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CS216: Program and Data Representation

University of Virginia Computer Science
Spring 2006 David Evans

Lecture 7:
Greedy 

Algorithms
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Menu

“Life is uncertain. Eat dessert first.”
Ernestine Ulmer

La vita e incerta - mangia
il dolce per primo.
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Greed is Good?

• Adam Smith, An Inquiry into the 
Nature and Causes of the Wealth of 
Nations (1776)

“It is not from the benevolence of the 
butcher, the brewer, or the baker, that 
we expect our dinner, but from their 
regard to their own interests.”

• Invisible hand: individuals acting on 
personal greed produces (nearly) 
globally optimal results
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Greedy Algorithms
• Make the locally best choice 

“myopically” at each step

–Need to figure out what “dessert” is

• Hope it leads to a globally good 
solution

–Sometimes, can prove it leads to an 
optimal solution

–Other times (like phylogeny), non-
optimal, but usually okay if you get lucky
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Interval Scheduling Problem

• Input: R, a set of n resource 
requests: 

{<s0, f0>, <s1, f1>, …, <sn-1, fn-1>}

• Output: a subset S of R with no 
overlapping requests (si > sj < fj for 
any <si, fi>, <sj, fj> ∈ S) such that

|S| ≥ |T| for any T ⊆ R with no 
overlapping requests
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Example
R = {<0, 3>, <1, 2>, <1, 5>,

<2, 5>, <2.5, 4>, <4, 4.5> }

0 1 2 3 4 5
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Solution
R = {<0, 3>, <1, 2>, <1, 5>,

<2, 5>, <2.5, 4>, <4, 4.5> }

0 1 2 3 4 5
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Brute Force Algorithm

• Try all possible subsets

–Filter out ones with overlapping 
intervals

–Pick the largest subset

• Running time

–How many subsets? 

–Constant work for each subset

– Θ(2n)

2n
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Greedy Approaches

• Need to pick best subset by making 
myopic decisions, one element at a 
time

• Many possible criteria for making 
myopic decision 

–Earliest starting time?

–Latest ending time?

–Shortest?
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Greedy Approach: 
Earliest Starting

0 1 2 3 4 5

Not optimal:
|S| < |best| = 3
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Greedy Approach: 
Earliest Finishing

0 1 2 3 4 5

Not optimal:
|S| < |best| = 3
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Greedy Approach: 
Shortest Length

0 1 2 3 4 5

?
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Greedy Approach: 
Shortest Length

0 1 2 3 4 5

R = {<0, 2.5>, <2, 3>, <2.5, 5>}

Not optimal:
|S| < |best| = 2
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Greedy Approach:
Pick Earliest Finishing Time

0 1 2 3 4 5
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Greedy Algorithm: 
Running Time Analysis

• Straightforward implementation:

–Search to find earliest finishing: O(n)

–Eliminate matching elements: O(n)

–Repeat (up to n times): O(n2)

• Smarter implementation:

–Sort by finishing time: O(n log n)

–Go through list, selecting if non-
overlapped: O(n)

–Running time ∈ O(n log n)
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Correctness?
• How to prove a greedy algorithm is 
nonoptimal

–Find a counterexample: some input where 
the greedy algorithm does not find the best 
solution

• How to prove a greedy algorithm is 
optimal

–By induction: always best up to some size

–By exchange argument: swapping any 
element in solution cannot improve result
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Proof

• The greedy algorithm produces,

R = { r0, …, rk-1 }

• Suppose there is a better subset,

Q = { q0, …, qk-1, qk }

• Sort both by finishing time, so

fri
< frj

for all 0 ≤ i < j < k

fqi
< fqj

for all 0 ≤ i < j < k+1
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Proof

R = { r0, …, rk-1 }

Q = { q0, …, qk-1, qk }

fri
< frj

for all 0 ≤ i < j < k

fqi
< fqj

for all 0 ≤ i < j < k+1

Strategy: 
1. Prove by induction fri

≤ fqj
for all i < k

2. Then, since frk-1
≤ fqk-1 

if qk is valid, it 
would have also been added to R.
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Induction Proof: fri
≤ fqj

