
1

CS216: Program and Data Representation

University of Virginia Computer Science
Spring 2006 David Evans

Lecture 9:
Low-Level

Programming

http://www.cs.virginia.edu/cs216 2UVa CS216 Spring 2006 - Lecture 9: Low-Level Programming

Menu
• Complexity Question

• Low-Level Programming

Exam 1
Out Wednesday, Due Monday, 11:01AM
Covers everything through Lecture 8
Expect questions on:

order notation, algorithm analysis, lists,
trees, recursive programming, dynamic
programming, greedy algorithms

Not on complexity classes (Lecture 8)

3UVa CS216 Spring 2006 - Lecture 9: Low-Level Programming

Problem Classes if P ≠ NP:

P

Interval

Scheduling:

Θ(n log n)

Sequence

Alignment: O(n2)

Subset Sum

O(n)

How many problems
are in the Θ(n) class?

How many problems

are in P but not
in the Θ(n) class?

How many problems

are in NP but not
in P?

infinite

infinite

infinite

NP

3SAT

NP-Complete

Note the
NP-

Complete
class is a

ring – others
are circles

4UVa CS216 Spring 2006 - Lecture 9: Low-Level Programming

Is it ever useful to be
confident that a problem is

hard?

5UVa CS216 Spring 2006 - Lecture 9: Low-Level Programming

Knapsack Cipher
[Merkle & Hellman, 1978]

• Public Key: A = {a1, a2,…,an}

–Set of integers

• Plain Text: x1,…xn

xi = 0 or 1

• Cipher Text:
∑

=

=

n

i

iiaxs
1

6UVa CS216 Spring 2006 - Lecture 9: Low-Level Programming

Subset Sum is Hard

• Given s and A it is NP-Complete to
find a subset of A that sums to s

• Need to make decrypting each (for
recipient with the “private key”)

2

7UVa CS216 Spring 2006 - Lecture 9: Low-Level Programming

Superincreasing Set

• Pick {a1, a2,…,an} is a superincreasing
sequence

∑
−

=

>

1

1

i

j

ji aa

How hard is subset sum if A
is superincreasing?

8UVa CS216 Spring 2006 - Lecture 9: Low-Level Programming

Knapsack Ciphers

• Private Key = {p1, p2,…,pn}

–A superincreasing sequence

–Values M and W:

• Public Key = {a1, a2,…, an}

MWba ii mod)(≡

1),(

1

=

>∑
=

WMGCD

bM
n

i

i

9UVa CS216 Spring 2006 - Lecture 9: Low-Level Programming

Flawed Security Argument

• Subset Sum is NP-Complete

• Breaking knapsack cipher involves
solving a subset sum problem

• Therefore, knapsack cipher is secure

Flaw: NP-Complete means there is no
fast general solution. Some instances
may be solved quickly.
(Note: Adi Shamir found a way of breaking
knapsack cipher [1982])

10UVa CS216 Spring 2006 - Lecture 9: Low-Level Programming

Levels of Abstraction: Program
Real World Problem

High-Level Program

Machine Instructions

Physical
Processor

P
h
y
s
ic

a
l

W
o
rld

V
ir
tu

a
l

W
o
rl
d

From Lecture 3

11UVa CS216 Spring 2006 - Lecture 9: Low-Level Programming

Crossing-Levels

Python Program

x86 Instructions

P
y
th

o
n

In
te

rp
re

te
r

C Program

x86 Instructions

C compiler

12UVa CS216 Spring 2006 - Lecture 9: Low-Level Programming

Programming Languages

3

13UVa CS216 Spring 2006 - Lecture 9: Low-Level Programming

Programming Languages

Phylogeny (Simplified)

Fortran (1954), IBM (Backus)

Algol (1958)

Scheme (1975)
CPL (1963), U Cambridge

Combined Programming Language

BCPL (1967), MIT
Basic Combined Programming Language

B (1969), Bell Labs

C (1970), Bell Labs

C++ (1983), Bell Labs

Java (1995)

Objective C

Simula (1967)

Python (1990),
Guido van Rossum

ABC (~1980)

BASIC (1963)

Smalltalk
(1971), PARC

LISP (1957)

14UVa CS216 Spring 2006 - Lecture 9: Low-Level Programming

Why so many
Programming Languages?

15UVa CS216 Spring 2006 - Lecture 9: Low-Level Programming

“Jamais Jamais Jamais” from Harmonice Musices
Odhecaton A. Printed by Ottaviano Dei Petrucci in

1501 (first music with movable type)

16UVa CS216 Spring 2006 - Lecture 9: Low-Level Programming

J S Bach, “Coffee Cantata”,
BWV 211 (1732)
www.npj.com/homepage/teritowe/jsbhand.html

“Jamais Jamais Jamais” from

Harmonice Musices Odhecaton A.
(1501)

17UVa CS216 Spring 2006 - Lecture 9: Low-Level Programming

Modern Music Notation

Roman Haubenstock-
Ramati, Concerto a Tre

John Cage, Fontana Mix

http://www.medienkunstnetz.de/works/fontana-mix/audio/1/

18UVa CS216 Spring 2006 - Lecture 9: Low-Level Programming

4

19UVa CS216 Spring 2006 - Lecture 9: Low-Level Programming

Thought and Action
• Languages change the way we think

– Scheme: think about procedures

– BASIC: think about GOTO

– Algol, Pascal: think about assignments, control
blocks

– Java: think about types, squiggles, exceptions

– Python?

