
CS216: Exam 1 - Comments

1 of 4 3/1/2006 10:30 AM

University of Virginia Computer Science

CS216: Program and Data Representation, Spring 2006 01 March 2006

Exam 1 Comments

Order Notation

For each of the questions below, fill in the missing symbol with one of these choices:

= — the sets are equal

⊂⊂⊂⊂ — the left set is a strict subset (cannot be equal) of the right set

⊃⊃⊃⊃ — the left set is a strict superset (cannot be equal) of the right set

⊆⊆⊆⊆ — the left set is a subset (can be equal) of the right set

⊇⊇⊇⊇ — the left set is a superset (can be equal) of the right set

≠≠≠≠ — the sets are not equal, but there is no subset or superset relationship

You should select the strongest possible choice (for example, if two sets are equal and you select subset, that

is a correct statement, but not worth full credit).

For each answer, provide a short justification of your answer. Your justification should follow from the

definitions of the order notations.

1. (Average 4.49 out of 5 points) O (n) ≠≠≠≠ Θ (n2)

The sets are unequal (in fact they are disjoint, and have no members in common). The set

Θ(n
2
) is all functions that grow as fast as n

2
; the set O(n) is the set of all functions that grow

no faster than n. Since n
2
 grows faster than n, there is no overlap between the sets.

2. (4.11 / 5) Θ (n) ⊂⊂⊂⊂ O (2n)

First, note that the factor has no effect on the growth rate, so O(2n) is equivalent to O(n). The

set Θ(n) is the set of all functions that grow as fast as n; this is a proper subset of O(n) which is

the set of all functions that grow no faster than n. There are functions in O(n) that are not in

Θ(n) such as constant functions or log n.

3. (4.14 / 5) ∅ = O (n!) ∩ Ω(n
n
)

The intersection of O(n!) and Ω(n
n
) is empty, since n

n
 grows faster than n! (see Problem Set

1).

4. (4.82 / 5) O (1) ⊃⊃⊃⊃ Θ (1)

This one is tricky, and we accepted =, ⊇⊇⊇⊇ or ⊃⊃⊃⊃ as a full credit answer (with a good explanation).

Certainly we known every element of Θ(1) is also in O(1) from the definitions of Θ and O. The

tougher question is figuring out if there is any function in O(1) that is not in Θ(1). From the

informal definitions, this would mean is there any function that produces a positive value as

output that grows slower than a constant. Intuitively, it would seem that functions like 1/n have

this property — as n increases, the value of the function decreases asymptotically. To answer it

more convincingly, we need to consider the definitions of O and Θ.

If f is in O (1), then we know there are constants c > 0 and n0 ≥ 0 such that f(n) < c for all n ≥

n0. (Since g(n) = 1, the g(n) term goes away.) For O(1) to be equal to Θ(1), we would need to

show that this also implies f is in Ω(1). This requires that we can find constants c > 0 and n0 ≥

0 such that f(n) > c for all n ≥ n0. That is, f is in Ω(1) if and only if 1 is in O(f). Consider f(n) =

CS216: Exam 1 - Comments

2 of 4 3/1/2006 10:30 AM

1/n. We cannot have 1 is in O(1/n) since for some value of n we know eventually 1 > c * 1 / n

for some value of c (we can choose n > c for any choice of c). Hence, we know O(1) is a strict

superset of Θ(1).

Lists

5. (6.98 / 10) Complete the definition of the ListNode method reverse, that is called by the

LinkedList method reverse to produce a reversed self list as its output (the same elements as in self,

but in reverse order). For example,

 l = LinkedList.LinkedList ().append(1).append(2).append(3)

 r = l.reverse ()

should make r the list [3, 2, 1] and leave l as the list [1, 2, 3].

The rest of the code is taken from the LinkedList.py implementation of an immutable list datatype from

Problem Set 2.

The easiest way to think of reverse is simply adding the first element to the end of the list

resulting from reversing the rest of the elements:

 def reverse (self):

 head = ListNode (self.__info)

 if self.__next == None:

 return head

 else:

 return self.__next.reverse().append (self.__info)

There are more complex iterative ways (that are more efficient) to do this by switching the

__next pointers down the list, but they are much tougher than the simple recursive solution.

6. (8.46 / 10) What is the asymptotic running time of your reverse implementation? Explain your answer

convincingly, and be sure to define any variables you use and state any assumptions you make clearly.

Our reverse implementation has running time in Θ(n
2
) where n is the number of elements in

the input list. (Note, it is possible to implement reverse with running time in Θ(n) by adjusting

the __next pointers directly.)

There will be n calls to reverse, once for each element in the list (actually, there are n - 1

because the base case stops the recursion for the list of length 1). But, each call to reverse

involves a call to our append method. The provided append implementation has running

time in Θ(m) where m is the size of the input to append (see Problem Set 2). The average

length of the input list to append is n / 2, so the average running time of the append call is in

Θ(n / 2) = Θ(n).

We are making n calls to reverse, each of which involves running time Θ(n) from the call to

append, so the total running time will be in Θ(n
2
).

Matching

7. (9.2 / 10) Prove the greedy partnering algorithm shown is not optimal by showing an input for which it

would not produce the correct result.