• Basis: fr0
≤ fq0

– Greedy algorithm choose r0 as the element 

with the earliest finishing time

– So, fr0
≤ f

j
for all j

• Induction: fri-1
≤ fqj-1

⇒ fri
≤ fqj

– Since fri-1
≤ fqj-1 

we know sqi
≥ fri-1

– So, greedy algorithm could choose qi

– If fqi
<  frj

, greedy algorithm would have chosen 

fqj
instead of frj

R = { r0, …, rk-1 }      Q = { q0, …, qk-1, qk }

20UVa CS216 Spring 2006 - Lecture 7: Greed is Good

Knapsack Problems

• You have a collection of 
items, each has a value 
and weight

• How to optimally fill a 
knapsack with as many 
items as you can carry 

Scheduling: weight = time,
one deadline for all tasks
Budget allocation: weight = cost

21UVa CS216 Spring 2006 - Lecture 7: Greed is Good

General Knapsack Problem

• Input: a set of n items {<name0, value0, 
weight0>, …, <namen-1, valuen-1, weightn-1>}, 
and maxweight

• Output: a subset of the input items 
such that the sum of the weights of 
all items in the output set is ≤
maxweight and there is no subset with 
weight sum ≤ maxweight with a greater 
value sum
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Brute Force Knapsack
def knapsack (items, maxweight):

best = {} 
bestvalue = 0
for s in allPossibleSubsets (items):

value = 0
weight = 0
for item in s:

value += item.value
weight += item.weight

if weight <= maxweight: 
if value > bestvalue:

best = s
bestvalue = value

return best

(Defining and
analyzing this 
might be a good 
Exam 1 question)
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Brute Force Knapsack Analysis

• How many subsets are there?

• How much work for each subset?

2n

for item in s:

value += item.value
weight += item.weight

Average size of each subset is n/2
(there are as many subsets 
with size c and of size n – c) 

Running time ∈ Θ(n2n)
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Dynamic Programming

• Section this week: dynamic 
programming solution to the 
knapsack problem

• Running time in

O(maxweight * n)
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Greedy Knapsack Algorithm

• Repeat until no more items fit:

–Add the most valuable item that fits

• “Greedy”: always picks the most 
valuable item that fits first

26UVa CS216 Spring 2006 - Lecture 7: Greed is Good

Greedy Knapsack Algorithm
def knapsack_greedy (items, maxweight):

result = [] 

weight = 0
while True:

# try to add the best item
weightleft = maxweight - weight

bestitem = None

for item in items:
if item.weight <= weightleft \

and (bestitem == None \

or item.value > bestitem.value):
bestitem = item

if bestitem == None: break
else:

result.append (bestitem)

weight += bestitem.weight
return result

Running Time
∈Θ(n2)
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Is Greedy Algorithm Correct?

No.
Proof by counterexample: 
Consider input

items = {<“gold”, 100, 1 >,
<“platinum”, 110, 3>
<“silver”, 80, 2 >}

maxweight = 3
Greedy algorithm picks {<“platinum”>}
value = 110, but {<“gold”>, “silver”>}
has weight <= 3 and value = 180
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Same Weights Knapsack Problem

• Input: a set of n items {<name0, value0>, 
…, <namen-1, valuen-1>}, each having 
weight w, and maxweight

• Output: a subset of the input items 
such that the sum of the weights of 
all items in the output set is ≤
maxweight and there is no subset with 
weight sum ≤ maxweight with a greater 
value sum
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Greedy Algorithm Correct

• It keeps adding items until maxweight 
would be exceeded, so the result contains 
k items where kw<= maxweight and (k+1)w > 

maxweight

• Hence, cannot add any item (weight w) 
without removing another item

• But, any item with value > value of the 
lowest value item in result would have 
already been added by greedy algorithm
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Subset Sum Problem

• Knapsack problem where value = weight

• Input: set of n positive integers, {w0, 

…, wn-1}, maximum weight W

• Output: a subset S of the input set 
such that the sum of the elements of 
S ≤ W and there is no subset of the 

input set whose sum is greater than 
the sum of S and ≤ W
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Brute Force Subset Sum

def subsetsum (items, maxweight):
best = {} 
for s in allPossibleSubsets (items):
if sum (s) <= maxweight \

and sum (s) > sum (best)
best = s

return best

Just like brute force knapsack:
Running time ∈ Θ(n2n)
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Greedy Subset Sum?

• Pick largest item that fits

–Bad: I = { 4, 5, 7 } W = 9

• Pick smallest item

–Bad: I = { 4, 5, 7 } W = 7

• Doesn’t prove there is no myopic 
criteria that works

Note: Subset Sum is known to be NP-
Complete, so finding one would prove P = NP
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Charge

• More greedy algorithm examples in 
Section this week

• PS3: greedy phylogeny algorithm

–Not optimal (prove in Question 8)

–Usually reasonably good (similar to 
algorithms used in practice)


