, 3>
<“silver”, 80, 2 >}

maxweight = 3
Greedy algorithm picks {<“platinum”>}
value = 110, but {<“gold”>, “silver”>}
has weight <= 3 and value = 180

28UVa CS216 Spring 2006 - Lecture 7: Greed is Good

Same Weights Knapsack Problem

• Input: a set of n items {<name0, value0>,
…, <namen-1, valuen-1>}, each having
weight w, and maxweight

• Output: a subset of the input items
such that the sum of the weights of
all items in the output set is ≤
maxweight and there is no subset with
weight sum ≤ maxweight with a greater
value sum

29UVa CS216 Spring 2006 - Lecture 7: Greed is Good

Greedy Algorithm Correct

• It keeps adding items until maxweight
would be exceeded, so the result contains
k items where kw<= maxweight and (k+1)w >

maxweight

• Hence, cannot add any item (weight w)
without removing another item

• But, any item with value > value of the
lowest value item in result would have
already been added by greedy algorithm

30UVa CS216 Spring 2006 - Lecture 7: Greed is Good

Subset Sum Problem

• Knapsack problem where value = weight

• Input: set of n positive integers, {w0,

…, wn-1}, maximum weight W

• Output: a subset S of the input set
such that the sum of the elements of
S ≤ W and there is no subset of the

input set whose sum is greater than
the sum of S and ≤ W

6

31UVa CS216 Spring 2006 - Lecture 7: Greed is Good

Brute Force Subset Sum

def subsetsum (items, maxweight):
best = {}
for s in allPossibleSubsets (items):
if sum (s) <= maxweight \

and sum (s) > sum (best)
best = s

return best

Just like brute force knapsack:
Running time ∈ Θ(n2n)

32UVa CS216 Spring 2006 - Lecture 7: Greed is Good

Greedy Subset Sum?

• Pick largest item that fits

–Bad: I = { 4, 5, 7 } W = 9

• Pick smallest item

–Bad: I = { 4, 5, 7 } W = 7

• Doesn’t prove there is no myopic
criteria that works

Note: Subset Sum is known to be NP-
Complete, so finding one would prove P = NP

33UVa CS216 Spring 2006 - Lecture 7: Greed is Good

Charge

• More greedy algorithm examples in
Section this week

• PS3: greedy phylogeny algorithm

–Not optimal (prove in Question 8)

–Usually reasonably good (similar to
algorithms used in practice)