• Languages provide abstractions of machine
resources
– Hide dangerous/confusing details: memory

locations, instruction opcodes, number
representations, calling conventions, etc.

20UVa CS216 Spring 2006 - Lecture 9: Low-Level Programming

Abstractions
• Higher level abstractions

– Python, Java, BASIC, …

– Easier to describe abstract algorithms

– But, cannot manipulate low-level machine
state
• How are things stored in memory?

• Opportunities for optimization lost

• Lower level abstractions
– C, C++, JVML, MSIL, Assembly, …

– Harder to describe abstraction algorithms

– Provides programmer with control over low-
level machine state

21UVa CS216 Spring 2006 - Lecture 9: Low-Level Programming

Biggest Single Difference:
Memory Management

• High-level languages (Python, Java)
provide automatic memory
management
–Programmer has no control over how

memory is allocated and reclaimed

–Garbage collector reclaims storage

• Low-level languages (C, Assembly)
leave it up to the programmer to
manage memory

22UVa CS216 Spring 2006 - Lecture 9: Low-Level Programming

Programming Languages

Phylogeny (Simplified)

Fortran (1954), IBM (Backus)

Algol (1958)

Scheme (1975)
CPL (1963), U Cambridge

Combined Programming Language

BCPL (1967), MIT
Basic Combined Programming Language

B (1969), Bell Labs

C (1970), Bell Labs

C++ (1983), Bell Labs

Java (1995)

Objective C

Simula (1967)

Python (1990),
Guido van Rossum

ABC (~1980)

BASIC (1963)

Smalltalk
(1971), PARC

LISP (1957)

23UVa CS216 Spring 2006 - Lecture 9: Low-Level Programming

C Programming Language
• Developed to build Unix OS

• Main design considerations:

–Compiler size: needed to run on PDP-11
with 24KB of memory (Algol60 was too big
to fit)

–Code size: needed to implement the whole
OS and applications with little memory

–Performance, Portability

• Little (if any consideration):

–Security, robustness, maintainability

24UVa CS216 Spring 2006 - Lecture 9: Low-Level Programming

C Language

• No support for:

–Array bounds checking

–Null dereferences checking

–Data abstraction, subtyping, inheritance

–Exceptions

–Automatic memory management

• Program crashes (or worse) when
something bad happens

• Lots of syntactically legal programs
have undefined behavior

5

25UVa CS216 Spring 2006 - Lecture 9: Low-Level Programming

Example C Program
void test (int x) {

while (x = 1) {

printf (“I’m an imbecile!”);
x = x + 1;

}
}

In Java:
void test (int x) {

while (x = 1) {
printf (“I’m an imbecile!”);

x = x + 1;
}

}

> javac Test.java
Test.java:21: incompatible types

found : int
required: boolean

while (x = 1) {
^

1 error

Weak type checking:
In C, there is no boolean type.

Any value can be the test expression.

x = 1 assigns 1 to x, and has the value 1.

I’m an imbecile!
I’m an imbecile!

I’m an imbecile!
I’m an imbecile!

I’m an imbecile!
I’m an imbecile!

26UVa CS216 Spring 2006 - Lecture 9: Low-Level Programming

Fortran (1954)

Algol (1958)

C (1970), Bell Labs

C++ (1983), Bell Labs

Java (1995), Sun

CPL (1963), U Cambridge
Combined Programming Language

BCPL (1967), MIT

Basic Combined Programming Language

B (1969), Bell Labs

LET

:=

:=

:=

=

=

=

=

27UVa CS216 Spring 2006 - Lecture 9: Low-Level Programming

= vs. :=

Why does Python use = for assignment?
• Algol (designed for elegance for presenting

algorithms) used :=

• CPL and BCPL based on Algol, used :=

• Thompson and Ritchie had a small computer to
implement B, saved space by using = instead

• C was successor to B (also on small computer)

• C++’s main design goal was backwards
compatibility with C

• Python was designed to be easy for C and C++
programmers to learn

28UVa CS216 Spring 2006 - Lecture 9: Low-Level Programming

C Bounds Non-Checking
int main (void) {
int x = 9;

char s[4];

gets(s);
printf ("s is: %s\n“, s);

printf ("x is: %d\n“, x);
}

> gcc -o bounds bounds.c
> bounds

abcdefghijkl
s is: abcdefghijkl

x is: 9
> bounds

abcdefghijklm
s is: abcdefghijklmn

x is: 1828716553

> bounds
abcdefghijkln

s is: abcdefghijkln
x is: 1845493769

> bounds
aaa... [a few thousand characters]

crashes shell

(User input)

= 0x6d000009

= 0x6e000009

Note: your results
may vary
(depending on
machine, compiler,
what else is
running, time of
day, etc.). This is
what makes C fun!

29UVa CS216 Spring 2006 - Lecture 9: Low-Level Programming

Charge

• Wednesday: Exam 1 is out, due
Monday

• No regularly scheduled Small Hall
and office hours while Exam 1 is out

