CS216: Program and Data Representation University of Virginia Computer Science

Lecture 7 :
Greedy Algorithms

Greed is Good?

- Adam Smith, An Inquiry into the Nature and Causes of the Wealth of Nations (1776)
"It is not from the benevolence of the butcher, the brewer, or the baker, that we expect our dinner, but from their regard to their own interests."
- Invisible hand: individuals acting on personal greed produces (nearly) globally optimal results

Interval Scheduling Problem

- Input: R, a set of n resource requests:
$\left\{<s_{0}, f_{0}>,<s_{1}, f_{1}>, \ldots,<s_{n-1}, \mathrm{f}_{n-1}>\right\}$
- Output: a subset S of R with no overlapping requests ($s_{i}>s_{j}<f_{j}$ for any $<s_{i}, f_{i}>,<s_{j}, f_{j}>\in S$) such that
$|S| \geq|T|$ for any $T \subseteq R$ with no overlapping requests

Menu

La vita e incerta - mangia il dolce per primo.

"Life is uncertain. Eat dessert first." Ernestine Ulmer

UVa CS216 Spring 2006 - Lecture 7: Greed is Good

Greedy Algorithms

- Make the locally best choice "myopically" at each step
- Need to figure out what "dessert" is
- Hope it leads to a globally good solution
- Sometimes, can prove it leads to an optimal solution
- Other times (like phylogeny), nonoptimal, but usually okay if you get lucky

Greedy Approaches

- Need to pick best subset by making myopic decisions, one element at a time
- Many possible criteria for making myopic decision
- Earliest starting time?
- Latest ending time?
- Shortest?

Greedy Algorithm:

Running Time Analysis

- Straightforward implementation:
- Search to find earliest finishing: $\mathrm{O}(n)$
- Eliminate matching elements: $\mathrm{O}(n)$
- Repeat (up to n times): $\mathrm{O}\left(n^{2}\right)$
- Smarter implementation:
- Sort by finishing time: $\mathrm{O}(n \log n)$
- Go through list, selecting if nonoverlapped: $\mathrm{O}(n)$
- Running time $\in \mathrm{O}(n \log n)$

Correctness?

- How to prove a greedy algorithm is nonoptimal
- Find a counterexample: some input where the greedy algorithm does not find the best solution
- How to prove a greedy algorithm is optimal
- By induction: always best up to some size
- By exchange argument: swapping any element in solution cannot improve result

UVa CS216 Spring 2006 - Lecture 7: Greed is Good

Proof

- The greedy algorithm produces,

$$
R=\left\{r_{0}, \ldots, r_{k-1}\right\}
$$

- Suppose there is a better subset,

$$
Q=\left\{q_{0}, \ldots, q_{k-1}, q_{k}\right\}
$$

- Sort both by finishing time, so
$f_{r_{i}}<f_{r_{j}}$ for all $0 \leq i<j<k$
$f_{q i}<f_{q j}$ for all $0 \leq i<j<k+1$

Induction Proof: $f_{r_{i}} \leq f_{q j}$

$R=\left\{r_{0}, \ldots, r_{k-1}\right\} \quad Q=\left\{q_{0}, \ldots, q_{k-1}, q_{k}\right\}$

- Basis: $f_{r 0} \leq f_{q 0}$
- Greedy algorithm choose r_{0} as the element with the earliest finishing time
- So, $f_{r 0} \leq f_{j}$ for all j
- Induction: $f_{r_{i-1}} \leq f_{q j-1} \Rightarrow f_{r_{i}} \leq f_{q j}$
- Since $f_{r_{i-1}} \leq f_{q_{j-1}}$ we know $s_{q i} \geq f_{r_{i-1}}$
- So, greedy algorithm could choose q_{i}
- If $f_{q_{i}}<f_{r_{j}}$, greedy algorithm would have chosen $f_{q j}$ instead of $f_{r j}$

Knapsack Problems

- You have a collection of items, each has a value and weight
- How to optimally fill a knapsack with as many items as you can carry