We just need to find an input list where the best match for the first student does not produce

the optimal global match. Here's a simple example:

students = { "Alice", "Bob", "Colleen" }

CS216: Exam 1 - Comments

3 of 4 3/1/2006 10:30 AM

The goodness scores of (Alice, Bob) = 10, (Alice, Colleen) = 20, and (Bob, Colleen) =

110. (Bob and Colleen are in the same section and different years; Alice and Bob are in

different years and different sections; Alice and Colleen are in different majors, the

same year, and different sections.)

The greedy algorithm will first find the best partner for Alice, which is Colleen. Then,

there is no partner left fo Bob, so the total goodness score is 20. If we matched Bob with

Colleen, and left Alice unpaired, the goodness score is 110.

8. (4.3 / 5) What is the asymptotic running time of assignPartners? Be sure to define any variables you

use in your answer and state your assumptions about Python operations clearly.

Θ(n2) where n is the number of students. We have two nested for loops, each of which iterates

through the students. So, there are Θ(n
2
) evaluations of the inner for loop (there are not exactly

n
2
 iterations, since we skip the inner loop if the student already has a partner; in the worst case,

however, no students will be assigned partners if the best match for each student is with None).

The body of the inner for loop evaluates goodnessScore twice. This involves indexing into

records to find each students record, and doing a dictionary lookup on the field we are

comparing, as well as the find call in the notpartners list. We need to assume all these

operations have running times in O(1) for the overall running time to be in Θ(n
2
). The one we

are most concerned about is find, which searches the notpartners string for each student to

see if it contains the other student. This is likely to have running time in O(s) where s is the

length of the notpartners string. If we assume those lengths are small and fixed (which is in

fact the case for CS216 students), then this is still constant time as n grows. If we assume

people have a fixed fraction of the rest of the world they wouldn't want to partner with, then

we expect the lengths of the partner lists to grow as a fraction of n. This would make the

overall running time of assignPartners in O(n
3
).

9. (6.37 / 10) Define the allPossiblePartnerAssignments procedure Zulma needs.

The easiest way to do this was to realize that we can find all possible partner assignments by

arranging the students in all possible orders, and then just having them partner with the

adjacent student. The subtlety (which no one got quite correctly) with this approach is dealing

with the possibility that someones best match is with None (recall that the goodnessScore

returns -1 if either partner is None, but can return a more negative score if the one partner is

on the others notpartners list). So, we need to consider all possible orderings of the students

with the list extended with enough None values so each student could potentially be partnered

with None. We do this by appending enough Nones to the list before calling allLists. We

use the allLists procedure from Section 3 to produce all possible lists.

def allPossiblePartnerAssignments (students):

 s = students[:] # we use a copy to avoid modifying input list

 for n in range (len (students)):

 s.append (None)

 for ordering in allLists (s):

 assignments = { }

 for i in range (len (ordering)):

 if i + 1 == len(ordering)

 assignments[ordering[i]] = None

 else:

 if not ordering[i] == None: # avoid adding partners for None

 assignments[ordering[i]] = ordering[i + 1]

 if not ordering[i + 1] == None:

 assignments[ordering[i + 1]] = ordering[i]

 yield assignments

CS216: Exam 1 - Comments

4 of 4 3/1/2006 10:30 AM

(Note: I applied the same rule to myself as you had on this exam of not actually trying the code

in an interpreter. So, there is probably at least one bug in it. The first person to find a

non-trivial bug in this and explain how to fix it gets 10 bonus points.)

10. (7.63 / 10) Explain why Zuma's partner assignment algorithm would not run fast enough to be used to

assign partners for PS4. (Note: a good answer would include an explanation of the running time of

assignPartners. Assume you have a correct and optimally efficient

allPossiblePartnerAssignments implementation regardless of your answer to question 9. You

should be able to answer question 10 well, even if you could not answer question 9.)

The algorithm we used in question 9 involves creating all possible permutations of a list of

length 2n, where n is the number of students (recall we added n Nones to the list we passed to

allLists). Hence, there are (2n)! possible orderings. For each ordering, we loop through all

the elements (up to 2n of them), so the work of allPossiblePartnerAssignments for

each possible assignment is 2n * (2n)!. Regardless of any other work, this exceeds 10
357

. This

far exceeds the number of atoms in the universe, so is most definitely not something we could

compute in time for PS4.

This is not the best possible algorithm, however, especially because of how we dealt with the

None matches. We could improve it by recognizing the each None is identical, so all the

orderings that just involve moving Nones around with other Nones are identical. So, perhaps

we could approach O(n!). We know the brute force algorithm can't do better than this however

— we need to try all possible assignments of students, so we need to try all possible orderings.

But even 96! is way beyond the realm of anything tractable for computing.

I was surprised by the number of people who answered this by analyzing the complexity to be

in something like O(n3), and then arguing that performing 1003 iterations would be intractable.

You should have a bit better of a sense of the power of the computers you use. When they say

a 2GHz processor, that means it can perform 2 Billion operations per second (what an

operation is is a bit complex, but you can think of any simple calculation as a few operations).

Hence, numbers like 100
3
 are not a problem at all. Its only 1 Million, and the computers in lab

can do around two thousand million operations in one second.

11. (average 0.98 bonus points) Suggest a better algorithm to use to assign partners for future problem sets.

We'll discuss this in a future class.

CS216: Program and Data Representation

University of Virginia

cs216-staff@cs.virginia.edu

Using these Materials