Scheduling: weight = time, one deadline for all tasks Budget allocation: weight $=$ cost

General Knapsack Problem

- Input: a set of n items $\left\{<\right.$ name $_{0}$, value $_{0}$, weight $_{0}>, \ldots,<$ name $_{n-1}$, value $_{n-1}$, weight $\left._{n-1}>\right\}$, and maxweight
- Output: a subset of the input items such that the sum of the weights of all items in the output set is \leq maxweight and there is no subset with weight sum \leq maxweight with a greater value sum

Brute Force Knapsack Analysis

- How many subsets are there?
- How much work for each subset? for item in s:
value $+=$ item. value
weight $+=$ item. weight
Average size of each subset is $n / 2$
(there are as many subsets with size c and of size $n-c$)
Running time $\in \Theta\left(n 2^{n}\right)$

Brute Force Knapsack
def knapsack (items, maxweight):
best $=\{ \}$
bestvalue $=0$
for s in allPossibleSubsets (items):
value $=0$
weight $=0$
for item in s : (Defining and value $+=$ item.value analyzing this weight $+=$ item. weight might be a good
if weight $<=$ maxweight: Exam 1 question)
if value > bestvalue:
best $=s$
bestvalue = value
return best
UVa CS216 Spring 2006 - Lecture 7: Greed is Good

Dynamic Programming

- Section this week: dynamic programming solution to the knapsack problem
- Running time in
$\mathrm{O}($ maxweight * n)

Greedy Knapsack Algorithm

- Repeat until no more items fit: - Add the most valuable item that fits
- "Greedy": always picks the most valuable item that fits first

Greedy Knapsack Algorithm

def knapsack_greedy (items, maxweight): result $=[]$
weight $=0$
while True:
\# try to add the best item weightleft $=$ maxweight - weight

Running Time bestitem = None $\in \Theta\left(n^{2}\right)$
for item in items:
if item. weight <= weightleft \backslash
and (bestitem == None \}
or item.value > bestitem.value): bestitem = item
if bestitem == None: break
else:
result.append (bestitem)
weight $+=$ bestitem.weight
return result
UVa CS216 Spring 2006 - Lecture 7: Greed is Good

Same Weights Knapsack Problem

- Input: a set of n items $\left\{<\right.$ name $_{0}$, value $_{0}>$, $\ldots,<$ name $_{n-1}$, value $\left.{ }_{n-1}>\right\}$, each having weight w, and maxweight
- Output: a subset of the input items such that the sum of the weights of all items in the output set is \leq maxweight and there is no subset with weight sum \leq maxweight with a greater value sum
Greedy algorithm picks \{<"platinum">\} value = 110, but $\{<$ "gold">, "silver">\} has weight $<=3$ and value $=180$

Greedy Algorithm Correct

- It keeps adding items until maxweight would be exceeded, so the result contains k items where $k w<=$ maxweight and $(k+1) w>$ maxweight
- Hence, cannot add any item (weight w) without removing another item
- But, any item with value > value of the lowest value item in result would have already been added by greedy algorithm

Subset Sum Problem

- Knapsack problem where value $=$ weight
- Input: set of n positive integers, $\left\{w_{0}\right.$, ..., $\left.w_{n-1}\right\}$, maximum weight W
- Output: a subset S of the input set such that the sum of the elements of $S \leq W$ and there is no subset of the input set whose sum is greater than the sum of S and $\leq W$

Greedy Subset Sum?

- Pick largest item that fits
-Bad: $I=\{4,5,7\} W=9$
- Pick smallest item
-Bad: $I=\{4,5,7\} W=7$
- Doesn't prove there is no myopic criteria that works
Note: Subset Sum is known to be NPComplete, so finding one would prove $P=N P$

Charge

- More greedy algorithm examples in Section this week
- PS3: greedy phylogeny algorithm
- Not optimal (prove in Question 8)
- Usually reasonably good (similar to algorithms used in practice)

